
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER
Vol. 13, No. 4, October–December 1999

Thermal Spreading Resistance in Multilayered Contacts:
Applications in Thermal Contact Resistance
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and
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Application of highly conductive coatings to contacting surfaces is a commonly employed method to enhance
thermal contact conductance. In many applications it is often necessary to apply an intermediate coating such that
the conductive coating may be applied to a nonadhering substrate. In these instances, it is desirable to predict
the effect that the intermediate and � nal coatings have on the spreading resistance. A solution for computing the
thermal spreading resistance of a planarcircular contact on a doubly coated substrate is presented. Also, a model is
developed to compute the contact conductance between a bare substrate and a coated substrate. Comparisons are
made with data obtained in the literature for which no analytical model was available. Solution of the governing
equations and numerical computation of the spreading resistance were obtained using computer algebra systems.

Nomenclature
Ac; At ; Aa = area, m2

Ain ; Bin = Fourier–Bessel coef� cients
a; b = two radii with a < b, m
CL = spreading correction factor
e = natural log base
Hc = contact microhardness,MPa
hc = contact conductance,W/m2K
J0.x/ = Bessel function of the � rst kind of order zero
J1.x/ = Bessel function of the � rst kind of order one
K21 = k2=k1 thermal conductivity ratio
K32 = k3=k2 thermal conductivity ratio
k0; k1; k2; k3 = thermal conductivities,W/mK
L = characteristic length
N = number of contacts
P = contact pressure, MPa
Q = total heat � ow rate, W
Rs = spreading resistance,K/W
r; z = cylindrical coordinates,m
T = temperature, K
NT = area mean temperature, K
t1; t2; : : : ; tn = coating thicknesses, m
z1; z2; : : : ; zn = interface locations, m
¯ = equation parameter
°n = equation parameter
±n = nth eigenvalue
² = contact spot aspect ratio a=b, orp

.Ac=At / D
p

.P=Hc/
¸ = separation constant
½n = boundary condition modi� cation factor
¾=m = rms roughness/mean asperity slope
¿i = relative coating thickness, ti=a
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Á = equation parameter
Ã = spreading parameter

Subscripts

a = apparent contact area
c = contact spot
i = i th layer
n = nth term in a series
t = � ux tube
0 = bare surface

Introduction

T HERMAL spreading resistance has applications in predict-
ing the contact conductance across semiconductor junctions

and in thermal contact resistance models. Solution for the thermal
spreading resistance of a planar heat source in perfect contact with
a semi-in� nite region has been examined by numerous researchers.
Yovanovich and Antonetti1 and Yovanovich2 present a comprehen-
sive review of the theory and applicationof spreading resistancefor
bare and singly coated surfaces.

Of particular interest is the solution for the spreading resistance
of an array of contacts.As the spacingbetween contacts approaches
the characteristic dimension of the contact, it becomes necessary
to model the contact as a heat source in perfect contact with an
insulatedsemi-in� nite cylinderor � ux tube.The theoryof � ux tubes
ispresentedbyYovanovich2 forbaresurfacesandbyNeguset al.3 for
bare surfaceshaving arbitrarily shaped contacts.Finally, Antonetti4

presents the complete solution for a circular � ux tube with a single
and double coating.

This paper presents the general theory of multilayered � ux tubes
and discusses a particular case of a � ux tube having two applied
coatings. An application of the results in thermal contact resistance
models is also presented through the development of a new model.
Comparisons are then made with experimental data presented by
Marotta et al.5

Problem Statement and Solution
The contact between two conformingrough surfaces in a vacuum

may be modeled as an array of circular contact spots. The total
heat transfer is then determined by combining all of the elemental
� ux tubes in parallel. The governing equation for each elemental
� ux tube is Laplace’s equation in circular cylinder coordinates. If
the � ux tube is composed of N layers in the axial direction, as
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Fig. 1 Multilayered � ux tube.

Fig. 2 Flux tube with two applied coatings.

shown in Fig. 1, then Laplace’s equation must be written for each
layer, resulting in a system of N equations and 2.N C 1/ boundary
conditions.

A system consistingof a cylindrical substrate and two base coat-
ings is presented in Fig. 2. The governing equation in each coating
and substrate is

@2Ti

@r 2
C 1

r
@Ti

@r
C @2Ti

@z2
D 0 (1)

for i D 1; 2; 3. The appropriateboundaryconditionsare summarized
as follows.

