

1

Thermal Resistances of Gaseous Gap for Non-Conforming Rough Contacts

M. Bahrami J. R. Culham M. M. Yovanovich

Department of Mechanical Engineering Microelectronics Heat Transfer Laboratory University of Waterloo Waterloo, ON, Canada

CONTENTS

Waterloo

- introduction
- solid-solid TCR
- present model
- thermal resistance network
- microgap thermal resistance
- macrogap thermal resistance
- parametric study
- comparison with experimental data
- summary and conclusions
- acknowledgements

INTRODUCTION

GEOMETRICAL MODELING

SOLID-SOLID THERMAL RESISTANCE

• contact of rough spheres, Bahrami et al. (2003) a

$$P(\xi) = P_0 (1 - \xi^2)^{\gamma} \text{ where } \xi = r / a_L$$

$$\gamma = 1.5 (P_0 / P_{0,H}) (a_L / a_H)^2 - 1$$

$$P_0 = \frac{P_{0,H}}{1 + 1.37 \,\alpha \,\tau^{-0.075}} \& a_L = 1.8 \,a_H \,\frac{\sqrt{\alpha + 0.31 \,\tau^{0.056}}}{\tau^{0.028}} \& \alpha = \frac{\sigma \rho}{a_H^2} \& \tau = \frac{\rho}{a_H}$$

• micro and macro thermal resistances, Bahrami et al. (2003) b

$$R_{s} = \frac{0.565c_{1}(\sigma/m)}{k_{s}F} \left(\frac{\sigma}{m}\right)^{c_{2}}$$
$$R_{L} = \frac{\left(1 - a_{L}/b_{L}\right)^{1.5}}{2k_{s}a_{L}}$$
$$k_{s} = \frac{2k_{1}k_{2}}{k_{1} + k_{2}}$$

PRESENT MODEL

assumptions

- Gaussian roughness
- plastically deformed asperities
- bulk deforms elastically
- microcontacts are isothermal

heat flow paths

- solids or microcontacts, Q_s
- microgap, Q_g
- macrogap, Q_G

 R_s, R_L, R_g, R_G

THERMAL RESISTANCE NETWORK

Waterloo

MICROGAP THERMAL RESISTANCE

-1

• applying energy balance

$$R_{g} = \frac{1}{2\pi k_{g}} \left[\int_{0}^{a_{L}} \frac{rdr}{Y(r) + M} \right]$$

• non-dimensional separation

$$\lambda(\xi) = a_1 + a_2 \xi^2$$

$$a_1 = \operatorname{erfc}^{-1}\left(\frac{2P_0}{H'}\right) \& a_2 = \operatorname{erfc}^{-1}\left(\frac{0.03P_0}{H'}\right) - a_1$$

• effective microgap resistance

MACROGAP THERMAL RESISTANCE

EFFECT OF LOAD ON JOINT RESISTANCE

Thermal Resistances of Gaseous Gap for Conforming Rough Contacts, AIAA2004-0822 42nd AIAA Aerospace Meeting and Exhibit, Jan. 5-8, Reno, Nevada 10

EFFECT OF ROUGHNESS ON JOINT RESISTANCE

Thermal Resistances of Gaseous Gap for Conforming Rough Contacts, AIAA2004-0822 42nd AIAA Aerospace Meeting and Exhibit, Jan. 5-8, Reno, Nevada

EFFECT OF GAS PRESSURE ON JOINT RESISTANCE

EFFECT OF RADIUS OF CURVATURE ON JOINT RESISTANCE

EXPERIMENTAL DATA

- Kitscha (1982)
 - 110 data points
 - three sets of carbon steel ball with steel 1020 flats in air and argon

gas	k _g	Pr	TAC	g	0
	W/mK	_	_	_	nm
air	.0021 8E-5T	0.70	0.87	1.39	64.01
Ar	.0159 4E-6T	0.67	0.9	1.67	66.55

test		gas	F
	mm		N
T 1	12.7	air	16.7 - 467
T2	25.4	air	16.9 - 135
T3	12.7	argon	17.8 - 467

COMPARISON WITH KITSCHA DATA

Thermal Resistances of Gaseous Gap for Conforming Rough Contacts, AIAA2004-0822 42nd AIAA Aerospace Meeting and Exhibit, Jan. 5-8, Reno, Nevada

SUMMARY AND CONCLUSIONS

- a compact model was developed for TCR of nonconforming rough joints in gaseous environment
- model covers four regimes of gas heat conduction, continuum, temperature-jump or slip, transition, and free molecular
- model accounts for gas and solid mechanical and thermal properties, gas pressure and temperature, surface roughness, radii of curvature, and applied load
- a correlation for local separation between non-conforming rough surfaces was derived

SUMMARY AND CONCLUSIONS

- parametric studies showed
 - at light loads, most of heat transfer take place through macrogap
 - a surface curvature exists that minimizes joint resistance
- model was compared with 110 experimental data points of Kitscha (1982)
 - carbon steel and steel 1020, with two gases: air and argon
 - model showed good agreement, RMS difference 7.2%

ACKNOWLEDGEMENTS

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- The Center for Microelectronics Assembly and Packaging (CMAP)