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Spreading Resistance of Iso� ux Rectangles and Strips
on Compound Flux Channels

M. M. Yovanovich,¤ Y. S. Muzychka,† and J. R. Culham‡

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

The general expression for the spreading resistance of an iso� ux, rectangular heat source on a two-layer rect-
angular � ux channel with convective or conductive cooling at one boundary is presented. The general expression
depends on several dimensionless geometric and thermal parameters. Expressions are given for some two- and
three-dimensional spreading resistances for two-layer and isotropic � nite and semi-in� nite systems. The effect of
heat � ux distribution over strip sources on two-dimensional spreading resistances is discussed. Tabulated values
are presented for three � ux distributions, the true isothermal strip, and a related noniso� ux, nonisothermal prob-
lem. For narrow strips, the effect of the � ux distribution becomes relatively small. The dimensionless spreading
resistance for an iso� ux square source on an isotropic square � ux tube is discussed, and a correlation equation is
reported. The closed-form expression for the dimensionless spreading resistance for an iso� ux rectangular source
on an isotropic half-space is given.

Nomenclature
A = channel conduction area, m2

As = heat source area, m2
p

A = characteristic length of contact area, m
a; b = half-lengths of source area, m
Bi = Biot number, hL=k1

c; d = half-lengths of � ux channel, m
h = contact conductanceor � lm coef� cient, W/m2 ¢ K
i = index denoting layer 1 and layer 2
Jº.x/ = Bessel function of � rst kind, order º
k; k1; k2 = thermal conductivities,W/m ¢ K
L = arbitrary length scale, m
m; n = indices for summations
Q = heat � ow rate, W
q = heat � ux, W/m2

R = thermal resistance, K/W
Rs = spreading resistance, K/W
Rtotal = total resistance, K/W
R1D = one-dimensional resistance, K/W
NTsink = mean sink temperature, K
NTsource = mean source temperature,K
T1; T2 = layer temperatures, K
t ; t1; t2 = total and layer thicknesses, m
u = relative local position in strip, x=c
x; y; z = Cartesian coordinates, m
® = conductivityparameter, .1 ¡ ·/=.1 C ·/
¯ = eigenvalues,

p
.±2 C ¸2/

0 = gamma function
± = eigenvalues, .m¼=c/
²; ²1; ²2 = relative contact size; ²1 ´ a=c and ²2 ´ b=d
³ = eigenvalue
· = relative conductivity,k2=k1

¸ = eigenvalues, .n¼=d/
¹ = heat � ux shape parameter, ¡ 1

2 ; 0; 1
2

% = aspect ratio of rectangular source area, a=b ¸ 1
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¿; ¿1; ¿2 = relative layer thickness, t=L, t1=L, and t2=L,
respectively

Ám; Án = two-dimensional spreading functions
Ám;n = three-dimensionalspreading function
Ã = dimensionless spreading resistance,´Rsk1L

Introduction

T HERMAL spreading resistanceoccurs whenever heat leaves a
heat source of � nite dimensionsand enters into a larger region,

as shown in Fig. 1. Figure 1 shows a planar rectangularheat source
situatedon one end of a compoundheat � ux channel that consistsof
two layers having thicknesses t1 and t2 and thermal conductivities
k1 and k2, respectively. The heat � ux channel is cooled along the
bottom surface througha uniform � lm coef� cient or a uniform con-
tact conductanceh. The heat source area can be rectangularhaving
dimensions2a by 2b or it may be a strip of width 2a, when 2b D 2d.
The dimensions of the heat � ux channel are 2c by 2d, as shown in
Fig. 1. The lateral boundariesof the heat � ux channel are adiabatic.

The heat � ow rate through the heat � ux channel Q is related
to the mean temperature of the heat source NTsource, the mean heat
sink temperature NTsink, and the total system thermal resistance Rtotal

through the relationship

Q Rtotal D NTsource ¡ NTsink (1)

The total thermalresistanceof the systemis de� nedby the relation

Rtotal D Rs C R1D (2)

where Rs is the thermal spreading resistance of the system and R1D

is the one-dimensional thermal resistance de� ned as

R1D D t1=k1 A C t2=k2 A C 1=h A (3)

The conduction area in Eq. (3) is A D 4cd . For an iso� ux source
area, the heat � ow rate through the system is Q D q As , where q is
the uniform heat � ux and As D 4ab is the heat source area.