Radial thermal boundary conditions, z ¸ 0; i D 1; 2; 3:

@Ti

@r
r D 0

D 0; r D 0 (2)

@Ti

@r
r D b

D 0; r D b (3)

Axial thermal boundary conditions,0 · r · b:

T3.r; z ! 1/ D 0; z ! 1 (4)

T2.r; z2/ D T3.r; z2/; k2
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@z
z D 0

D 0; a < r · b; z D 0 (7)

Solution for Spreading Resistance
The resulting system of three equations and eight boundary con-

ditions is easily solved by analytical methods. Solutions to heat
conduction problems in composite systems using integral trans-
forms and separation of variables are discussed by Ozisik.6 The
problem as stated in the preceding section may be solved by sepa-
ration of variables. The solution for the temperature � eld consists
of two components: a uniform one-dimensional � ow portion and a
two-dimensional � ow portion. The total thermal resistance of the
system will then have the form

Rt D R1D C Rs (8)

where R1D is the total one-dimensionalbulk resistanceof each layer
in the system and Rs is the spreading resistance.

The solution for the spreading resistance component may be ob-
tainedby consideringthe two-dimensionaleigenvalueproblem.Ap-
plying the method of separation of variables results in

Ti .r; z/ D J0.¸r/ Ai e
¡¸z C Bi e

¸z (9)

where the Bessel function Y0.¸r/ has been eliminated due to the
singularity at r D 0.

Applicationof the boundaryconditionalongr D b yieldsthechar-
acteristic equation

J1.±n/ D 0 (10)

where ±n D ¸nb. The eigenvaluesfor this equationare well tabulated
by Abramowitz and Stegun,7 or they may be approximatedto single
precision using Stokes’ approximation (see Gray and Mathews8 ).
A modi� ed Stokes approximation developed by Yovanovich9 that
provides greater accuracy is

±n D ¯n

4
1 ¡ 6

¯2
n

C 6
¯4

n

¡ 4716
5¯6

n

C 3;902;418
70¯8

n

(11)

where ¯n D ¼.4n C 1/ and n ¸ 1.
In this paper, exact values are used for the � rst � ve eigenvalues,

and the remainder are computed using Eq. (11). The solution for
each coating becomes

T1.r; z/ D
1

n D 1

J0.¸nr/ A1n e¡¸n z C B1n e¸n z (12)
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T2.r; z/ D
1

n D 1

J0.¸nr/ A2n e¡¸n z C B2n e¸n z (13)

Eliminating the singularity at z ! 1 requires that B3n D 0, and
the solution for the temperature in the substrate becomes

T3.r; z/ D
1

n D 1

A3n J0.¸nr/e¡¸n z (14)

The � ve constants may be determined by applying the remain-
ing boundary conditions at each interface and at the contact plane.
Application of Eqs. (4–6) results in a system of four equations that
may be solved for the constants A1n ; B1n ; A2n , and B2n . The solution
to this system of equations was easily obtained using the computer
algebra systems Maple10 and Mathematica.11 The four constants in
terms of the unknown constant A3n are

A1n D A3n 4 .1 C K21/.1C K32/C .1¡ K21/.1 ¡ K32/e
¡2±n ²¿2

(15)

B1n D A3n 4 .1 ¡ K21/.1 C K32/e
¡2±n ²¿1

C .1 C K21/.1 ¡ K32/e¡2±n².¿1 C ¿2 / (16)

A2n D A3n 2 .1 C K32/ (17)

B2n D A3n 2 .1 ¡ K32/e
¡2±n ².¿1 C ¿2/ (18)

where K21 D k2=k1 and K32 D k3=k2 are the relative conductivities
of adjacent layers, ¿1 D t1=a and ¿2 D t2=a are the relative thick-
nesses of each coating, ±n D ¸nb are the eigenvaluesof Eq. (10), and
² D a=b is the contact spot aspect ratio.

