Analytical Modeling of Natural Convection in Horizontal Annuli

Peter Teertstra, M. Michael Yovanovich, J. Richard Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Waterloo, Ontario, Canada

12 January, 2005

Outline

- Introduction and problem description
- Literature review and objectives
- Model development
- Validation
- Summary and conclusions

Problem Definition

- 2D horizontal annulus
- Steady state, natural convection
- Concentric inner and outer cylinders
- Isothermal boundary conditions, $T_i > T_o$

Geometry:

Relative boundary size

$$P_o / P_i \Longrightarrow d_o / d_i$$
 (spheres)

Effective gap spacing

$$\delta_e \Rightarrow (d_o - d_i)/2$$
 (spheres)

Shape, orientation

Parameter Definitions

 Total heat transfer rate non-dimensionalized by Nusselt number

$$Nu = \frac{Q \ell}{k P_i (T_i - T_o)}$$

- P_i selected as characteristic length:
 - For $P_o / P_i \rightarrow \infty$ limit, scale length related to inner body dimensions only
 - Similar results for similar body shapes, orientations

$$Nu_{P_i} = \frac{Q}{k\left(T_i - T_o\right)}$$

Parameter Definitions

Dimensionless conduction shape factor

 $\lim_{Ra \ll Ra_{cr}} Nu_{P_i} = S_{P_i}^*$

• Effective conductivity

$$\frac{k_{eff}}{k} = \frac{Nu_{P_i}}{S_{P_i}^*}, \qquad \frac{k_{eff}}{k} \ge 1$$

• Rayleigh number

$$Ra_{P_i} = \frac{g\beta(T_i - T_o)(P_i)^3}{\upsilon\alpha}$$

Literature Review - Data

Experimental and Numerical Studies

- Concentric spherical enclosures
 - Over 20 publications with average heat transfer data
 - Most experimental data for high Rayleigh number, boundary layer flow
 - All other data from numerical simulations
- Other enclosure geometries
 - Numerical data for circular, polygonal, rhombic, elliptical cylinders

• Correlations of experimental, numerical data

- Valid for limited ranges of Rayleigh number
- Geometry-dependent

Literature Review - Models

- Analytical models available for concentric, eccentric circular annulus
 - Raithby & Hollands²⁸
 - Kuehn and Goldstein²⁹
- Boyd³⁰ presents general correlation procedure for 2D annulus with arbitrarily-shaped boundaries
 - Requires correlation coefficient values from empirical data
 - Difficult to implement for non-standard boundary shapes

Objectives

- Analytical modeling of natural convection in horizontal annulus
 - Full range of Ra_{P_i} from conduction to convection
 - Applicable to wide range of geometries
 - Inner and outer boundary shapes and orientation
 - Relative boundary sizes
 - Physically-based analysis
- Validate model using experimental, numerical data from the literature
 - Circular annulus
 - Annuli with different inner, outer boundary shapes

Model Development

• Assume linear superposition of diffusive, convective limits

University of

$$Nu_{P_i} = S_{P_i}^* + Nu_{\rm conv}$$

• Kuehn and Goldstein^{8,9} data for circular annulus

Model Development

 General model based on Churchill and Usagi³³ composite solution technique

$$Nu_{P_i} = S_{P_i}^* + \left[\left(\frac{1}{Nu_{tr}} \right)^n + \left(\frac{1}{Nu_{bl}} \right)^n \right]^{-1/n}$$

Combination of three asymptotic solutions

 $S_{P}^{*} =$ conduction shape factor

 Nu_{tr} = transition flow convection

 Nu_{bl} = laminar boundary layer convection

• Combination parameter *n* determined from validation with numerical, experimental data

Conduction Shape Factor

- Correlations, models, from handbooks
- Numerical simulations
- Approximate method from equivalent circular annulus

