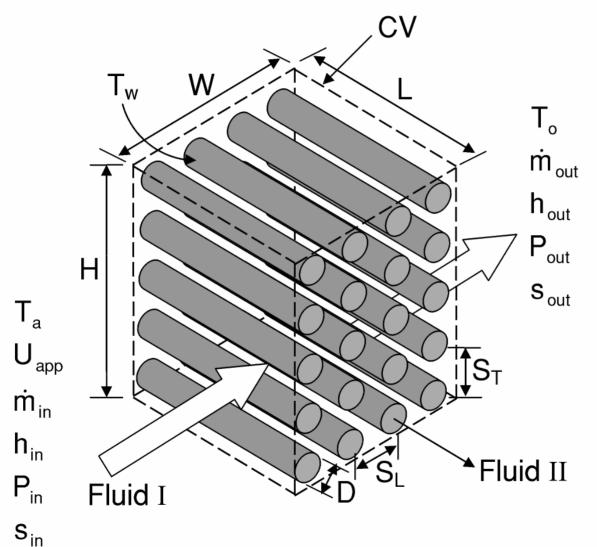


Optimal Design of Tube Banks in Crossflow Using Entropy Generation Minimization Method

M. M. Yovanovich, Fellow AIAA W. A. Khan J. R. Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo

- Introduction
- Assumptions
- Modeling
- Optimization Problem
- Results and Comparisons
- Conclusions
- Acknowledgments


- Industrial applications:
 - Heat exchanger devices (like automobile radiator, oil cooler, pre-heater, air-cooled steam condenser)
 - Process industry
 - > Air conditioning and refrigeration industry
- Primary interest of mechanical engineers:
 - Optimal design of tube bank

- Tube bank is insulated from surroundings.
- ✤ Tubes are plain.
- Flow is 2-D, steady, laminar.
- Fluid is Newtonian and incompressible.
- Thermo-fluid properties are constant.
- Conduction along tube wall is negligible.
- Radiation heat transfer is negligible.
- Potential and kinetic energy changes are negligible.

Modeling (Control Volume for S_{gen})

$$\dot{S}_{gen} = \left(\frac{\mathcal{Q}^2}{T_a T_w}\right) R_{tube} + \frac{\dot{m}\Delta P}{\rho T_a}$$

$$R_{tube} = \frac{\Delta T}{Q} = \frac{1}{h_{avg}A}$$
$$\dot{m} = \rho U_{app} N_T S_T L$$
$$\Delta P = N_L f\left(\frac{1}{2}\rho U_{max}^2\right)$$

Heat Transfer Coefficient

$$Nu_D = \frac{h_{avg}D}{k_f} = C_1 Re_D^{1/2} P r^{1/3}$$

From AIAA 2005-958:

$$C_{1} = \begin{cases} [0.25 + \exp(-0.55\mathcal{S}_{L})]\mathcal{S}_{T}^{0.285}\mathcal{S}_{L}^{0.212} & \text{In-Line Arrangement} \\ \\ \frac{0.61\mathcal{S}_{T}^{0.091}\mathcal{S}_{L}^{0.053}}{[1 - 2\exp(-1.09\mathcal{S}_{L})]} & \text{Staggered Arrangement} \end{cases}$$

$$U_{max} = max \left\{ \frac{S_T}{S_T - 1} U_{app}, \frac{S_T}{S_D - 1} U_{app} \right\}$$

From Zukauskas Experimental Data:

$$f = \begin{cases} K_1 \left[0.233 + 45.78 / (\mathcal{S}_T - 1)^{1.1} Re_D \right] & \text{In-Line Arrangement} \\ K_1 \left[378.6 / \mathcal{S}_T^{13.1/\mathcal{S}_T} \right] / Re_D^{0.68/\mathcal{S}_T^{1.29}} & \text{Staggered Arrangement} \end{cases}$$

