Modeling of Natural Convection in Electronic Enclosures

P. Teertstra, M.M. Yovanovich, J.R. Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada

June 2, 2004

University of Waterloo

Outline

- Introduction and problem description
- Model development
- Numerical simulations
- Validation
- Summary

Introduction

- Current design practice for sealed electronic enclosures
 - Numerical CFD simulations
 - Experimental prototype testing
 - Time consuming, expensive
- Analytically-based modeling
 - Quick, easy to implement
 - Ideal for preliminary design, parametric studies
- Objective: to develop and validate a natural convection model for simple, sealed enclosures
 - Vertical rectangular flat plate at center of a cuboid shaped enclosure
 - Full range of Rayleigh number from laminar natural convection to conduction

University of

3

General Model Formulation

• Combination of three asymptotic solutions (Teertstra, 2003)

$$Nu_{\sqrt{A_i}} = S_{\sqrt{A_i}}^* + \left[\left(\frac{1}{Nu_{tr}} \right)^2 + \left(\frac{1}{Nu_{bl}} \right)^2 \right]^{-1/2} \quad \begin{cases} S_{\sqrt{A_i}}^* = & \text{conduction shape factor} \\ Nu_{tr} = & \text{transition flow convection} \\ Nu_{bl} = & \text{laminar boundary layer} \\ \text{flow convection} \end{cases}$$

Conduction Shape Factor

• Composite model (Churchill and Usagi, 1972)

$$S_{\sqrt{A_i}}^* = \left[\left(S_{b/L \to 0}^* \right)^{3/2} + \left(S_{b/L \to \infty}^* \right)^{3/2} \right]^{2/3}$$

• $b/L \to 0$ one dimensional conduction in gap

$$S = \frac{A_i}{b} \qquad S_{b/L \to 0}^* = \frac{S}{\sqrt{A_i}} = \frac{\sqrt{A_i}}{b}$$

• $b/L \rightarrow \infty$ shape factor independent of b/L

$$S_{b/L \to \infty}^* = \frac{1}{k\sqrt{A_i}R}$$
 $R = R_{plate} - R_{sphere}$

 R_{plate} = isothermal flat plate in full space region R_{sphere} = equivalent sphere in full space region $d_{eff} = (L_o + W_o)/2$

Laminar Boundary Layer

- Assumptions
 - T_b uniform
 - Non-intersecting boundary layers
- Series combination of resistances

$$R_{conv} = R_{i} + R_{o} \qquad Nu_{bl} = \frac{1}{k\sqrt{A_{i}}} \frac{1}{R_{conv}} = \frac{1}{k\sqrt{A_{i}}} \frac{1}{(1/R_{i})} \frac{(1/R_{i})}{(1+R_{o}/R_{i})}$$
$$R_{i} = \frac{T_{i} - T_{b}}{Q} = \frac{1}{k\sqrt{A_{i}}} \frac{1}{Nu_{i}} \qquad R_{o} = \frac{T_{b} - T_{o}}{Q} = \frac{1}{k\sqrt{A_{o}}} \frac{1}{Nu_{o}}$$

University of Waterloo

 Convection at boundaries modeled using Lee, Yovanovich and Jafarpur (1991)

$$Nu_{\sqrt{A}} = F(\Pr)G_{\sqrt{A}} Ra_{\sqrt{A}}^{1/4}$$

$$Nu_{bl} = \frac{F(\Pr)G_{\sqrt{A_i}} Ra_{\sqrt{A_i}}^{1/4}}{\left[1 + \left(\frac{A_i}{A_o}\right)^{7/10} \left(\frac{G_{\sqrt{A_i}}}{G_{\sqrt{A_o}}}\right)^{4/5}\right]^{5/4}}$$

- Prandtl number function F(Pr) = 0.513 for air at STP
- Body gravity functions

$$G_{\sqrt{A_i}} = 2^{1/8} \left(\frac{W_i / L_i}{L_i} \right)^{1/8} \quad \text{(Lee et al., 1991)}$$

$$G_{\sqrt{A_o}} = 2^{1/8} \left[\frac{0.625 (2b)^{4/3} W_o + L_o (2b + W_o)^{4/3}}{(L_o W_o + 2b (L_o + W_o))^{7/6}} \right]^{3/4} \quad \text{(Jafarray and Variation)}$$

(Jafarpur and Yovanovich, 1993)

University of Waterloo

Transition Flow

- Boundary layers merge at low Rayleigh numbers
- Linear temperature distribution in core
- Convective heat transfer in top and bottom recirculation regions
- Enthalpy balance in end regions

$$Nu_{tr} = \frac{\sqrt{2}}{360} \frac{\sqrt{W_i/L_i}}{\left(1 + L_o/L_i\right)} \left(\frac{\delta_{\text{eff}}}{\sqrt{A_i}}\right)^3 Ra_{\sqrt{A_i}}$$

 $\delta_{\rm eff}$ = gap spacing of equivalent spherical cavity L_o , L_i = effective flow length on outer, inner wall

$$L_o/L_i = 1.05, 1.2, 1.6, 2$$

 $L_i/W_i = L_o/W_o = 0.5, 1, 2$
 $b/L_o = 1 \rightarrow 0.05$

9

 $L_o/L_i = 1.05, 1.2, 1.6, 2$ $L_i/W_i = L_o/W_o = 1, 2$ $b/L_o = 1 \rightarrow 0.05$

Summary

- Analytical model developed for natural convection for a vertical plate in a sealed, cuboid shaped enclosure
- Validated with data from CFD simulations
 - 10 % average difference with numerical data
- Demonstrates trends in data as function of geometry and Rayleigh number
- Future work
 - Isoflux inner boundary condition
 - Array of vertical plates
 - Experimental validation of analytical models

Acknowledgements

- NSERC Natural Sciences and Engineering Research Council of Canada
- MMO Materials and Manufacturing Ontario
- CMAP Centre for Microelectronics Assembly and Packaging