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Flow in Microchannels
motivations and objectives

Applications:

• Microelectronics cooling and high capacity heat exchangers

• Fuel cell technologies

• Biomedical devices

Features:

• High surface area to volume ratio

• High heat transfer coefficient (low film resistance heatsinks)

• Small size, compact heat exchangers
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Microchannels
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Analytical solutions for elliptical and rectangular channels where Dh is used as length scale
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A

L

L >> √A

τ

Microchannels: Pressure Drop
solution for arbitrary cross sections

Γ==∇ on0with12 w
dz
dPw

µ

Navier-Stokes equations reduce to the Poisson equation:

• Torsion in beams and fully developed, laminar flow in ducts are mathematically similar

• Saint-Venant (1880) found that the torsional rigidity of a singly-connected arbitrary cross-
section shaft can be accurately approximated by using an equivalent elliptical cross-section

• Solution for the elliptical duct has a unique geometrical property
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Approximate Model
hyper-ellipse channels 
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Comparison with Data
parallel plates microchannels 
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Comparison with Data
trapezoidal microchannels 
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Comparison with Data
rectangular microchannels 

ε = c / b

fR
e √

A

10-3 10-2 10-1 100

100

200

300
approximate model
exact model
Liu and Garimella (2004)
Gao et al. (2002)
Wu and Cheng (2003)

fRe√A = 32 π2 I*p √A / P
I*p = Ip / A2

b

c



12Approximate Solution for Pressure Drop in Microchannels of Arbitrary Cross-Sections
AIAA 2006-3119, June 5 -8, 2006, San Francisco, CA.

Comparison with Data
triangular and trapezoidal microchannels
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Comparison with Numerical Data
sine duct
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Comparison with Numerical Data
annular sector
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Comparison with Numerical Data
circular sector
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Rc = r / W
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Summary and Conclusion

A new compact analytical model is developed and validated with 
experimental and numerical data for a variety of microchannel 
cross-sections including: 

Rectangular
Trapezoidal
Isosceles triangular
Square
Circular
Other cross-sections

Square root of area, as the characteristic length scale, is superior 
to the hydraulic diameter 


