

## MODELING OF THERMAL JOINT RESISTANCE OF POLYMER-METAL ROUGH INTERFACES

## Majid Bahrami<sup>1</sup> M. M. Yovanovich<sup>1</sup> E. E. Marotta<sup>2</sup>

<sup>1</sup>Department of Mechanical Engineering University of Waterloo Ontario, Canada

<sup>2</sup>Department of Mechanical Engineering Texas A&M University College Station, Texas, U.S.A

Modeling of Thermal Joint Resistance of Polymer-Metal Rough Interfaces IMECE 2004, Nov. 13 -19, 2004, Anaheim, California, USA. OVERVIEW



- Motivations and Objectives
- Problem Statement
- Thermal Resistance of Microcontacts
- Deformation Mode of Asperities
- Present Model
- Comparison with Experimental Data
- Conclusions

# MOTIVATIONS AND OBJECTIVES



- polymers are being used in many engineering applications
- most of Thermal Interstitial Materials (TIM) used in microelectronic cooling are polymers filled with conductive particles
- only a few studies, mostly experimental, exist in the literature
- develop a compact model for predicting the TCR of polymer-metal interface in a vacuum

# **PROBLEM STATEMENT**





Modeling of Thermal Joint Resistance of Polymer-Metal Rough Interfaces IMECE 2004, Nov. 13 -19, 2004, Anaheim, California, USA. University of

### CONFORMING ROUGH JOINTS

#### assumptions

- Gaussian roughness, isotropic
- surfaces are conforming
- microcontacts do not interfere
- only normal forces
- deformation mechanics is determined only by equivalent rough surface

a) section through two contacting surfaces



equivalent rough - smooth flat

 $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$  $m = \sqrt{m_1^2 + m_2^2}$ 

University of

## PLASTIC AND ELASTIC MODELS

- plastic model: Cooper, Mikic, Yovanovich (1969)
- elastic model: Mikic (1974)
  - assumed  $A_{elastic} / A_{plastic} = 1/2$
  - proposed an "effective elastic microhardness"  $H_e$ 
    - $H_{e} = \frac{E'm}{\sqrt{2}} \text{ where}$  $\frac{1}{E'} = \frac{1 v_{1}^{2}}{E_{1}} + \frac{1 v_{2}^{2}}{E_{2}}$
- a priori assumption of deformation mode could lead to physically impossible "effective elastic microhardness" values

$$H_e > H_{mic}$$
 impossible





plasticity index introduced by Mikic (1974)

$$\gamma = \frac{H_{mic}}{E'm}$$

$$\frac{1}{E'} = \frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2}$$

$$\begin{cases} \gamma \le 0.33 \qquad \text{plastic} \\ 0.33 \le \gamma \le 3.0 \qquad \text{transition} \\ \gamma \le 3.0 \qquad \text{elastic} \end{cases}$$

| Polymer       | <b>E</b><br>GPa | H <sub>mic</sub><br>GPa | γ    |
|---------------|-----------------|-------------------------|------|
| ABS           | 2.90            | 0.17                    | 0.30 |
| Delrin        | 3.59            | 0.37                    | 0.46 |
| Nylon         | 2.11            | 0.41                    | 0.90 |
| Phenolic      | 6.80            | 0.36                    | 0.26 |
| Polycarbonate | 2.39            | 0.14                    | 0.32 |
| Polyethylene  | 3.00            | 0.13                    | 0.17 |
| Polypropylene | 1.33            | 0.41                    | 0.97 |
| PVC           | 2.50            | 0.15                    | 0.37 |
| Teflon        | 0.46            | 0.20                    | 1.78 |

• Mikic concluded, as Greenwood and Williamson did, that the mode of deformation is not sensitive to applied load

almost all polymer asperities deform plastically

# PRESENT MODEL



- "equivalent rough surface" approximation was used
- microcontacts deform plastically
  - microhardness was measured for polymers studied
- microcontacts constriction/spreading and polymer bulk resistances are assumed to be in series
  - Bahrami et al. [17] plastic model was used

$$R_{j} = \frac{0.565H_{mic}(\sigma / m)}{k_{s}PA_{a}} + \frac{t_{0}(1 - P / E_{p})}{k_{p}A_{a}}$$

• joint temperatures are less than polymer glass temperatures

University of

Waterloo **COMPARISON WITH DATA** 10<sup>2</sup> 10<sup>2</sup> □` Delrin 1 present model R R present model R R Delrin2 νÓ D, ≷ ⊻<sub>10</sub>¹ ≥ ¥<sub>10</sub>¹ <u>ک</u> Ř bulk resistance R<sub>b</sub> bulk resistance R<sub>b</sub> contact resistance contact R s resistance R 10<sup>° L</sup> 10<sup>2</sup> 10<sup>⁰</sup> ∟ 10¹ 10<sup>4</sup>  $10^{3}$ 10<sup>2</sup> 10<sup>3</sup> 10<sup>4</sup> Ρ kPa Ρ kPa

Waterloo

#### **COMPARISON WITH DATA**



a non-dimensional parameter is proposed

$$R_{j}^{*} = \frac{R_{j}}{R_{b}} = 1 + \Theta$$
  
$$\Theta = \frac{R_{s}}{R_{b}} = \frac{0.565k^{*}(\sigma/m)}{P^{*}t_{0}(1 - P/E_{p})} \qquad k^{*} = k_{p}/k_{s} \quad P^{*} = P/H_{mic}$$

based on non-dimensional parameter

$$\begin{cases} \Theta << 1 & R_b \text{ controls } R_j \\ \Theta \approx 1 & R_b, R_s \text{ important} \\ \Theta >> 1 & R_s \text{ controls } R_j \end{cases}$$

Modeling of Thermal Joint Resistance of Polymer-Metal Rough Interfaces IMECE 2004, Nov. 13 -19, 2004, Anaheim, California, USA. University of

#### COMPARISAON WITH EXPERIMENTAL DATA



Modeling of Thermal Joint Resistance of Polymer-Metal Rough Interfaces IMECE 2004, Nov. 13 -19, 2004, Anaheim, California, USA.

# SUMMARY AND CONCLUSIONS



- it is shown that the deformation mode of asperities is plastic in most of polymers studied
- a compact model is developed that assumes plastic deformation in asperities
- comparison of the present model with experimental data shows good agreement
- a non-dimensional parameter is introduced that specifies the significance of the microcontacts constriction/spreading resistance over the polymer layer bulk resistance

# ACKNOWLEDGMENTS



- Natural Sciences and Engineering Research Council of Canada (NSERC)
- The Center for Microelectronics Assembly and Packaging (CMAP)