

Thermal Modeling and Analysis for Optoelectronic Packaging

J. Richard Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo

Microelectronics Heat Transfer Lab

- Established in 1984 within the Department of Mechanical Engineering
- Research and development related to heat transfer and other thermodynamic phenomena
- Fully funded through industrial and governmental grants and contracts
- Staff includes:
 - 2 faculty members, 1 retired faculty member
 - 7 graduate students
 - 2 post doctoral fellows, 1 research engineer

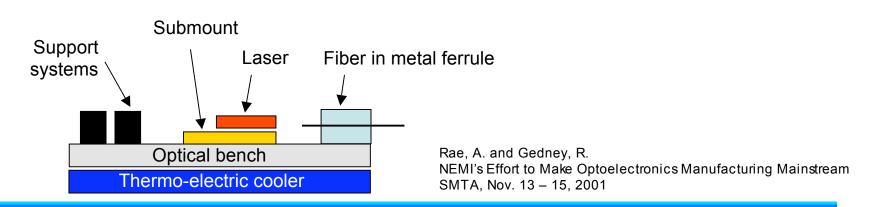
Collaborative Research Partners

- Telecommunications / Networking / Electronics Cooling
 - Nortel Networks
 - Alcatel
 - IBM
 - Sun Microsystems
 - Celestica
 - Motorola
 - Seiko Epson
 - Nikon
 - ATS
 - R-Theta
 - Raytheon

- Industrial / Automotive
 - Ford
 - W.E.T. Automotive Systems
 - Siemens
 - Dupont
- Research Institutes
 - NRC
 - Oakridge National Laboratories
 - AECL
- Granting Agencies
 - NSERC
 - MMO
 - CMAP

COPA Center for Optoelectronics Packaging and Assembly

Thermal Issues in Optoelectronic Packaging

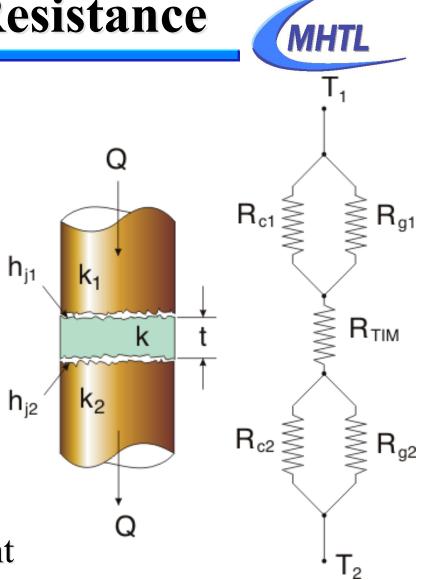


- Typical "butterfly" (Level 1) package
 - Precise temperature control at laser required, ± 0.5 °C
 - Spreading resistance in laser submount and optical bench (substrate)
 - Thermal contact resistance at submount, TEC joints
 - TEC efficiency

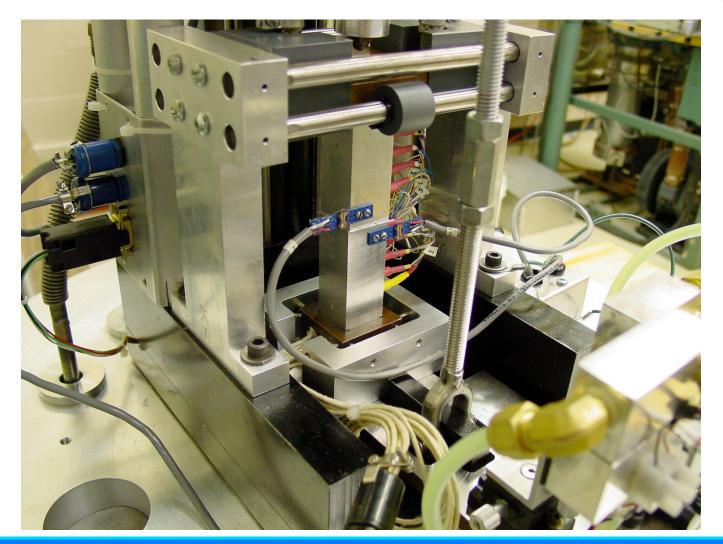
Center for Optoelectronics Packaging and Assembly

