36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 2: Thermal Model

M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider

Department of Mechanical Engineering Microelectronics Heat Transfer Laboratory University of Waterloo Waterloo, ON, Canada

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

1

Waterloo

CONTENTS

- introduction
- objectives
- literature review
- present model
- numerical approach and results
- parametric study
- alternative approach (correlations)
- comparison with experimental data
- summary and conclusions

Waterloo

INTRODUCTION

- conduction (microcontacts)
- conduction (interstitial fluid)
- radiation across the gap
- two sets of resistances in series represent TCR in a vacuum
- many researchers assumed

$$R_j \quad R_{mic} \quad R_{mac}$$

 Bahrami et al. (2003) reviewed existing non-conforming rough models

THERMAL RESISTANCE NETWORK

thermal resistance is defined as,

R T/Q

$$R_j$$
 $R_{L,1}$ $R_{s,1}$ $R_{s,2}$ $R_{L,2}$

$$\left(\frac{1}{R_s}\right)_{1,2} \quad \left(\begin{array}{cc} n_s & \\ & \frac{1}{R_{s,i}} \\ i & 1 \end{array}\right)_{1,2}$$

TCR PROBLEM STATEMENT

OBJECTIVES

- develop analytical TCR model for entire range of contacts:
 - conforming rough
 - elastoconstriction
 - transition region
- study effects of input parameters on TCR
- derive simple correlations for determining TCR

GEOMETRICAL MODELING

University of Waterloo

PRESENT MODEL (ASSUMPTIONS)

- solids are isotropic
- radiation heat transfer is negligible
- microcontacts are circular and steady-state heat transfer
- isothermal microcontacts
- microcontacts are flat
- surfaces are clean

MICROCONTACTS RESISTANCE

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

10

Waterloo

NUMERICAL RESULTS

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

EFFECT OF ROUGHNESS

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

EFFECT OF LOAD

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

EFFECT OF RADIUS OF CURVATURE

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

$$h_s \quad 1.25k_s \stackrel{\underline{m}}{=} \left(\frac{P}{H_{mic}}\right)^{0.95}$$

• heat transfer in non-conforming rough contact:

$$Q \qquad h_s r T_s dA_a$$

contact plane

• using pressure distribution, Part I and $R = 1/hA_a$

$$R_s \qquad \frac{1 \ s}{1.25 \ m \ k \ s \ a_L^2} \left(\frac{H}{P_0} \right)^s$$

Waterloo

PROCEDURE FOR UTILIZING THE MODEL

EXPERIMENTAL DATA

Parameter					
7.15	b_L	14.28 mm			
25.64	Ε	114.0 GPa			
7.72	F	16763.9 N			
16.6	k_s	227.2 W/mK			
0.04	т	0.34 -			
0.12		13.94 m			
0.013		120 m			

Ref.	Researcher	Material(s)				
А	Antonetti	Image: Ni200Ni200-Ag				
В	Burde	SPS 245, CS				
CC	Clausing-Chao	Al2024 T4 Brass Anaconda Mg AZ 31B SS303				
F	Fisher	Ni 200-Carbon Steel				
Н	Hegazy	Ni200SS304Zircaloy4Zr-2.5% wt Nb				
Κ	Kitscha	Steel 1020-CS				
MM	McMillan-Mikic	SS303				
MR	Mikic-Rohsenow	SS305				
М	Milanez et al.	SS304				

COMPARISON WITH DATA

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

SUMMARY AND CONCLUSIONS

- superposition of macro and micro thermal resistance
- effects of major parameters, i.e., roughness, load, and radius of curvature on TCR were investigated
- for non-conforming rough contact, there is a value of surface roughness that minimizes TCR
- at relatively large loads effect of roughness on TCR becomes negligible
- simple correlations were derived that cover entire range of TCR

SUMMARY AND CONCLUSIONS 2

- model was compared with more than 700 experimental data points, collected by many researchers
- comparison includes all three regions of TCR and wide range of mechanical, thermal, and surfaces characteristics
- data include contact between dissimilar metals such as Ni200-Ag and SS-CS
- RMS relative difference between the model and the data was estimated to be approximately 11.4%

ACKNOWLEDGEMENTS

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- The Center for Microelectronics Assembly and Packaging (CMAP)

