

Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach

M. M. Yovanovich, Fellow AIAA W. A. Khan J. R. Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo

Outline

- Introduction
- Literature Review
- Objectives
- Assumptions
- Modeling
- Results and Comparisons
- Conclusions
- Acknowledgments

Introduction

- Industrial applications:
 - Heat exchanger devices (like steam generators, preheaters, oil coolers, power condensers)
 - Process industry
 - > Air conditioning and refrigeration industry
- Primary interest of thermal engineers:
 - Average heat transfer coefficient for the entire tube bundle

Available Correlations (Single Cylinder)

Authors	Correlations/ Models	Conditions
Churchill and Bernstein (1977)	$egin{aligned} \mathbf{Nu_D} = 0.3 + rac{\mathbf{0.62 Re_D^{1/2} Pr^{1/3}}}{[1 + (\mathbf{0.4/Pr})^{2/3}]^{1/4}} \ \left[1 + \left(rac{\mathbf{Re_D}}{282000} ight)^{5/8} ight]^{4/5} \end{aligned}$	${ m Re_DPr} > 0.2$
Morgan(1975)	$\begin{split} \mathbf{Nu_D} &= 0.795 \mathbf{Re_D^{0.384}}\\ \mathbf{Nu_D} &= 0.583 \mathbf{Re_D^{0.471}}\\ \mathbf{Nu_D} &= 0.148 \mathbf{Re_D^{0.633}}\\ \mathbf{Nu_D} &= 0.0208 \mathbf{Re_D^{0.814}} \end{split}$	$\begin{array}{l} 4 \leq \mathrm{Re}_{\mathrm{D}} \leq 40 \\ 40 \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{3} \\ 4 \times 10^{3} \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{4} \\ 4 \times 10^{4} \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{5} \end{array}$
Zukauskas(1972)	$\begin{split} Nu_D &= 0.75 Re_D^{0.4} Pr^{0.37} \\ Nu_D &= 0.51 Re_D^{0.5} Pr^{0.37} \\ Nu_D &= 0.26 Re_D^{0.6} Pr^{0.37} \\ Nu_D &= 0.076 Re_D^{0.7} Pr^{0.37} \end{split}$	$\begin{array}{l} 1 \leq \mathrm{Re}_{\mathrm{D}} \leq 40 \\ 40 \leq \mathrm{Re}_{\mathrm{D}} \leq 1 \times 10^{3} \\ 1 \times 10^{3} \leq \mathrm{Re}_{\mathrm{D}} \leq 2 \times 10^{5} \\ 2 \times 10^{5} \leq \mathrm{Re}_{\mathrm{D}} \leq 1 \times 10^{6} \end{array}$
Hilpert (1933)	$\begin{split} Nu_D &= 0.891 Re_D^{0.33} \\ Nu_D &= 0.821 Re_D^{0.385} \\ Nu_D &= 0.615 Re_D^{0.466} \\ Nu_D &= 0.174 Re_D^{0.618} \\ Nu_D &= 0.0239 Re_D^{0.805} \end{split}$	$\begin{array}{l} 1 \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \\ 4 \leq \mathrm{Re}_{\mathrm{D}} \leq 40 \\ 40 \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{3} \\ 4 \times 10^{3} \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{4} \\ 4 \times 10^{4} \leq \mathrm{Re}_{\mathrm{D}} \leq 4 \times 10^{5} \end{array}$

Available Correlations (Tube Banks)

Zukauskas, 1972: $Nu_D = FCRe_D^nPr^m$

F = Correction factor for $N_L \le 16$

Geometry	С	n	m	Conditions
In-Line				
	0.9	0.4	0.36	$10 \leq { m Re_{Dmax}} \leq 100$
	0.52	0.5	0.36	$100 \leq { m Re_{Dmax}} \leq 10^3$
	0.27	0.63	0.36	$10^3 \leq { m Re_{Dmax}} \leq 2 imes 10^5$
	0.21	0.84	0.4	${ m Re_{Dmax}} > 2 imes 10^5$

Available Correlations (Tube Banks)

Zukauskas, 1972: $Nu_D = FCRe_D^nPr^m$

Geometry	С	n	m	Conditions
Staggered				
	1.04	0.4	0.36	$10 \leq { m Re_{Dmax}} \leq 500$
	$0.35(S_T/S_L)^{0.2}$	0.60	0.36	$f S_T/S_L < 2$ $f 10^3 \leq Re_{Dmax} \leq 2 imes 10^5$
	0.40	0.60	0.36	$f{S_T/S_L>2} \ 10^3 \leq Re_{Dmax} \leq 2 imes 10^5$
	0.022	0.84	0.36	${ m Re_{Dmax}} > 2 imes 10^5$

Correction Factor F for $N_L \le 16$

Rows	1	2	3	4	5	7	10	13	16
In-Line	0.70	0.80	0.86	0.90	0.93	0.96	0.98	0.99	1.00
Staggered	0.64	0.76	0.84	0.89	0.93	0.96	0.98	0.99	1.00

Available Correlations (Tube Banks)

Grimison, 1937: $Nu_D = FCRe_D^n Pr^{1/3}$

F = Correction factor for $N_L \le 10$

Waterloo

${f S_T}/{f D} ightarrow$	1.25		1.5		2		3	
$\mathbf{S_L}/\mathbf{D}\downarrow$	C n		C p		C n		C n	
Staggere	ed							
0.600	-	-	-	-	-	-	.213	.636
0.900	-	-	-	-	0.446	0.571	0.401	0.581
1.000	-	-	0.497	0.558	-	-	-	-
1.125	-	-	-	-	0.478	0.565	0.518	0.560
1.25	0.518	0.556	0.505	0.554	0.519	0.556	0.522	0.562
1.5	0.451	0.568	0.460	0.562	0.452	0.568	0.488	0.568
2.000	0.404	0.572	0.416	0.568	0.482	0.556	0.449	0.570
3.000	0.310	0.592	0.356	0.580	0.440	0.562	0.421	0.574