$$K_{1} = \begin{cases} 1.009 \left(\frac{\mathcal{S}_{T}-1}{\mathcal{S}_{L}-1}\right)^{1.09/Re_{D}^{0.0553}} & \text{In-Line Arrangement} \\ 1.175 (\mathcal{S}_{L}/\mathcal{S}_{T}Re_{D}^{0.3124}) + 0.5Re_{D}^{0.0807} & \text{Staggered Arrangement} \end{cases}$$

$$\dot{S}_{gen} = \frac{Q^2 / T_a T_w}{C_1 N \pi L k_f R e_D^{1/2} P r^{1/3}} + \frac{N f \rho U_{max}^3 (\mathcal{S}_T - 1) L}{2 T_a}$$

$$N_{s} = \frac{T_{a}/T_{w}}{C_{1}N\pi\gamma Re_{D}^{3/2}Pr^{1/3}} + \frac{1}{2}fN\gamma BRe_{D}^{2}(\mathcal{S}_{T}-1)$$
$$B = \rho\nu^{3}k_{f}T_{a}/\mathcal{Q}^{2} \qquad Re_{D} = \frac{DU_{max}}{\nu} \qquad \gamma = \frac{L}{D}$$

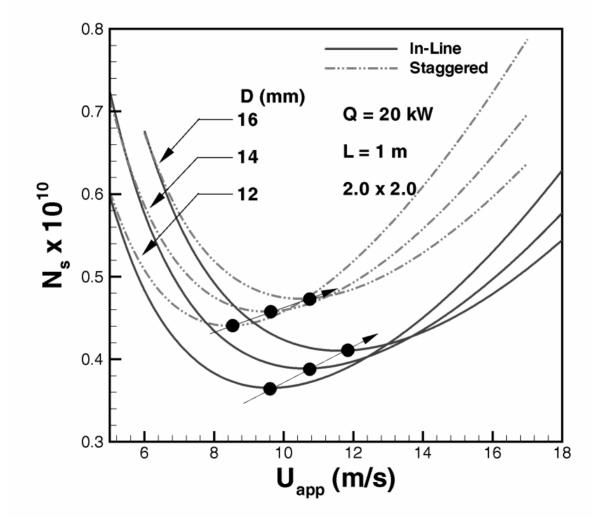
$$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) = N_s(\mathbf{x}) \\ \text{subject to} & g_j(\mathbf{x}) = 0, \quad j = 1, 2,, m \\ & l_j(\mathbf{x}) \geq 0, \quad j = m+1,, n \end{array}$$
$$\begin{array}{ll} \text{inequality constraints} & D \left(mm\right) \geq 10 \\ & 1.25 \leq \mathcal{S}_L \leq 3 \\ & 1.25 \leq \mathcal{S}_T \leq 3 \end{array}$$

Quantity	Dimension/Data
Cross-Sectional Area (mm^2)	235×235
Length of Tubes (mm)	1000
Tube Diameter (mm)	12
Heat Load (kW)	20
Ambient Temperature (K)	300
Tube Wall Temperature (K)	365

Optimized Results

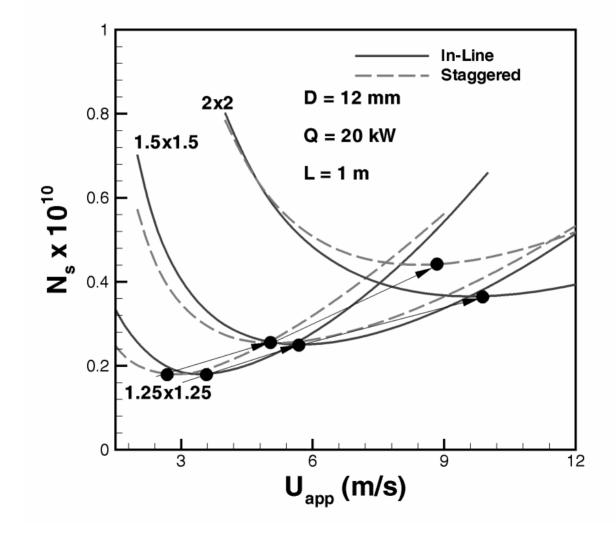
(In-Line Arrangement)