The � nal constant A3n is obtained by taking a Fourier–Bessel
series expansion of the contact plane boundary condition Eq. (7).
This results in the following relation for the iso� ux condition:

A3n D 8

¼

Q

k1a

J1.±n²/

±2
n J 2

0 .±n/°n

(19)

where the dimensionless parameter °n that accounts for the effects
of conductivity and thickness of each layer is de� ned as

°n D .1 C K21/.1 C K32/ ¡ .1 ¡ K21/.1 C K32/e¡2±n²¿1

C .1 ¡ K21/.1 ¡ K32/e¡2±n²¿2

¡ .1 C K21/.1 ¡ K32/e¡2±n².¿1 C ¿2 / (20)

In contact conductanceproblems, the contact spot is assumed to
be isothermal rather than iso� ux. However, solution to the problem
for an isothermal contact constitutes a mixed potential boundary
value problem. To facilitate a solution, the equivalent isothermal
boundary condition is assumed by imposing a heat � ux distribution
over the contact spot.

In the case of an iso� ux contact, the temperature pro� le that
results is parabolic,with the maximum temperatureoccurringat the
centroid of the contact (Fig. 3). Alternatively, if one prescribes a
parabolicheat � ux distributionwith the minimum at the centroidof
the contact spot, a uniform temperature distribution will result.

Yovanovich12 and Negus et al.13 discuss the solution for spread-
ing resistance in semi-in� nite domains for uncoated and coated
surfaces for arbitrary heat � ux distributions. Using the results of
Yovanovich,12 it can be shown that the isothermal contact may be
modeled using the iso� ux case by simply multiplying each term in
the series by the factor

½n D
sin.±n²/

2J1.±n²/
; isothermal

1; iso� ux
(21)

a) Iso� ux condition b) Isothermal con-
dition

Fig. 3 Iso� ux and equivalent isothermal boundary conditions.

The results presented in a later section of this paper are based
on the isothermal contact condition, rather than the iso� ux contact
condition.The differencebetween these two cases is approximately
8% as ² ! 0 and ¿1 ! 1. In this limit, the solution approachesthat
of an isolated contact on a semi-in� nite region.

Thermal Spreading Resistance Parameter
To use the results of the preceding section in contact resistance

models, we must de� ne the spreading resistance and the dimen-
sionless spreadingresistanceparameter.The spreading resistance is
de� ned as

Rs D . NTcontact ¡ NTcp=Q/ (22)

where

NTcontact D 1
¼a2

a

0

T1.r; 0/2¼r dr (23)

is the mean temperature of the contact spot and

NTcp D 1
¼b2

b

0

T1.r; 0/2¼r dr (24)

is the mean temperature of the contact plane.
The spreadingparameterÃ is de� ned with respect to the substrate

thermal conductivity k3 ,

Ã D 4k3LRs (25)

where L is some characteristic length of the contact spot geometry.
For the case of a circular contact L D a, the radius of the contact.
Extensionof this solution for noncircularcontacts is discussedlater,
and an alternative length L is proposed.

To examine the effect that each coating has on the spreading re-
sistance, the solution for the spreading resistance parameter in the
singly and doubly coated contacts will be presented in terms of the
bare surface spreading resistance parameter. The spreading resis-
tance parameters for the singly coated and bare surfaces may then
be obtainedas specialcases from the spreadingresistanceparameter
for the doubly coated surface.

Bare Surface

By setting K21 D 1 and K32 D 1, the bare contact spreading resis-
tance parameter12 becomes

Ãbare D
16

¼²

1

n D 1

½n
J 2

1 .±n²/

±3
n J 2

0 .±n/
(26)

Simple correlations that may be used in place of Eq. (26) have
been developed by Negus and Yovanovich14 that cover the range
0 · ² · 0:9 with a maximum error of 0.02%. These are
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ÃT
bare.²/ D 1 ¡ 1:40978² C 0:34406²3 C 0:04305²5 C 0:02271²7

(27)

Ã
q
bare.²/ D 1:08076 ¡ 1:41042² C 0:26604²3

¡ 0:00016²5 C 0:058266²7 (28)

where the superscriptsT and q are the isothermaland iso� ux bound-
ary conditions, respectively.

