

Microelectronics Cooling "An Overview"

J. Richard Culham

Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo

Outline

- Motivation
- Thermal Networks
 - Bulk properties
 - Spreading/constriction
 - Boundary heat transfer
 - Joint/interface heat transfer

Motivation

- Heat loads typically follow transistor density
- 1965: Gordon Moore observed that transistor density on ICs was doubling every 18 months and predicted it would continue for the foreseeable future
- After 45 years, Moore's prediction is beginning to fail due to thermal management issues

Cooling Limits

Microelectronics Heat Transfer Lab University of Waterloo Page 4

Thermal Resistance Network

Component Resistances

Effects of Scale

Case 1: k=20 W/mK, t=2 mm, r_1 =20 mm, r_2 = 2 mm, h = 20 W/m²K

scale by factor of 0.01

Case 2: k=20 W/mK, t=0.02 mm, r_1 = 0.2 mm, r_2 = 0.02 mm, h = 20 W/m²K

°C/W	Order	Case 1	Case 2
R _{bulk}	L-1	0.08	8
R _{contact}	L ⁻²	14	1.4x10⁵
R _{spreading}	L ⁻¹ (L ⁻²)	9.2	922 (9x10 ⁴)
R _{boundary}	L ⁻²	40	4x10 ⁵

Bulk Properties

- Effective conductivity calculator based on Fourier series analysis
- Up to 20 layers, preprogrammed material properties available
- Calculated k effective based on relative source size, position and edge conditions

http://mhtlab.uwaterloo.ca/ RScalculators.html

Spreading Resistance

• General series solution for rectangular, multi-layered flux tubes: "Influence of Geometry and Edge Cooling on Thermal Spreading Resistance," Muzychka, Y.S., Yovanovich, M.M. and Culham, J.R., AIAA

Journal of Thermophysics and Heat Transfer, Vol. 20, No. 2, April-June, 2006, pp. 247-255.

- Circular and rectangular substrates
- Single and multi-layers
- Finite, semi-infinite and infinite flux tubes
- Circular, strip and rectangular sources
- Isoflux, Parabolic, Equivalent Isothermal sources
- Edge cooling

6/25/09

Microelectronics Heat Transfer Lab University of Waterloo Page 9

Cooling Potential

Boundary Heat Transfer

- Extended surfaces
 - Heat sinks: natural convection, forced convection
 - Cold plates: single phase liquid
- Two phase
 - Micro-refrigeration
 - Vapor chambers
 - Heat pipes
 - Hybrid systems
- Peltier devices

Heat Sinks

Modeling of Natural Convection

University of Waterloo

Page 14

Heat Sink Models

Entropy generation minimization model

- select maximum working volume
- assign values to fixed parameters
- click calculate to determine optimum value for free parameters
- can be up to 9 free parameters
- determines true, simultaneous optimum value for all free parameters
- solution procedure is applicable for any thermodynamic system

Single Phase, Liquid Cooling

- Compact cold plates for high heat flux applications
- Modeling and testing of:
 - Fully developed flow
 - Thermally developing flow

π

• Simultaneously developing flows

π

Micro-refrigeration

Figure 4-5: MHE Pressure Drop and Heat Transfer Coefficient vs. Channel Width (Channel length 15 mm, depth 200 mm, flow 3.39x10⁻³ kg/s, T_{wall}=59 °C)

Microelectronics Heat Transfer Lab University of Waterloo Page 17

Heat Pipes

6/25/09

Microelectronics Heat Transfer Lab University of Waterloo Page 19

Vapor Chambers

Jet Impingement

Microelectronics Heat Transfer Lab University of Waterloo

Peltier Devices

• electric current driven through a Bismuth-Telluride junction

• heat absorbed at the cold junction and released at the hot junction

Microelectronics Heat Transfer Lab University of Waterloo

1D Thermal Model

Hybrid Systems

Microelectronics Heat Transfer Lab University of Waterloo

Hybrid Systems

а

ь

6/25/09

Microelectronics Heat Transfer Lab University of Waterloo Page 27

MHTL

Thermal Contact Resistance: Non-Conforming, Rough Surfaces

Objectives • develop thermo-mechanical models for predicting contact resistance in real surfaces with microscopic roughness and waviness Non-Conforming Non-Conforming Conforming **Overview** Smooth Surfaces **Rough Surfaces Rough Surfaces** • mechanical models combine the effects of plastic deformation at the microscopic level with elastic deformation at the macroscopic level Macro-contact Apparent Micro-contacts contact area

CMAP Workshop on Thermal Issues

area

Thermal Interface Materials

- Two major categories
 - Solid layer materials polymers, graphite, metal foils
 - Fluidic materials thermal grease, phase-change materials
- Current industry design practice
 - Select TIM based on manufacturer's specifications
 - Limited experimental verification or analytical modeling
- TIM manufacturer's specifications
 - Variety of measurement techniques
 - ASTM D5470 and variations
 - Laser flash diffusivity tests

Page 29

Sample Thickness Measurements

• Thickness vs. load tests for E-Graf 1210

Thermal Resistance Testing

Thermal Interface Testing

- steady state test
- prescribed interface pressure
- prescribed heat load
- measure temperature drop across the interface
- measure heat load with flux meters
- measure interface thickness with laser extensometer
- $k = (Q \times t)/(A \times [T1 T2])$

Microelectronics Heat Transfer Lab University of Waterloo

6/26/09

Questions?