Dimensionless	Tube	Optimum Approach	Number of	Nu_D	ΔP	$N_s \times 10^{10}$
Pitch Ratio	Diameter	Velocity	Tubes			
$\mathcal{S}_T imes \mathcal{S}_L$	(mm)	(m/s)	$N_T \times N_L$		(Pa)	
1.25×1.25	12	3.4	15×15	88.4	590.2	0.180
	14	3.8	13×13	100.9	621.6	0.191
	16	4.2	11×11	113.1	650.3	0.201
1.5×1.5	12	5.7	13×13	88.5	480.4	0.251
	14	6.4	11×11	101.0	507.3	0.266
	16	7.0	10×10	112.9	532.8	0.281
2.0×2.0	12	9.6	10×10	91.5	452.7	0.365
	14	10.6	8×8	104.0	477.7	0.389
	16	11.6	7×7	116.0	499.9	0.410

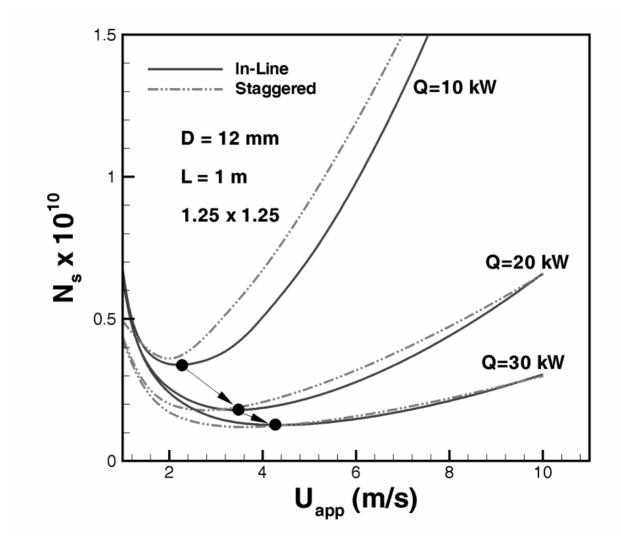


Optimized Results (Staggered Arrangement)

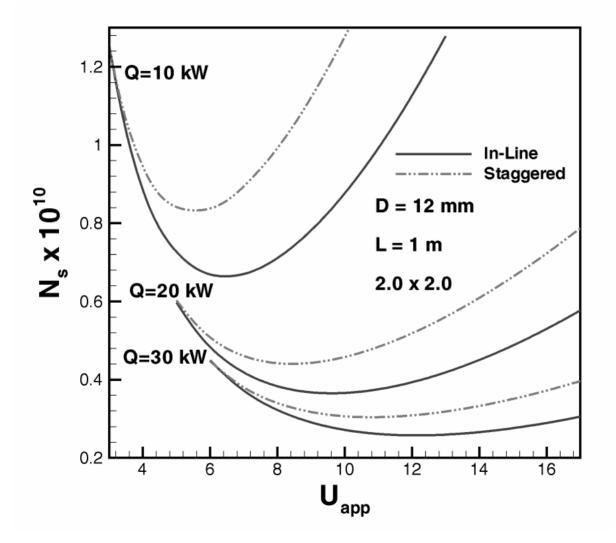
Dimensionless	Tube	Optimum Approach	Number of	Nu_D	ΔP	$N_s \times 10^{10}$
Pitch Ratio	Diameter	Velocity	Tubes			
$\mathcal{S}_T imes \mathcal{S}_L$	(mm)	(m/s)	$N_T \times N_L$		(Pa)	
1.25×1.25	12	2.8	15×15	122.2	657.6	0.179
	14	3.2	13×13	142.0	660.8	0.180
	16	3.6	11×11	161.7	664.5	0.181
1.5×1.5	12	5.1	13×13	105.5	535.1	0.254
	14	5.8	11×11	121.8	544.1	0.259
	16	6.6	10×10	137.9	553.1	0.265
2.0×2.0	12	8.4	10×10	90.7	580.3	0.441
	14	9.4	8×8	104.0	597.6	0.458
	16	10.5	7×7	116.8	612.5	0.473



