Models and Experiments for Laminar Natural Convection from Heated Bodies in Enclosures

Peter Teertstra, M. Michael Yovanovich, J. Richard Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada

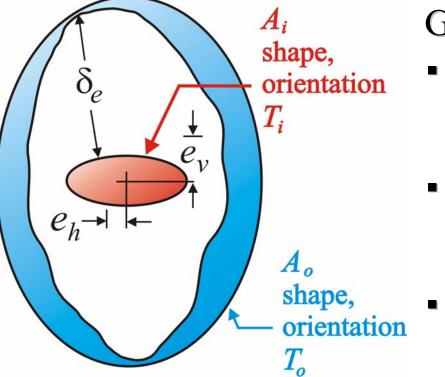
July 14, 2004

Outline

- Waterloo
- Introduction and problem description
- Literature review and objectives
- Experimental measurements
- Model development and validation
- Summary and conclusions

Problem Definition

- Steady state, natural convection
- Non-intersecting inner and outer boundaries
- Isothermal boundary conditions, $T_i > T_o$



Geometry:

Relative boundary size

$$\sqrt{A_o} / \sqrt{A_i} = d_o / d_i$$
 (spheres)

Effective gap spacing

$$\delta_e = (d_o - d_i)/2$$
 (spheres)

Eccentricity
$$e_h = e_v = 0$$

Parameter Definitions

• Total heat transfer rate

$$Q = \iint_{A_i} -k \frac{\partial \theta}{\partial \vec{n}} \bigg|_{A_i} dA_i , \quad \theta = T(\vec{r}) - T_b$$

Non-dimensionalized by Nusselt number

$$Nu_{\sqrt{A_i}} = \frac{Q}{k\sqrt{A_i}(T_i - T_o)} = S_{\sqrt{A_i}}^* \text{ for } Ra \to 0$$

• Rayleigh number

$$Ra_{\sqrt{A_i}} = \frac{g\beta(T_i - T_o)(\sqrt{A_i})^3}{\upsilon\alpha}$$

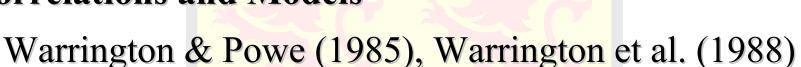
Literature Review

Experimental and Numerical Studies

- Concentric spherical enclosures
 - Experimental data for high Rayleigh number, laminar boundary layer flow only
 - All other data from numerical simulations
- Other enclosure geometries
 - Spheres, cubes, cylinders
 - Experimental and numerical data
- No experimental data for full range of Rayleigh including transition and diffusive limit

Literature Review

Correlations and Models



- Correlation of data for variety of inner and outer shapes
- Effective gap spacing based on equivalent spheres
- Valid for laminar boundary layer flow only
- Raithby & Hollands (1975, 1985, 1998)
 - Analytically based model for concentric spheres
 - Series combination of resistances of conduction layers at inner and outer boundaries
 - For other geometries, effective gap spacing of Warrington & Powe (1985) recommended

Objectives

University of Waterloo

- Experimental measurements:
 - Variety of geometries, spheres, cubes, cylinder, etc.
 - Wide range of $Ra_{\sqrt{A_i}}$
 - Laminar boundary layer convection (atmospheric pressure)
 - Diffusive limit (reduced pressure)
- Analytical modeling:
 - Full range of $Ra_{\sqrt{A_i}}$ from conduction to convection
 - Applicable to wide range of geometries
 - Inner and outer boundary shapes and orientation
 - Relative boundary sizes
 - Physically based analysis

Experimental Method

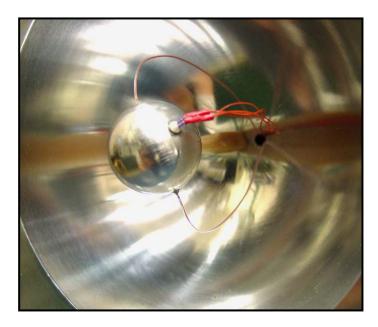
- Wide range of Rayleigh number by of fluid density through reduction in gas pressure (Saunders, 1936, Hollands, 1988)
- Assume ideal gas