For the general case of a rectangular source area on a rectangular
heat � ux channel, as shown in Fig. 1, the spreading resistance will
depend on several geometric and thermal parameters such as

Rs D f .a; b; c; d; t1; t2; k1; k2; h/ (4)

This paperhas threeobjectives.One is to obtaina general solution
for the system shown in Fig. 1. Second is to report several two- and
three-dimensionalcases that arise from the general solution. Third
is to report several previously unpublished results that examine the
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Fig. 1 Finite compound channel with rectangular heat source.

effect of heat � ux distribution for the two-dimensional strip heat
source.

Several investigators1¡7 have examined spreading resistance in
rectangularisotropictwo- and three-dimensionalsystems.Recently,
Yovanovich8 reviewed and summarized past work in the area of
spreading resistance for circular and rectangular systems. As a re-
sult, several solutions of practical interest in engineering systems
are now available. The general solution presented in the next sec-
tion reduces to several cases that were previously unavailable.8

Problem Statement
The temperature distributions T1 and T2 within the two layers

must satisfy the Laplace equation

r2Ti D 0; i D 1; 2 (5)

where for the rectangularheat source/rectangular � ux channel sys-
tem, the three-dimensionalLaplacian operator is

r2 D @2

@x2
C @2

@y2
C @2

@z2

Along the common interface z D t1 , the two temperatures must
satisfy the perfect contact conditions

T1 D T2; k1
@T1

@z
D k2

@T2

@z
(6)

Along the lateral boundaries x D §c and y D §d , the two tem-
peratures must satisfy the adiabatic conditions

@Ti

@x
D 0;

@Ti

@y
D 0; i D 1; 2 (7)

Along the bottom surface z D t1 C t2 , the Robin boundary condi-
tion must be satis� ed:

@T2

@z
D ¡

h

k2
.T2 ¡ NTsink/ (8)

The parameterh can representa uniform � lm coef� cient or a uni-
form contact conductance.Over the top surface z D 0, the boundary
conditions are 1) the iso� ux condition

@T1

@z
D ¡

q

k1
; ¡a < x < a; ¡b < y < b (9)

over the heat source area and 2) the adiabatic condition

@T1

@z
D 0 (10)

for all points that lie outside the heat source area.
The separationof variablesmethodwas employedto � nd the solu-

tions for T1 and T2 , by assuming solutions of the form Ti .x; y; z/ D

X i .x/ £ Yi .y/ £ Z i .z/. The computer algebra system MAPLE V
(Ref. 9) was used to accomplish all of the requiredalgebraic manip-
ulations to obtain the two temperature distributions.The spreading
resistance was obtained by means of the de� nition proposed by
Mikic and Rohsenow1:

Rs D . NTsource ¡ NTcontact plane/=Q (11)

The mean temperature of the heat source area is obtained from

NTsource D
1

4ab

a

¡a

b

¡b

T1.x; y; 0/ dx dy (12)

and the mean temperatureof the contactplane z D 0 is obtainedfrom

NTcontact plane D 1
4cd

c

¡c

d

¡d

T1.x; y; 0/ dx dy (13)

General Spreading Resistance Expression
The methodology just described was used to obtain the solution

for the general problem de� ned earlier. The spreading resistance
is obtained from the following general expression that shows the
explicit and implicit relationships with the geometric and thermal
parameters of the system:

Rs D 1

2a2cdk1

1

m D 1

sin2.a±m /

±3
m

¢ Á.±m/

C 1

2b2cdk1

1

n D 1

sin2.b¸n/

¸3
n

¢ Á.¸n/

C 1
a2b2cdk1

1

m D 1

1

n D 1

sin2.a±m / sin2.b¸n/

±2
m¸2

n¯m ;n

¢ Á.¯m ;n/ (14)

The general expression for the spreading resistance consists of
three terms. The single summations account for two-dimensional
spreading in the x and y directions, respectively, and the double
summation term accounts for three-dimensionalspreadingfrom the
rectangularheat source. Figure 2 shows the superpositionof the two
strip solutions and the rectangular solution that yield the general
expression.