Available Correlations (Tube Banks)

Grimison, 1937: $Nu_D = FCRe_D^n Pr^{1/3}$

$egin{array}{c} {f S_T/D} ightarrow {f S_L/D} \downarrow {f $	1.25		1.5		2		3	
	\mathbf{C}	n	С	n	С	\mathbf{n}	\mathbf{C}	n
In-Line								
1.250	0.348	0.592	0.275	0.608	0.100	0.704	0.0633	0.752
1.500	0.367	0.586	0.250	0.620	0.101	0.762	0.0678	0.744
2.000	0.418	0.570	0.299	0.602	0.229	0.632	0.198	0.648
3.000	0.290	0.601	0.357	0.584	0.374	0.581	0.286	0.608

Correction Factor F for $N_L \leq 10$

$\fbox{Rows}{\rightarrow}$	1	2	3	4	5	6	7	8	9	10
In-Line	0.64	0.80	0.87	0.90	0.92	0.94	0.96	0.98	0.99	1.00
Staggered	0.68	0.75	0.83	0.89	0.92	0.95	0.97	0.98	0.99	1.00

Develop analytical correlations to determine heat transfer for :

- In-line tube banks
- Staggered tube banks

that can be used for a wide range of geometric parameters

 Validate developed correlations with experimental data

- 1. Forced Convection
- 2. Steady, laminar, fully developed and 2-D flow
- 3. Incompressible fluid with constant properties
- 4. Reynolds number is based on D and U_{max}
- 5. Inviscid flow outside boundary layer
- 6. Flow normal to tube bank

Heat Transfer Model

In-Line Arrangement

Staggered Arrangement

Control Volume

Boundary Conditions

1. On curved surfaces of tubes:

$$u = 0$$
 $v = 0$ and $T = T_w$

2. Along top and bottom of CV:

$$v = 0$$
 $au_w = 0$ and $Q = 0$

3. At large distances upstream of CV:

$$u = U_{app}$$
 and $T = T_a$

4. Well downstream of tubes:

$$\frac{\partial u}{\partial x} = 0$$
 $\frac{\partial v}{\partial x} = 0$ and $\frac{\partial T}{\partial x} = 0$

Results

 $Nu_D = C_1 Re_D^{1/2} Pr^{1/3}$

$$C_{1} = \begin{cases} [0.2 + \exp(-0.55\mathcal{S}_{T})]\mathcal{S}_{T}^{0.285}\mathcal{S}_{L}^{0.212} & \text{In-Line arrangement} \\ \frac{0.61\mathcal{S}_{T}^{0.091}\mathcal{S}_{L}^{0.053}}{[1 - 2\exp(-1.09\mathcal{S}_{T})]} & \text{Staggered arrangement} \end{cases}$$

HTP with S_T (In-Line Arrangement)

43rd Aerospace Sciences Meeting & Exhibit, 10-13 January 2005, Reno, Nevada

HTP with S_T (Staggered Arrangement)

43rd Aerospace Sciences Meeting & Exhibit, 10-13 January 2005, Reno, Nevada

Effect of Tube Arrangement (1.25 x 1.25)

43rd Aerospace Sciences Meeting & Exhibit, 10-13 January 2005, Reno, Nevada

Effect of Tube Arrangement (3.0 x 3.0)

Staggered Tube Bank (Incropera and DeWitt)

Quantity	Dimension
Tube Diameter (mm)	16.4
Longitudinal Pitch (mm)	20.5, 34.3
Transverse Pitch (mm)	20.5, 31.3
Number of Tubes (Staggered)	8 imes7
Approach Velocity (m/s)	6
Thermal Conductivity of Air $(W/m\cdot K)$	0.0253
Density of Air (kg/m^3)	1.217
Specific Heat of Air $(J/kg \cdot K)$	1007
Kinematic Viscosity (m^2/s)	14.82×10^{-6}
Prandtl Number (Air)	0.701
Ambient Temperature (° C)	15
Tube Surface Temperature ($^{\circ}C$)	70

Comparisons

(i) Compact Tube Bank (1.25 x 1.25)

	NuD	h	T_o	Q
		$(W/m^2 \cdot K)$	$^{\circ}C$	kW
Incropera and $DeWitt^{30}$	152.0	234.0	38.5	28.4
Present Analysis	196.1	302.5	43.3	34.1

(ii) Wide Tube Bank (2.1 x 2.1)

	NuD	h	T_o	Q
		$(W/m^2 \cdot K)$	$^{\circ}C$	kW
Incropera and $DeWitt^{30}$	87.9	135.6	25.5	19.4
Present Analysis	88.3	136.2	26.9	19.2

Nu_D vs. Re_D (In-Line Arrangement)

43rd Aerospace Sciences Meeting & Exhibit, 10-13 January 2005, Reno, Nevada

Nu_D vs. Re_D (Staggered Arrangement)

Comparisons show that higher heat transfer rates are obtained from:

- compact tube banks (any arrangement)
- staggered arrangement (any spacing)
- Both In-Line and Staggered models are:
- applicable over a wide range of parameters
- suitable for use in design of tube banks

The authors gratefully acknowledge the financial support of

- Natural Sciences and Engineering Research Council of Canada
- Centre for Microelectronics Assembly and Packaging