Single Coated Surface

By setting K32 D 1, the single layer contact spreading resistance
parameter becomes

Ãsingle D
16

¼²

1

n D 1

½n
J 2

1 .±n²/

±3
n J 2

0 .±n/

£ K21
.1 C K21/ C .1 ¡ K21/e¡2±n ²¿1

.1 C K21/ ¡ .1 ¡ K21/e¡2±n ²¿1
(29)

Double Coated Surface

The two layer contact spreading resistance parameter is

Ãdouble D
16

¼²

1

n D 1

½n
J 2

1 .±n²/

±3
n J 2

0 .±n/

ÁC

Á¡ K21K32 (30)

where

Á§ D .1 C K21/.1 C K32/ § .1 ¡ K21/.1 C K32/e
¡2±n ²¿1

C .1 ¡ K21/.1 ¡ K32/e¡2±n²¿2

§ .1 C K21/.1 ¡ K32/e¡2±n².¿1 C ¿2 / (31)

The effect that each coating has on the spreading resistance pa-
rameter is easily seen in Eqs. (26), (29), and (30). Antonetti4 com-
puted results for the bare surfacespreadingresistanceparameterand
also tabulated values of the spreading resistance correction param-
eter for various .²; ¿1; ¿2; K21; K32/ for both the iso� ux and equiv-
alent isothermal boundary conditions.The correctionparameter for
the spreading resistance in a layered system is de� ned as

CL D
Ãsingle; double

Ãbare

(32)

Results for the single layer spreading correction parameter have
been reported in graphical form by Antonetti4 and by Antonetti and
Yovanovich.15 Tabulation of the double layer spreading parameter
would be too involved due to the large number of parameters in-
volved, that is, .²; ¿1; ¿2; K21; K32/. In a later section, a parametric
analysis is conducted for comparison of experimental data with a
new contact conductancemodel.

Isolated Contact ! 0

As ² ! 0, the contactbecomes isolated,and the solutionfor a sin-
gle contact on a half-spaceis obtained. Computing this special case
requiresseveral thousand terms; thus, the half-spacesolutionshould
be used instead if computing resources are limited. However, with
most computeralgebrasystemssuchasMaple10 andMathematica,11

the computation time is quite reasonable,and there is no need to re-
sort to the half-space solutions. The interested reader should refer
to Negus et al.13 for the procedure to obtain the half-space contact
solutions.

Effect of Contact Spot Geometry

In many applications of spreading resistance, the contact spot
may not be circular. Other shapes include square, triangular, or el-
liptic contacts. The model presented earlier is easily modi� ed to
account for a contact spot of arbitrary shape. The effect of contact
spot geometry on spreading resistance was studied by Yovanovich

et al.16 It was shown that the bare surface spreading parameter for
an isolated contact on a semi-in� nite region is a weak function of
geometry when the spreading resistance is nondimensionalizedus-
ing L D

p
Ac as a characteristic length, where Ac is the area of the

contact spot. Negus et al.3 also showed that the spreading parame-
ters for semi-in� nite � ux tubes having various shapes are also weak
functions of geometry if nondimensionalizedusing the square root
of the contact area.

It can be shown that the spreading parameter for the singly and
doubly coated contacts are also weak functions of the contact spot
geometry. Thus, the solution given earlier may also be used for
contact spots of arbitraryshape if the spreadingparameter is de� ned
as

Ã D 4k3 Ac Rs (33)

and the relative contact spot size is de� ned as

² D Ac=At (34)

where At is the cross-sectionalarea of the � ux tube. The equivalent
contact spot radius a is chosen such that a D

p
.Ac=¼/.

Application in Thermal Contact Conductance Models
An important application of thermal spreading resistance arises

in the predictionof the thermal contact resistancebetween two con-
tacting, nominally � at, rough surfaces. In many applications, the
contactconductanceis enhanced if one of the surfacesis coatedwith
a high conductivity material such as a metallic coating.4 In certain
instancesit is necessaryto apply an intermediatecoating to promote
the adherence of the metallic coating. It is, therefore, desirable to
assess the overall effect that each coating has on the enhancement
(or reduction) of the thermal contact conductance.The authors have
derived a general expression for determining the contact conduc-
tance of a doubly coated substrate in contact with a bare surface.
Comparisonsare then made with experimentaldata for diamondlike
coatings (DLCs), which are presented by Marotta et al.5

Contact Conductance of Coated Interfaces

Contact resistancein a vacuumenvironmentfor the con� guration
shown in Fig. 4 is given by Antonnetti4:

Rc D
1

hc Aa
D

1
N

Ãbare

4k0a
C

Ãcoated

4k3a
(35)

where a is the mean contact spot radius,k0 and k3 are the conductiv-
ities of the upper bare surface and the substrate of the lower surface
(Fig. 4), hc is the contact conductance, Aa is the apparent contact
area, N is the total number of contact spots, and Ãbare and Ãcoated are

Fig. 4 Con� gurations considered for parametric analysis.
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the thermal spreading parameters for the bare and coated surfaces,
respectively.

