

Overview of Research Experience and Capabilities

J. R. Culham, M.M. Yovanovich and P. Teertstra

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario N2L 3G1

December 6, 2001

- Experimentation
- Modelling
- Numerical CFD analysis

- Thermal interface material testing
- Air cooled heat sinks
 - thermal resistance and pressure drop
 - ✓ bypass
- Liquid cooled heat sink testing
- Thermal contact resistance for low contact pressures

- Design, build & commission test apparatus & data acquisition interface for testing interface materials:
 - Measure joint resistance and thermal conductivity as function of:
 - interface temperature
 - contact pressure
 - material properties
 - surface characteristics
 - in-situ thickness measurement: sub micron precision

Apparatus

- Load cell
 - 100 or 1000 lbs
- Spring to compensate for thermal expansion
- Thrust bearing to remove torque loads
- Linear actuator
 - digitally controlled stepper motor
 - 400 steps / rev
 0.1 inch per revolution

December 6, 2001

Thermal Interface Material Test

December 6, 2001

Thermal Interface Material Test

December 6, 2001

December 6, 2001

Air Cooled Heat Sink Tests

- Single-sided and back-to-back testing
- Wind tunnel
 - 18 inch x 18 inch x 24 inch tall section
 - ✓ 0 10 m/s
- Instrumentation
 - Keithley 2700 data acquisition system
 - 150 V, 7 A programmable DC power supply
 - Differential pressure transducers
 - Dantec hot wire anemometer
 - Pitot probe

18" x 18" Open Circuit Wind Tunnel

December 6, 2001

Heat Sink Bypass Measurement

December 6, 2001

- High heat flux applications
- Vacuum environment to reduce losses
- Measurements:
 - yower
 - temperature
 - flowrate
 - pressure drop
 - fluid temperature rise

Liquid Cooled Heat Sinks

December 6, 2001

Liquid Cooled Heat Sinks

CMAC / University of Waterloo Meeting

December 6, 2001

Thermal Contact Resistance at Low Contact Pressure

December 6, 2001

CMAC / University of Waterloo Meeting

Model Development

- Thermal model development: chip level —> cooling medium
 - heat sink optimization
 - modeling & characterization of thermal interfaces
 - modeling of spreading & constriction resistance
 - modeling of conduction & convection in PWBs
- Technology transfer:
 - Excel spreadsheets
 - Web-based analysis tools

Model Development

Heat sink optimization model

- shrouded, air-cooled, plate fin heat sink
- interactive web-based modeling tool

Thermal resistance models

- non-conforming, smooth surfaces
- conforming rough surfaces
- Excel spreadsheet models

Spreading resistance model for

- multiple discrete sources
- interactive web-based modeling tool

Apparent

contact area

t_{bp}

Macro-contact

area

— H —→

CMAC / University of Waterloo Meeting

December 6, 2001

Web URL: http://mhtlab.uwaterloo.ca/onlinetools/optimize/index.html

Web URL: http://mhtlab.uwaterloo.ca/onlinetools/multisource/index.html

Numerical CFD Analysis

- CFD modelling to support analysis:
 - parametric studies
 - validation
- Computing facilities
 - Sun Blade 1000 server
- Software
 - IcePak
 - Flotherm
 - I-DEAS