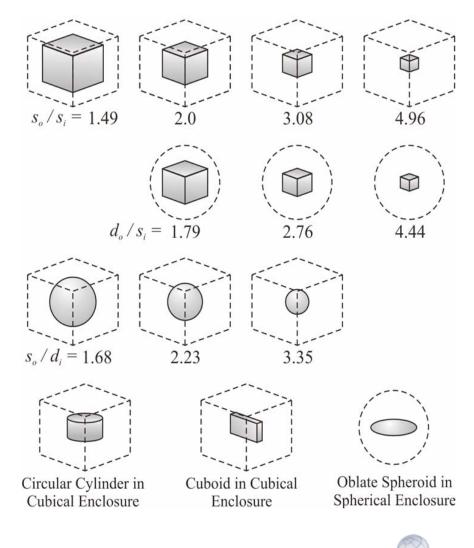
$$\rho = \frac{p}{R T_b Z} \implies Ra_{\sqrt{A_i}} = \frac{g\beta(T_i - T_o)(\sqrt{A_i}) p^2 c_p}{R^2 T_b^2 k \mu Z^2}$$

- Transient test method (Hollands, 1988)
 - Assumes "quasi" steady conditions
 - Fraction of the time required for steady state tests

Experimental Apparatus

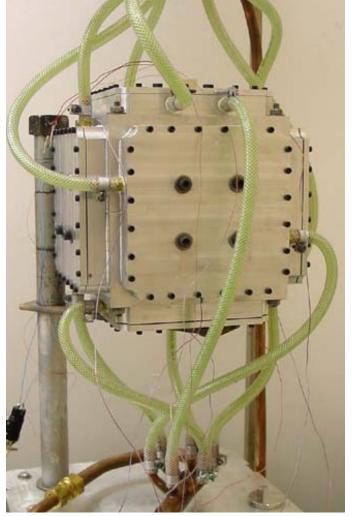
- Spherical and cubical outer geometries
- Eleven different inner bodies
- Temperatures measured using T-type thermocouples





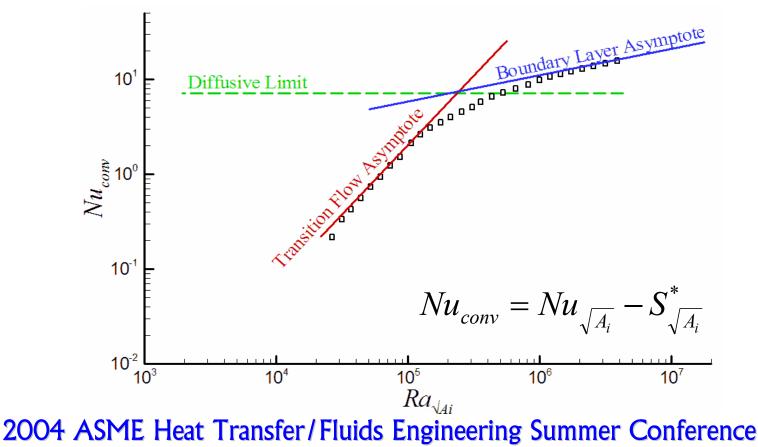
Experimental Apparatus

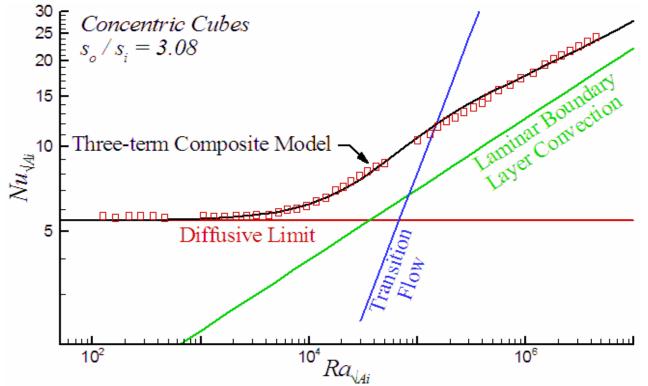
- All tests performed in vacuum chamber
- Enclosure walls cooled by cold plates
- Keithley 2700 data acquisition system
- Labview v.5.1 software
 - control of experiment
 - data acquisition and reduction



Model Development

- Assume linear superposition of diffusive and convective limits
- Convection-only data for $s_o/s_i = 2$ concentric cubes





University of Waterloo

• Combination of three asymptotic solutions

$$Nu_{\sqrt{A_i}} = S_{\sqrt{A_i}}^* + \left[\left(\frac{1}{Nu_{tr}} \right)^2 + \left(\frac{1}{Nu_{bl}} \right)^2 \right]^{-1/2} \quad \begin{array}{l} S_{\sqrt{A_i}}^* = & \text{conduction shape factor} \\ Nu_{tr} = & \text{transition flow convection} \\ Nu_{bl} = & \begin{array}{l} \text{laminar boundary layer flow} \\ \text{convection} \end{array}$$