Therefore, we have

hc D 2
Aa

2k0k3

.k3 C k0Ãcoated=Ãbare/

Na

Ãbare

(36)

From Yovanovich17 for a bare interface, the contact conductance
is given by

hc;bare D 2
Aa

2k0k3

k0 C k3

Na

Ãbare

(37)

where k0 and k3 are the conductivities of the two bare surfaces
in contact. Comparing the expression for contact conductance for
the coated con� guration in Fig. 4 and the bare interface given by
Yovanovich,17 we can rewrite the expression for contact conduc-
tance for the coated interface as follows:

hc D hc;bare
k0 C k3

k3 C CL k0
D hc;bareTEF (38)

where the thermal enhancement factor (TEF) D .k0 C k3/=.k3 C
CL k0/ and CL D Ãcoated=Ãbare is the spreading resistance correc-
tion factor, de� ned earlier, for the equivalent isothermal boundary
condition.

From Yovanovich,17 hc;bare is correlated as

hc;bare D 1:25.m=¾ /ks.P=Hc/
0:95 (39)

Therefore,

hc D 1:25.m=¾/ks.P=Hc/
0:95TEF (40)

where ks D 2k0k3=.k0 C k3/ is the harmonic mean thermal conduc-
tivityof the bare interface.If the TEF > 1 there is an enhancementin
the contact conductanceover the bare interface due to the presence
of the coatings.

Comparison with Experimental Data

In this section we examine the effect of using DLC to enhance
contact conductance. In practice DLCs cannot be directly applied
on a substrate. Once the substrate surfaces are prepared, each test
surface must be coated with a layer of silicon nitride (see Marotta
et al.5). This coating is necessaryto ensure the stabilityof the surface
for the deposition of a DLC.

The experimental study by Marotta et al.5 included two types
of interfaces, each with three to four different coating thicknesses.
The � rst type consisted of two aluminum substrates with upper
specimen bare and lower specimen coated with silicon nitride and
the DLC on top of it. The silicon nitride coating thickness was � xed
at 3 ¹m, whereas the thickness of the DLC was varied from 0 ¹m
(i.e., no coating) to 5 ¹m. The second type consisted of the same
bare aluminumalloyon top, but the substrateof the coatedspecimen
was changed to copper.

In the present work a comparison is made of the experimental
results from Marotta et al.5 with the present model using the bulk
values of thermal conductivities. Then an estimate of the actual
thermal conductivities of the coatings will be made with the aid of
the present model.

To compute the contact conductance hc as a function of the di-
mensionless contact pressure P=Hc , the correction factor CL for
each value of applied pressure for the given surface, material and
thermal properties must be computed. To calculate the correction
factor CL at particular values of the dimensionlesscontact pressure
(P=Hc ) one requires the thermal conductivities k0 , k1, k2 and k3,
the thicknesses of the two coatings t1 and t2, and the mean contact
spot radius a. The mean contact spot radius is determined using the
approximation developed by Sridhar18:

a D 0:645.¾=m/.P=Hc/
0:071 (41)

The upper aluminum specimen (Al356) is the softer one, and it is
assumed to undergo full plastic deformation. It is known from past
experience19 that aluminum alloys do not generally possess a hard

Table 1 Thermal conductivity of bulk materials
and thin � lms21

Material k� lm , W/mK kbulk , W/mK

SiO2 0:4¡1:1 1.2¡10.7
TiO2 0:5¡0:6 7.4¡10.4
ZrO2 0:04 ——
Al2O3 0:72 20¡46
MgF2 0:58 15¡30
Air —— 0.025
Oxides/� uorides —— 1.0¡10
Diamond I, II —— 1200¡2300
Silicon —— 150

Fig. 5 Estimate of the conductivity of the silicon nitride layer for a
typical interface.

surface layer, and the microhardness of the alloy is almost equal to
the bulk hardness. Based on this assumption, the experimental data
from Marotta et al.5 were reduced using a single hardness value
Hc D 1256 MPa. The correction factor CL , TEF, and thus contact
conductance hc were computed by means of the computer algebra
system Mathematica,11 using about 2000 terms for each computa-
tion for the con� gurations tested by Marotta et al.5

Initial calculationsrevealed that the model overpredictedthe data
using the bulk values of thermal conductivities for thin � lms. It has
been shown by Lambropoulos et al.20;21 through measurements of
the thermal conductivityof thin � lms that the value may be as much
as two orders of magnitude lower than that of the corresponding
bulk solid. A comparison of bulk and � lm conductivity is presented
in Table 1. The measurements were made in air for a wide variety
of thin � lms of oxides, � ourides, nitrides, amorphous metals, and
semiconductors.