 $S_{P_i}^* = \frac{2\pi}{\ln(d_1/d_2)}$

- Effective diameter ratio $\left(\frac{d_o}{d_i}\right)_e \Rightarrow$ Inner perimeter $d_i = P_i/\pi$ Enclosed area $d_o = \sqrt{\frac{4A}{\pi} + \frac{P_i^2}{\pi^2}}$
- Dimensionless conduction shape factor

$$S_{P_i}^* = \frac{2\sqrt{\pi}}{\ln\sqrt{4\pi\left(A/P_i^2\right) + 1}}$$

Boundary Layer Convection

- Assumptions
 - Laminar flow
 - T_b uniform

- $T_i \xrightarrow{} R_i \xrightarrow{} T_b \xrightarrow{} R_o \xrightarrow{} T_o$
- Non-intersecting boundary layers
- Series combination of resistances

$$R = R_i + R_o \qquad R_i = \frac{T_i - T_b}{Q} \qquad R_o = \frac{T_b - T_o}{Q}$$

Non-dimensionalize using Nusselt number

$$\begin{split} R_i = & \frac{T_i - T_b}{Q} \qquad R_o = \frac{T_b - T_o}{Q} \qquad Nu_{bl} = \frac{1}{k(R_i + R_o)} = \frac{Nu_i}{1 + 1/\phi} \\ & \phi = \frac{T_i - T_b}{T_b - T_o} = \frac{R_i}{R_o} = \frac{Nu_o}{Nu_i} \end{split}$$

Boundary Layer Convection

University of

Convection modeled using Yovanovich³¹ and Jafarpur³⁶

$$Nu_{\sqrt{A}} = F(\Pr) G_{\sqrt{A}} Ra_{\sqrt{A}}^{1/4}$$

Laminar boundary layer convection asymptote

$$Nu_{bl} = \frac{Nu_{i}}{1+1/\phi} = \frac{F(\Pr)G_{P_{i}}Ra_{P_{i}}^{1/4}}{(1+1/\phi)^{5/4}}$$

$$Nu_{bl} = \frac{F(\Pr)G_{P_{i}}Ra_{P_{i}}^{1/4}}{\left[1+(P_{i}/P_{o})^{3/5}(G_{P_{i}}/G_{P_{i}})^{4/5}\right]^{5/4}}$$

$$Nu_{bl} = \frac{(1.028)F(\Pr)Ra_{P_{i}}^{1/4}}{\left[1+(d_{i}/d_{o})^{3/5}\right]^{5/4}} \quad \text{(circular annulus)}$$

Transition Flow

- Boundary layers merge when $Ra < Ra_{cr}$
- Model as equivalent circular annulus •
- Three distinct regions are formed
- Central region
 - Radial conduction
 - Buoyancy induced flow
- For narrow gap spacing, $\delta_{\rho} \ll r_i$, temperature, velocity in central region

$$T - T_b = -\frac{y}{\delta_e/2} (T_i - T_b), \quad T_b = \frac{T_i + T_o}{2}$$
$$u = \frac{g_e \beta}{12\upsilon} (T_i - T_o) \left(\frac{\delta_e}{2}\right)^2 \left[\left(\frac{y}{\delta_e/2}\right)^3 - \frac{y}{\delta_e/2} \right]$$

Transition Flow

• Enthalpy balance in top-end and bottom-end regions

$$Q_{i,o} = \frac{\rho c_{p} g_{e} \beta (T_{i} - T_{o})^{2} \delta_{e}^{3}}{720 \nu}$$

• Transition flow asymptote

$$Nu_{tr} = \frac{1}{90 \pi} \frac{(\delta_{e}/P_{i})^{3}}{(1 + P_{o}/P_{i})} Ra_{P_{i}}$$
$$Nu_{tr} = \frac{1}{720 \pi^{4}} \frac{(d_{o}/d_{i}-1)^{3}}{(1 + d_{o}/d_{i})} Ra_{P_{i}}$$
(circular annulus)

Summary

- Analytical study of natural convection heat transfer for isothermal, horizontal annuli
- Model developed based on combination of analytic, asymptotic relationships
 - Diffusive limit
 - Laminar boundary layer convection
 - Transition flow convection
- Validated using previous data for similar, different inner and outer cylinder shapes
- 6 9% RMS difference between model and data