Conduction Shape Factor

Linear superposition of two asymptotic solutions

 $S_{\sqrt{A_i}}^* = \frac{\sqrt{A_i}}{\delta_e} + S_{\infty}^* \qquad S_{\infty}^* = \text{full space diffusive limit}$ $\sqrt{A_i}/\delta_e = 1\text{D planar resistance}$

Effective gap spacing from equivalent spherical shell

$$\delta_{e} = \frac{d_{o} - d_{i}}{2} \qquad \text{Inner surface area} \quad d_{i} = \sqrt{A_{i}/\pi}$$
$$\text{Enclosed volume } d_{o} = \left[6\left(V + \frac{\pi}{6}d_{i}^{3}\right)/\pi\right]^{1/3}$$

Dimensionless conduction shape factor

$$S_{\sqrt{A_i}}^* = \frac{2\sqrt{\pi}}{\left[1 + 6\sqrt{\pi} \left(V^{1/3} / \sqrt{A_i}\right)^3\right]^{1/3} - 1} + S_{\infty}^*$$

Boundary Layer Convection

- Assumptions
 - Laminar flow
 - T_b uniform

- $T_i \xrightarrow{} R_i \xrightarrow{} T_b \xrightarrow{} R_o \xrightarrow{} T_o$
- Non-intersecting boundary layers
- Series combination of resistances

$$R_{conv} = R_i + R_o \qquad R_i = \frac{T_i - T_b}{Q} \qquad R_o = \frac{T_b - T_o}{Q}$$

• Non-dimensionalize using Nusselt number

$$\begin{split} Nu_i &= \frac{1}{k\sqrt{A_i}} \frac{1}{R_i} \quad Nu_o = \frac{1}{k\sqrt{A_o}} \frac{1}{R_o} \quad Nu_{bl} = \frac{Nu_i}{1 + 1/\phi} \\ \phi &= \frac{T_i - T_b}{T_b - T_o} = \frac{R_i}{R_o} = \frac{\sqrt{A_o}}{\sqrt{A_i}} \frac{Nu_o}{Nu_i} \end{split}$$

Boundary Layer Convection

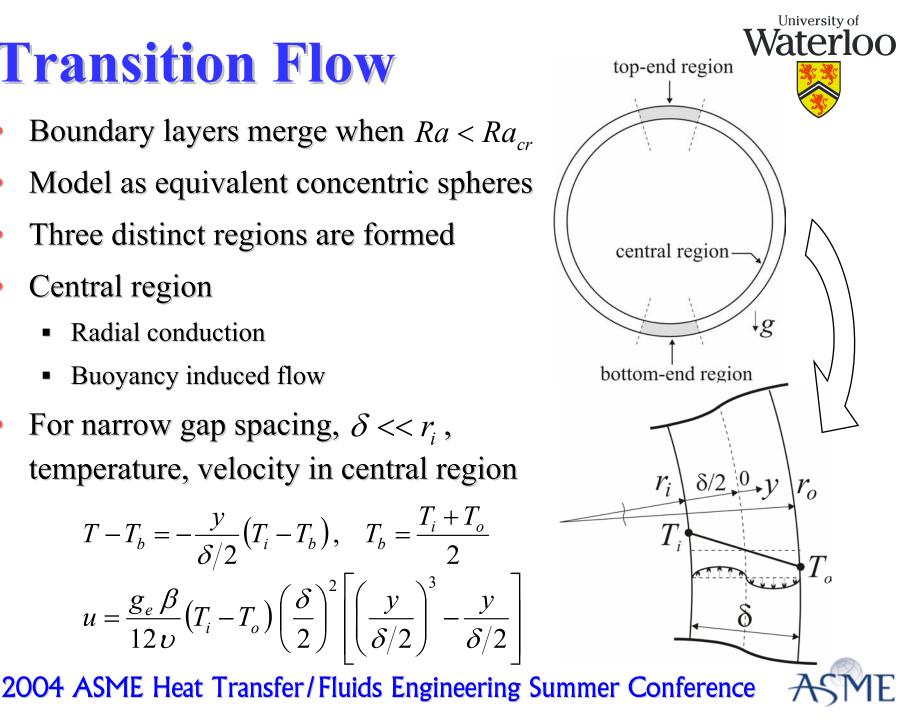
- Convection modeled using Yovanovich [34] and Jafarpur [36] $Nu_{\sqrt{A}} = F(\Pr) G_{\sqrt{A}} Ra_{\sqrt{A}}^{1/4}$
- Laminar boundary layer convection asymptote

