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OBJECTIVES

• develop analytical model to predict contact 
parameters such as pressure distribution and 
size of the macrocontact area 

• derive simple correlations for determining 
contact parameters used in analytical thermal 
contact models

• criterion to define a “flat surface”
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INTRODUCTION

• contact of two spherical rough 
surfaces includes two problems:
– microcontacts deformation 

or micro scale problem
– bulk deformation or macro 

scale problem

• macrocontact area is the area in 
which the microcontacts are 
distributed
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LITERATURE REVIEW
• microcontact modeling

– Gaussian roughness
– equivalent rough surface

• microhardness
– Vickers microhardness 

correlation, Hegazy (1985)

• macrocontact modeling
– equivalent radius of 

curvature, Hertz (1881)
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COOPER ET AL. MODEL
• conforming rough contacts

• Gaussian distribution for 
asperity 

• plastically deformed 

hemispherical asperities
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GREENWOOD AND TRIPP (GT) MODEL
• axisymmetric contact; elastic bulk deformation

• rough surfaces are isotropic and have Gaussian height 
distribution with a standard deviation ρ

• distribution of summit heights is same as surface heights 
standard deviation, i.e., ρs = ρ

• the deformation of each asperity is independent of its 
neighbors

• spherical summits all with constant radius, β; asperities 
deform elastically and Hertz theory applied for each 
individual summit.
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PRESENT MODEL (ASSUMPTIONS)
• surfaces are macroscopically 

spherical

• microscopically, surfaces are 
rough with a Gaussian asperity 
distribution

• microcontacts deform plastically 

• elastic macrocontact

• first loading 
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GOVERNING RELATIONSHIPS
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NUMERICAL RESULTS
  25mm F  50N

  1. 41m E ′  112. 1GPa

m  0. 107− c1/c2  6. 27GPa/ − 0. 15−
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NUMERICAL RESULTS (Cont’d)
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EFFECT OF ROUGHNESS
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APPROXIMATE MODEL
• effective microhardness, Hmic = Const.

• surface slope m is assumed to be a function of 
surface roughness, Lambert (1995)

• maximum contact pressure is a function of

• Hertzian pressure distribution is

m  0. 076  0.52

P0  P0, , E ′ , F, Hmic 

PHzr/aHz   P0,Hz 1 − r/aHz  2
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GENERAL PRESSURE DISTRIBUTION
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DIMENSIONAL ANALYSIS
Parameter Dimension
Effective elastic modulus, E ′ ML−1T−2

Force, F MLT−2

Microhardness, Hmic ML−1T−2

Radius of curvature,  M
Roughness,  M
Max. contact pressure, P0 ML−1T−2

three non-dimensional parameters
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EFFECT OF MICROHARDNESS
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MAXIMUM CONTACT PRESSURE
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RADIUS OF MACROCONTACT
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CORRELATIONS

P  P01 −  2 
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ELASTIC COMPRESSION
• critical force Fc ,

• uniform increase will be 
added to critical pressure 
distribution at each point

ρ
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FLAT SURFACE


 ≤ 1. 12

if the out-of-flatness and the roughness of a surface are 
in the same order of magnitude, the surface is flat,

aL
′  1. 5   0. 45 aL  bLand 

Fc = 0
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SUMMARY AND CONCLUSIONS
• closed set of governing relationships was derived and 

solved numerically

• general pressure distribution was proposed that 
yields Hertzian pressure at limit, where roughness 
approaches zero

• using curve-fitting techniques, simple correlations 
were proposed for calculating contact parameters, as 
functions of governing non-dimensional parameters 

• criterion was derived to identify flat surface
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PRESENT MODEL VS GT MODEL

elastic bulk
plastic microcontacts

elastic bulk
plastic microcontacts

requires computer programming
and numerically intensive solutions

simple correlations

β, γs must be calculated through 
statistical relationships and are
sensitive to measurements

input parameters can be measured 
directly and are not sensitive to 
measurements

requires 3 input surface parameters 
ρ, β, γs

requires 2 input surface parameters 
ρ, m

GT MODELPRESENT MODEL
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NUMERICAL ALGORITHM
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THE INNER LOOP ALGORITHM
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CONTACT PRESSURE DISTRIBUTION
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GT MODEL SHORTCOMINGS
• A constant summit radius β is unrealistic

• Two of its input parameters, i.e., radius of summits β
and density of summits γs cannot be measured directly 
and must be estimated through statistical calculations. 
These parameters are sensitive to the surface 
measurements

• Applying the model is complex and requires computer 
programming and numerically intensive solutions

• All asperities are assumed to deform elastically.


