36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

Thermal Contact Resistance of Non-Conforming Rough Surfaces Part 1: Contact Mechanics Model

M. Bahrami J. R. Culham M. M. Yovanovich G. E. Schneider

Department of Mechanical Engineering Microelectronics Heat Transfer Laboratory University of Waterloo Waterloo, ON, Canada

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

1

Waterloo

CONTENTS

- introduction
- objectives
- literature review
- present model
- numerical approach and results
- approximate model (dimensional analysis and correlations)
- elastic compression
- summary and conclusions

Waterloo

OBJECTIVES

- develop analytical model to predict contact parameters such as pressure distribution and size of the macrocontact area
- derive simple correlations for determining contact parameters used in analytical thermal contact models
- criterion to define a "flat surface"

INTRODUCTION

- contact of two spherical rough surfaces includes two problems:
 - microcontacts deformation or micro scale problem
 - bulk deformation or macro scale problem
- macrocontact area is the area in which the microcontacts are distributed

LITERATURE REVIEW

- microcontact modeling
 - Gaussian roughness
 - equivalent rough surface

 $\sqrt{\begin{array}{ccc} 2 & 2 \\ 1 & 2 \end{array}}$ and $m \sqrt{m_1^2 & m_2^2}$

- microhardness
 - Vickers microhardness correlation, Hegazy (1985)
 - $H_v \quad c_1 \ d_v \quad c_2$
- macrocontact modeling
 - equivalent radius of curvature, Hertz (1881)

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

COOPER ET AL. MODEL

- conforming rough contacts
- Gaussian distribution for asperity
- plastically deformed hemispherical asperities

 $Y/\sqrt{2}$

a) section through two contacting surfaces

b) corresponding section through equivalent rough - smooth flat

$$\frac{A_r}{A_a}$$
 $\frac{1}{2}$ erfc

$$a_s \sqrt{\frac{8}{m}} \exp^2 \operatorname{erfc}^2$$

$$n_s \quad \frac{1}{16} \quad \frac{m}{2} \quad \frac{2 \exp\left(-2^{-2}\right)}{\operatorname{erfc}} A_a$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

Waterloo

GREENWOOD AND TRIPP (GT) MODEL

- axisymmetric contact; elastic bulk deformation
- rough surfaces are isotropic and have Gaussian height distribution with a standard deviation ρ
- distribution of summit heights is same as surface heights standard deviation, i.e., $\rho_s = \rho$
- the deformation of each asperity is independent of its neighbors
- spherical summits all with constant radius, β; asperities deform elastically and Hertz theory applied for each individual summit.

Waterloo PRESENT MODEL (ASSUMPTIONS)

- surfaces are macroscopically spherical
- microscopically, surfaces are rough with a Gaussian asperity distribution
- microcontacts deform plastically
- elastic macrocontact
- first loading Y

 $r^{2}/2$ u r u_0

$$r r b r - u r b r - u_0 r^2/2$$

$$u v u_0 - v'$$

GOVERNING RELATIONSHIPS

$$Y r \qquad {}_{b} r - u r \qquad {}_{b} r - u_{0} r^{2}/2 \qquad \text{rigid sphere} \qquad F$$

$$a_{s} r \qquad \sqrt{\frac{8}{m}} \exp^{-2} r \quad \text{erfc} r$$

$$H_{mic} r \qquad c_{1} \left[\sqrt{2} a_{s} r\right]^{c_{2}} \qquad \qquad f_{1} \qquad f$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

NUMERICAL RESULTS

	25 mm	F 50 N
	1.41 m	E 112.1 GPa
т	0.107 -	c_1/c_2 6.27 <i>GPa</i> / -0.15 -

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

NUMERICAL RESULTS (Cont'd)

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

EFFECT OF ROUGHNESS

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

APPROXIMATE MODEL

- effective microhardness, H_{mic} = Const.
- surface slope *m* is assumed to be a function of surface roughness, Lambert (1995)