$$Nu_{bl} = \frac{Nu_{i}}{1 + 1/\phi} = \frac{F(\Pr) G_{\sqrt{A_{i}}} Ra_{\sqrt{A_{i}}}^{1/4}}{(1 + 1/\phi)^{5/4}}$$
$$Nu_{bl} = \frac{F(\Pr) G_{\sqrt{A_{i}}} Ra_{\sqrt{A_{i}}}^{1/4}}{\left[1 + (A_{i}/A_{o})^{7/10} (G_{\sqrt{A_{i}}}/G_{\sqrt{A_{o}}})^{4/5}\right]^{5/4}}$$

Transition Flow

- Boundary layers merge when $Ra < Ra_{cr}$
- Model as equivalent concentric spheres
- Three distinct regions are formed
- Central region
 - Radial conduction
 - Buoyancy induced flow
- For narrow gap spacing, $\delta \ll r_i$, temperature, velocity in central region

$$T - T_b = -\frac{y}{\delta/2} (T_i - T_b), \quad T_b = \frac{T_i + T_o}{2}$$
$$u = \frac{g_e \beta}{12 \upsilon} (T_i - T_o) \left(\frac{\delta}{2}\right)^2 \left[\left(\frac{y}{\delta/2}\right)^3 - \frac{y}{\delta/2} \right]$$



Transition Flow

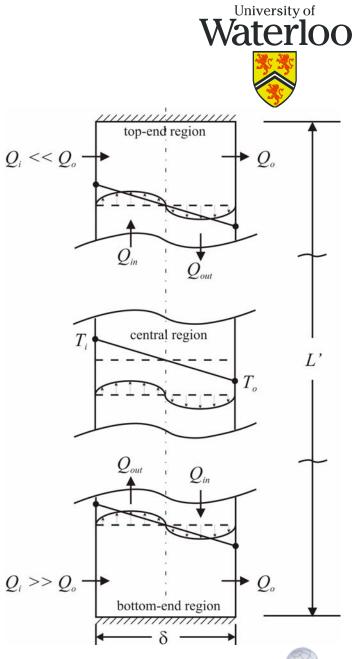
• Enthalpy balance in top-end and bottom-end regions

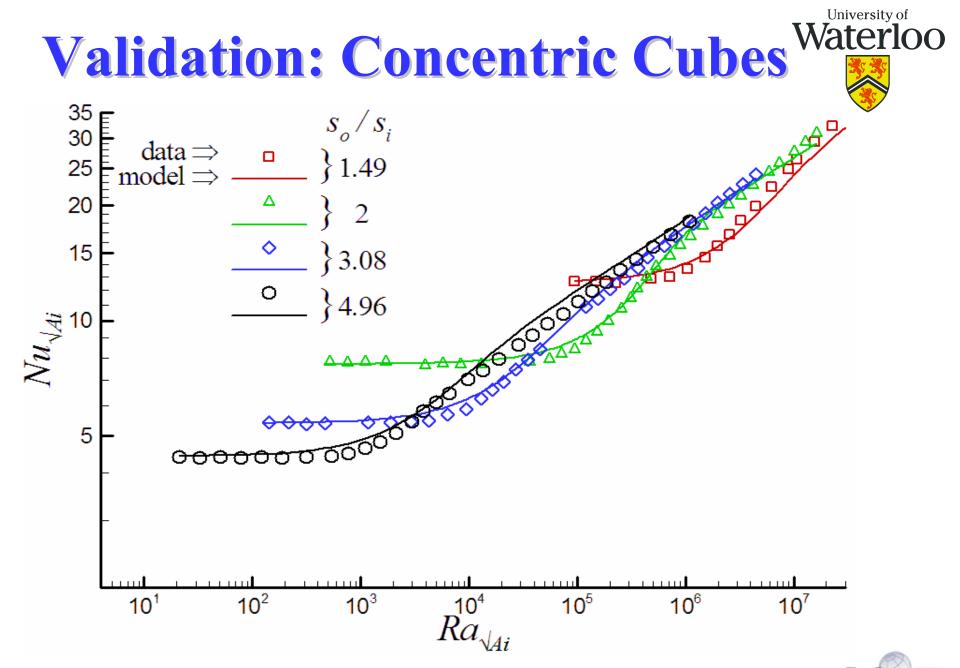
$$Q_{i,o} = \frac{\rho c_p W' g_e \beta (T_i - T_o)^2 \delta^3}{720 \nu}$$