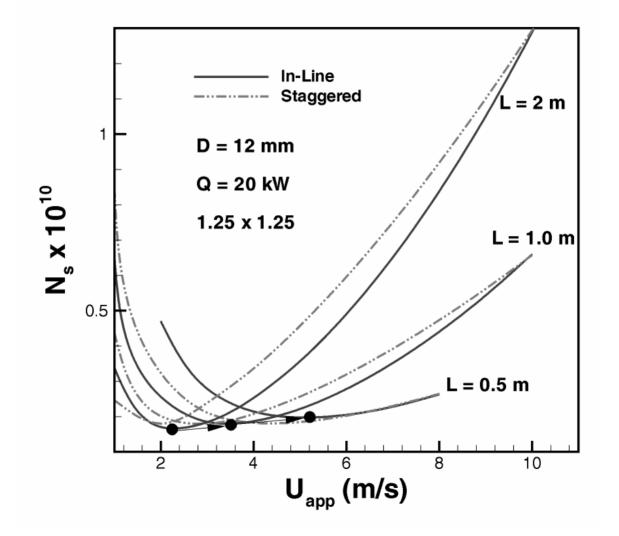
Effect of Tube Diameter



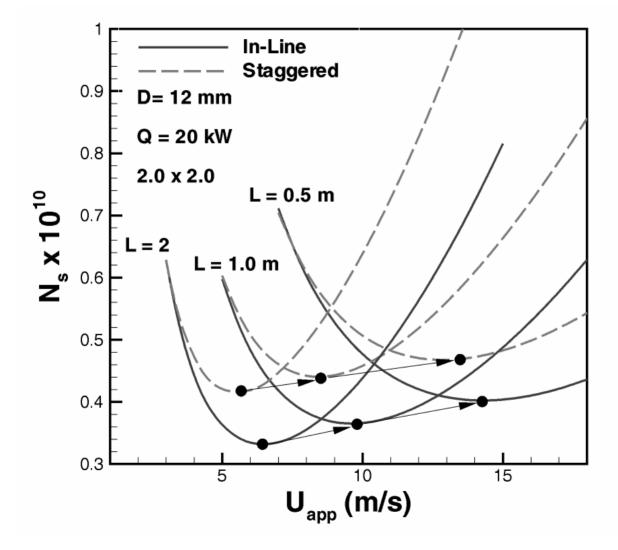
Effect of Pitch Ratio



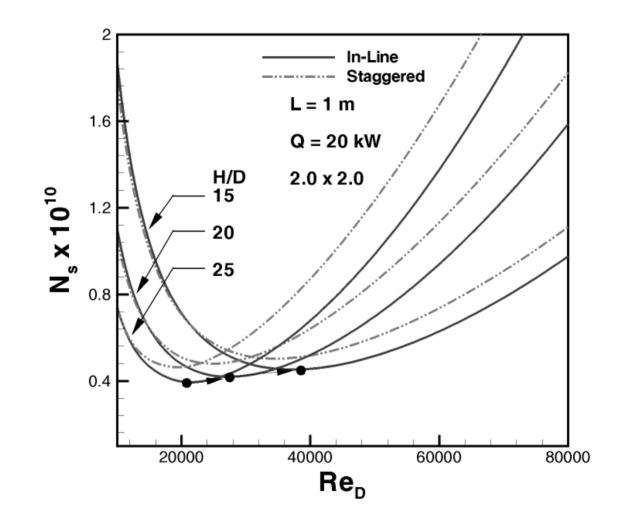
Effect of Heat Load (Compact Bank)



Effect of Heat Load (Widely Spaced)



Effect of Tube Length (Compact)



Effect of Tube Length (Widely Spaced)

Effect of Reynolds Number

- Staggered arrangement gives better performance for lower approach velocities and longer tubes.
- In-line arrangement performs better for higher approach velocities and larger pitch ratios.
- Compact tube banks perform better for both arrangements and for smaller tube diameters.

The authors gratefully acknowledge the financial support of

- Natural Sciences and Engineering Research Council of Canada
- Centre for Microelectronics Assembly and Packaging