 $m = 0.076^{-0.52}$

• maximum contact pressure is a function of

 $P_0 \quad P_0 \quad , \quad ,E , F, H_{mic}$

• Hertzian pressure distribution is

$$P_{Hz} r/a_{Hz} P_{0,Hz} \sqrt{1 - r/a_{Hz}^2}$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003 Waterloo

GENERAL PRESSURE DISTRIBUTION

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

DIMENSIONAL ANALYSIS

Parameter	Dimension
Effective elastic modulus, E	$ML^{-1}T^{-2}$
Force, F	MLT ⁻²
Microhardness, H_{mic}	$ML^{-1}T^{-2}$
Radius of curvature,	М
Roughness,	M
Max. contact pressure, P_0	$ML^{-1}T^{-2}$

three non-dimensional parameters

$$\frac{16}{0,H_z} = \frac{16}{a_{H_z}^2} \left(\frac{16}{9F^2}\right)^{1/3}$$

$$\frac{1}{a_{H_z}} = \left[\frac{4E}{3F}\right]^{1/3}$$

$$E = \frac{E}{H_{mic}}$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

EFFECT OF MICROHARDNESS

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

MAXIMUM CONTACT PRESSURE

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

RADIUS OF MACROCONTACT

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

CORRELATIONS

$$P_{0} \quad \frac{P_{0}}{P_{0,Hz}} \quad \frac{1}{1 \, 1.37} \, {}^{-0.075}$$

$$a_{L} \quad \frac{a_{L}}{a_{Hz}} \quad 1 - 1.50 \ln P_{0} - 0.14 \ln^{2} P_{0} - 0.111 \ln^{3} P_{0}$$

Or,

$$a_L \quad \frac{a_L}{a_{Hz}} \quad 1.80 \frac{\sqrt{0.31^{0.056}}}{0.028}$$

$$P \qquad P_0 \ 1 \ - \ ^2$$

using a force balance, $F = 2 = \frac{a_L}{0}P r r dr$

$$1.5P_0 a_L^2 - 1$$

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

ELASTIC COMPRESSION

critical force F_c , $a_L = b_L$

$$F_c = \frac{4E}{3} \max 0, \ b_L^2 - 2.25$$

 uniform increase will be added to critical pressure distribution at each point

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

FLAT SURFACE

 a_L 1.5 $\sqrt{0.45}$ and a_L b_L $F_c = 0$

if the out-of-flatness and the roughness of a surface are in the same order of magnitude, the surface is flat,

- 1.12

SUMMARY AND CONCLUSIONS

- closed set of governing relationships was derived and solved numerically
- general pressure distribution was proposed that yields Hertzian pressure at limit, where roughness approaches zero
- using curve-fitting techniques, simple correlations were proposed for calculating contact parameters, as functions of governing non-dimensional parameters
- criterion was derived to identify flat surface

PRESENT MODEL VS GT MODEL

PRESENT MODEL	GT MODEL
elastic bulk plastic microcontacts	elastic bulk plastic microcontacts
requires 2 input surface parameters ρ, <i>m</i>	requires 3 input surface parameters ρ , β , γ_s
input parameters can be measured directly and are not sensitive to measurements	β , γ_s must be calculated through statistical relationships and are sensitive to measurements
simple correlations	requires computer programming and numerically intensive solutions

ACKNOWLEDGEMENTS

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- The Center for Microelectronics Assembly and Packaging (CMAP)

Waterloo

NUMERICAL ALGORITHM

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

THE INNER LOOP ALGORITHM

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

CONTACT PRESSURE DISTRIBUTION

Thermal Contact Resistance of Non-Conforming Rough Surfaces, Part I 36th AIAA Thermophysics Conference - Orlando, Florida, June 23 - 26, 2003

GT MODEL SHORTCOMINGS

- A constant summit radius β is unrealistic
- Two of its input parameters, i.e., radius of summits β and density of summits γ_s cannot be measured directly and must be estimated through statistical calculations. These parameters are sensitive to the surface measurements
- Applying the model is complex and requires computer programming and numerically intensive solutions
- All asperities are assumed to deform elastically.