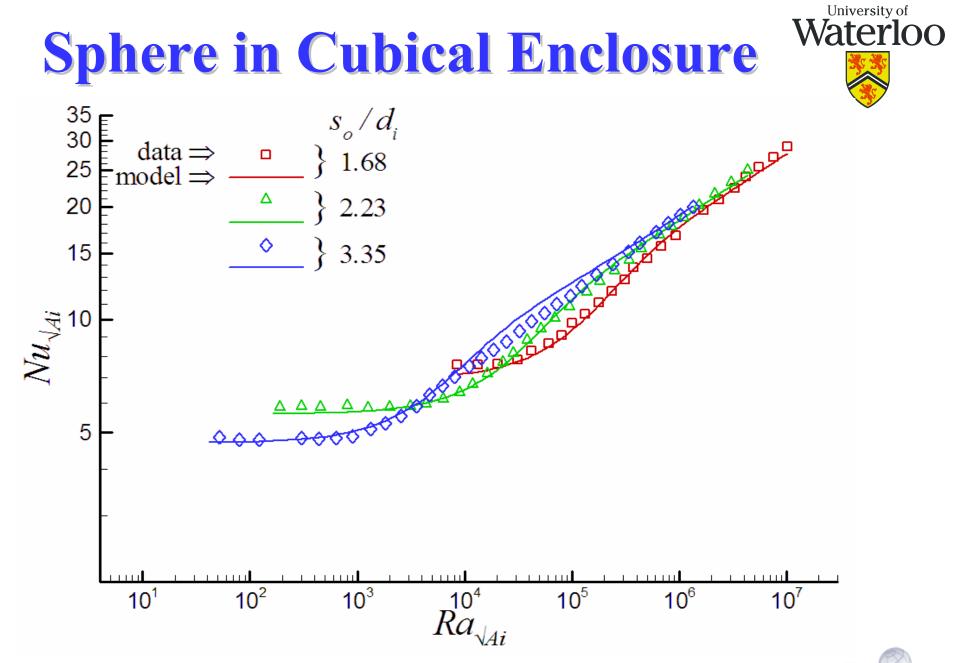
• Transition flow asymptote

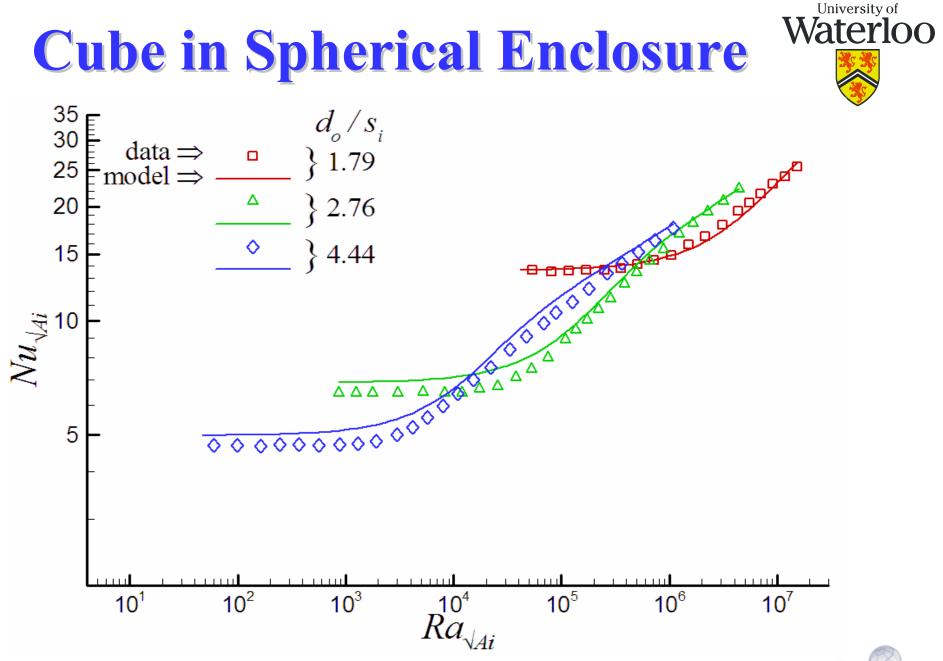
$$Nu_{tr} = \frac{\sqrt{2}}{360} \frac{\sqrt{A_i}}{L'} \left(\frac{\delta_{\text{eff}}}{\sqrt{A_i}}\right)^3 Ra_{\sqrt{A_i}}$$