CONFORMING ROUGH DATA

Ref.	Ε		т	<i>c</i> ₁	- <i>c</i> ₂	k _s	b_L
A,P3435	112.1	8.48	.34	6.3	.26	67.1	14.3
A,P2627	112.1	1.23	.14	6.3	.26	64.5	14.3
A,P1011	112.1	4.27	.24	6.3	.26	67.7	14.3
A,P0809	112.1	4.29	.24	6.3	.26	67.2	14.3
A,P1617	63.9	4.46	.25	.39	0	100	14.3
A,P3233	63.9	8.03	.35	.39	0	100	14.3
H,NI12	112.1	3.43	.11	6.3	.26	75.3	12.5
H,NI34	112.1	4.24	.19	6.3	.26	76.0	12.5
H,NI56	112.1	9.53	.19	6.3	.26	75.9	12.5
H,NI78	112.1	13.9	.23	6.3	.26	75.7	12.5
H,NI910	112.1	0.48	.23	6.3	.26	75.8	12.5
H,SS12	112.1	2.71	.07	6.3	.23	19.2	12.5
H,SS34	112.1	5.88	.12	6.3	.23	19.1	12.5
H,SS56	112.1	10.9	.15	6.3	.23	18.9	12.5
H,SS78	112.1	0.61	.19	6.3	.23	18.9	12.5
H,Z412	57.3	2.75	.05	3.3	.15	16.6	12.5
H,Z434	57.3	3.14	.15	3.3	.15	17.5	12.5
H,Z456	57.3	7.92	.13	3.3	.15	18.6	12.5
H,Z478	57.3	0.92	.21	3.3	.15	18.6	12.5
H,ZN12	57.3	2.50	.08	5.9	.27	21.3	12.5
H,ZN34	57.3	5.99	.16	5.9	.27	21.2	12.5
H,ZN56	57.3	5.99	.18	5.9	.27	21.2	12.5
H,ZN78	57.3	8.81	.20	5.9	.27	21.2	12.5
M,SS1	113.8	0.72	.04	6.3	.23	18.8	12.5

ROUGH SPHERE-FLAT DATA

Ref.	Е	/m		$c_1 / - c_2$	k _s	b_L
B,A-1	114.0	0.63/.04	.013	3.9/0	40.7	7.2
B,A-2	114.0	1.31/.07	.014	3.9/0	40.7	7.2
B,A-3	114.0	2.44/.22	.014	3.9/0	40.7	7.2
B,A-4	114.0	2.56/.08	.019	4.4/0	40.7	7.2
B,A-5	114.0	2.59/.10	.025	4.4/0	40.7	7.2
B,A-6	114.0	2.58/.10	.038	4.4/0	40.7	7.2
CC,2A	38.66	0.42/-	14.0	1.6/.04	141	12.7
CC,8A	38.66	2.26/-	14.7	1.6/.04	141	12.7
CC,1B	49.62	0.47/-	3.87	3.0/.17	125	12.7
CC,2B	49.62	0.51/-	4.07	3.0/.17	125	12.7
CC,3B	49.62	0.51/-	3.34	3.0/.17	102	12.7
CC,4B	49.62	0.51/-	4.07	3.0/.17	125	12.7
CC,3S	113.7	0.11/-	21.2	4.6/.13	17.8	12.7
CC,2M	25.64	0.11/-	30.3	.41/0	96	12.7
F,11A	113.1	0.12/-	.019	4.0/0	57.9	12.5
F,11B	113.1	0.12/-	.038	4.0/0	57.9	12.5
F,13A	113.1	0.06/-	.038	4.0/0	58.1	12.5
K,T1	113.8	0.76/-	.014	4.0/0	51.4	12.7
K,T2	113.8	0.13/-	.014	4.0/0	51.4	12.7
MM,T1	113.7	2.7/.06	.128	4.0/0	17.3	12.7
MM,T2	113.7	1.75/.07	2.44	4.0/0	22	12.7
MR,T1	107.1	4.83/-	21.2	4.2/0	19.9	12.7
MR,T2	107.1	3.87/-	39.7	4.2/0	19.9	12.7

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

CORRELATIONS

 R_s

$$F_c = \frac{4E}{3} \max 0, \ b_L^2 - 2.25$$
 3/2

$$\begin{cases} \left(\frac{\pi H' b_L^2}{F}\right)^s & F_c = 0 \\ \left(\frac{b_L}{a_L}\right)^2 \left(\frac{H'}{P_0}\right)^s (1+s\gamma) & F \le F_c \\ \left(\frac{H'}{P_{0,c}}\right)^s (1+s\gamma_c) + \left(\frac{\pi H' b_L^2}{F-F_c}\right)^s & F \ge F_c \end{cases} \begin{array}{c} R_s & 1.25 & b_L^2 k_s & m/ \\ s & 0.95/1 & 0.071c_2 \\ H & c_1 & 1.62 & /m^{-c_2} \\ H & c_1 & 1.62 & /m^{-c_2} \\ \end{array}$$

$$P_0 \quad \frac{P_0}{P_{0,Hz}} \quad \frac{1}{1 \ 1.37 \ -0.075}$$

 $R_s^* =$

$$a_L \quad \frac{a_L}{a_{Hz}} \quad 1.80 \frac{\sqrt{-0.31^{-0.056}}}{_{0.028}}$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part II 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003