COPA

• Heat sink optimization for cooling of TEC


Research Areas and Capabilities

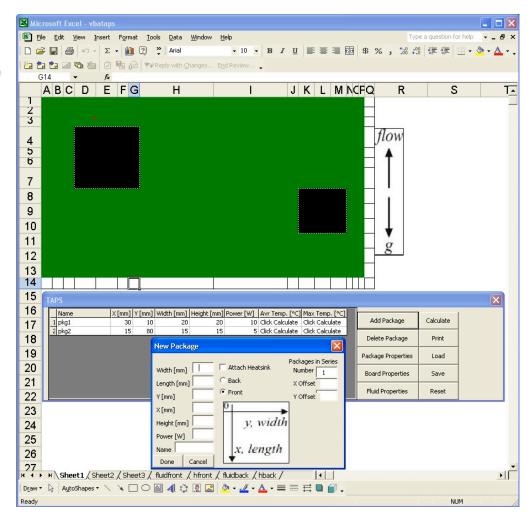
- Thermal contact resistance
 - Thermal interface materials, thermal compounds
 - Phase change materials
 - Metallic layers
- Thermal spreading resistance
 - Analytical modeling
 - Thermal conductivity measurements, materials characterization
- Heat sink optimization
 - Forced convection air cooled heat sinks
 - Liquid cooled cold plates
 - Heat pipe enhanced heat sinks


Thermal Contact Resistance

- Experimental measurements
 - Thermal joint resistance
 - In-situ thickness
 - Thermal conductivity
- Thermal interface materials
 - Polymeric layers
 - Thermal greases, compounds
 - Phase change materials
 - Metallic foils, solder
- Analytical model development

TIM Test Apparatus

Analytical Model Development


- Models developed from physically-based analysis
- Input variables
 - Geometry
 - Thermal properties
 - Mechanical properties
 - Surface characteristics
- Easy to implement design tools
 - Excel spreadsheets
 - Web-based applications

Thermal Contact Resistance of Nonconf	orming Rough Surfaces 🛛 🛛 🗙
Surface 1 Surface 2 Load	
b: Specimen Radius [m]: 0.05	
📀 δ: Max Out-of-Flatness [m]: 🛛 0.01	h h
C ρ: Radius of Curvature [m]:	
Elastic Modulus [GPa]: 100	$\sigma_1 m_1$
Poisson's Ratio: 0.35	S1 - many and
σ: Surface Roughness [μm]: 0.5	P2
✓ m: Asperity Mean 0.08 Surface Slope:	
Conductivity [W/m/K]: 100	
Hardness GPa]: 5	ş
C Microhardness [GPa]:	Calculate
C Input Coefficients: c1;	
c2:	

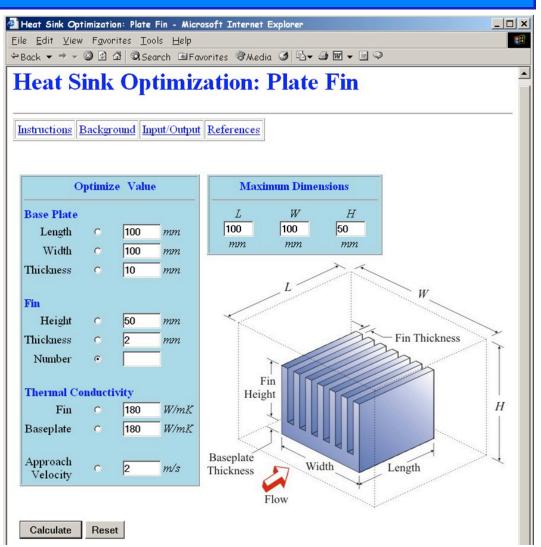
Spreading Resistance

- Homogeneous, multilayered substrates
- Multiple discrete sources
- Analytical modeling
- Numerical simulation
- Excel spreadsheet design tool

Heat Sinks and Cold Plates

Experimental measurements

- Wind tunnel
- Liquid cooling test apparatus


Heat Sink / Cold Plate Optimization

- Air cooled heat sinks
 - Plate, pin fin heat sinks
 - Flow by-pass
 - Spreading resistance
- Optimization by entropy generation minimization (EGM) analysis

Web-based Optimization Tool

COPA Center for Optoelectronics Packaging and Assembly

MHTL

Thank you

For more information contact:

Dr. J. Richard Culham, Director

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, ON N2L 3G1 (519) 888-4567 x3839 rix@mhtlab.uwaterloo.ca