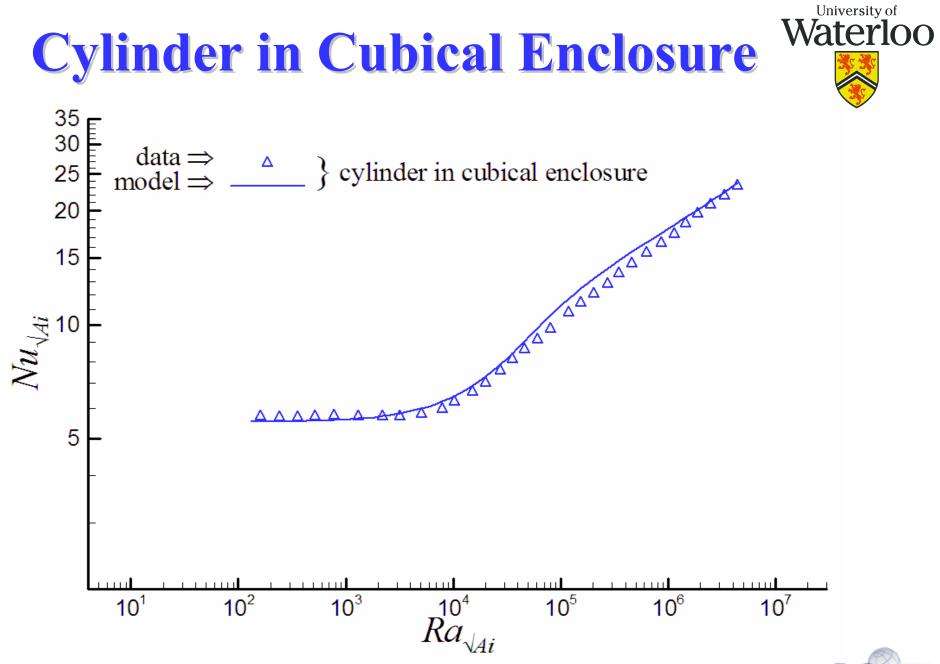
$$\delta_{\text{eff}}$$
 = gap spacing of equivalent cavity
 L' = effective flow length



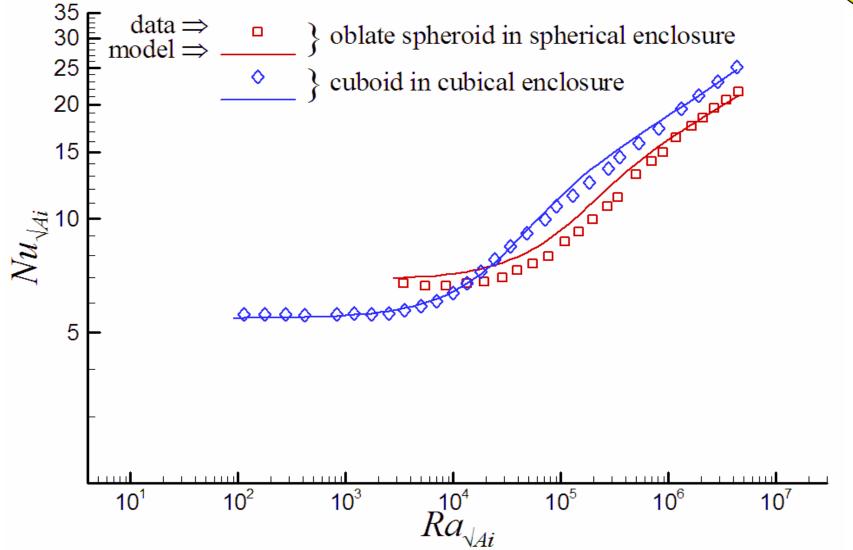








Other Enclosure Geometries



Summary and Conclusions

- Combined experimental / analytical study of natural convection heat transfer between heated body and cooled enclosure
- Experimental data for variety of enclosure configurations, dimensions
- Model developed based on combination of analytic, asymptotic relationships
 - Diffusive limit
 - Laminary boundary layer convection
 - Transition flow convection
- 2 6% RMS, 12% maximum difference between model and data