With theaidof theexperimentaldataofMarottaet al.,5 anestimate
of the thermal conductivityof the coatingsis made by decreasingthe
thermal conductivityof the silicon nitride and the DLC in the model
until the model and the data coincide. The � rst step was to estimate
the conductivity of the silicon nitride coating. Figure 5 shows a
comparison between the model (i.e., computed values) and data for
the single layer of silicon nitride. The conductivity of the silicon
nitride coating was decreased from its bulk value of 15 W/(mK)
to an average value of 2.53 W/mK, where the computed values
agree with the experimental data. The thermal conductivity of the
silicon nitride layer varied between 2.43 and 2.71 W/mK. The mean
value of 2.53 W/mK agrees well with the data of Volklein,22 who
obtained a value for a composite sandwich system of SiO2¡Si3N4

of 2.4 W/mK. The bulk values of SiO2 and Si3N4 as reported by
Volklein22 are 12 and 17 W/mK, respectively.

Having estimated the conductivity of the silicon nitride coating,
the conductivityof the DLC was then determined by decreasing the
conductivityof the DLC until the model and datawere in agreement.
Figure 6 shows a comparison between the model and data for a
system having a silicon nitride layer and a DLC layer. For one of
the con� gurations examinedby Marotta et al.5 having a 1-¹m DLC
coating and a 3-¹m silicon nitride layer, the conductivity of the
DLC was found to vary between 3.37 and 3.98 W/(mK) with a
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Fig. 6 Estimate of the conductivity of the DLC layer for a typical
interface.

mean value of 3.66 W/mK. Morath et al.23 reported values for thin
� lms of amorphous diamond to vary between 5 and 10 W/mK and
values for DLC to vary between 0.3 and 1 W/mK. The predicted
value is in fair agreement with the published data for thin � lms of
diamond and diamondlike carbon.

Comparisonof the predictedvalues of thermal conductivitycom-
pare quite well with data of thin � lms reported by Lambropoulos
et al.,20;21 Volklein,22 and Morath et al.,23 where the authors reported
measurements for the thermal conductivity of thin � lms of various
materials. It shouldalso be noted that the predictionsof Lambropou-
los et al.20;21 were computed using the analysis of Dryden24 for a
point contact on a single coated half-space. The method outlined
earlier for � tting the experimental data of Marotta et al.5 to the
analytic model is similar to the procedure used by Lambropoulos
et al.20;21 to determine the conductivityof thin � lms. Thus, an alter-
native method for determining the conductivity of thin � lms using
contact conductancedata has been developed.

Conclusion
The general theory for determiningthe spreadingresistancefor an

iso� ux or isothermal planar heat source in contact with a multilay-
ered semi-in� nite � ux tube is presented. The solution is presented
for several special cases that result for particular combinations of
the physical parameters. In addition, extension of the solution for
contacts of arbitrary shape was also discussed.

The solution to the governing equations and computation of nu-
merical results were performedusing the computer algebra systems
of Maple10 and Mathematica.11 Both of these packages are capable
of performing symbolic and numerical computations and provide
an ef� cient means for computing the special functions that appear
in the solutions.

Finally, a simple applicationof the theory of spreadingresistance
in multilayered contacts was discussed for the particular case of
predicting the thermal contact resistance between two contacting
planes. In this particular case, one of the substrates has been coated
to enhance the thermal contact conductancebetween planes. It was
found that the experimental data fell below the values computed us-
ing the model when the bulk values of the thermal properties were
used. However, the correct trend in the data was predicted by the
model. By using the model to match the experimentaldata, the ther-
mal conductivityof each layer was predicted. The resulting values
were much smaller than the reported bulk properties,but compared
quite well with experimental results reported for thin � lms.
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