The eigenvalues are ±m D m¼=c, ¸n D n¼=d , and ¯m ;n Dp
.±2

m C ¸2
n/. The eigenvalues ± and ¸, corresponding to the two

strip solutions, depend on the � ux channel dimensions and the in-
dices m and n, respectively. The eigenvalues ¯ for the rectangular
solution are functions of the other two eigenvalues.

The contributionsof the layer thicknesses t1 and t2 , the layer con-
ductivitiesk1 and k2 , and the uniformconductanceh to the spreading
resistance are determined by means of the general expression

Á.³ / D
.®e4³ t1 C e2³ t1 / C ’ e2³.2t1 C t2/ C ®e2³.t1 C t2/

.®e4³ t1 ¡ e2³ t1 / C ’ e2³.2t1 C t2/ ¡ ®e2³.t1 C t2/
(15)

where

’ D ³ C Bi=·L
³ ¡ Bi=·L

® D .1 ¡ ·/=.1 C ·/

Fig. 2 Superposition of solutions.
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Table 1 Summary of solutions for iso� ux source

Figure Con� guration Limiting values

Rectangular heat source: three-dimensional solutions
1 Finite compound rectangular � ux channel a; b; c; d; t1; t2; k1; k2; h
3 Semi-in� nite compound rectangular � ux channel t2 ! 1
4 Finite isotropic rectangular � ux channel k1D k2
5 Semi-in� nite isotropic rectangular � ux channel t1 ! 1
6 Isotropic half-space c ! 1; d ! 1; t1 ! 1
7 Compound half-space c ! 1; d ! 1; t2 ! 1

Strip heat source: two-dimensional solutions
8 Finite compound rectangular � ux channel a; c; b D d; t1; t2; k1; k2; h
9 Semi-in� nite compound rectangular � ux channel t2 ! 1
10 Finite isotropic rectangular � ux channel k1D k2
11 Semi-in� nite isotropic rectangular � ux channel t1 ! 1

Fig. 3 Semi-in� nite coated channel with rectangular heat source.

with · D k2=k1 and Bi D hL=k1 , where L is an arbitrarylength scale
employed to de� ne the dimensionless spreading resistance:

Ã D Rsk1L (16)

that is based on the thermal conductivityof the layer adjacent to the
heat source.Varioussystemlengthsmay beused,and theappropriate
choice depends on the system of interest. In all summations Á.³ / is
evaluated in each series using ³ D ±m , ¸n , and ¯m;n .

Spreading Resistance for Three-Dimensional Systems
The dimensionless spreading resistance Ã depends on six inde-

pendentdimensionlessparameterssuch as 1) the relativesizes of the
rectangularsourcearea .²1 D a=c and²2 D b=d/, 2) thelayerconduc-
tivity ratio .· D k2=k1/, 3) the relative layer thicknesses .¿1 D t1=L
and ¿2 D t2=L/, and 4) the Biot number .Bi D hL=k1/. Thus, cor-
relation of the general solution or graphical representation of the
resistance is not possible. However, the general solution reduces to
many special cases, such as those shown in Figs. 3–11. This sec-
tion examines all of the three-dimensional solutions that may be
obtained from the general solution given by Eqs. (14) and (15). All
of the special three-dimensionalcases are summarized in Table 1.

Semi-In� nite Compound Rectangular Flux Channel

The general expression for Á.³ / reduces to a simpler expression
when t2 ! 1 (Fig. 3). The solution for this particular case arises
from Eq. (14) with

Á.³ / D .e2³ t1 ¡ 1/· C .e2³ t1 C 1/

.e2³ t1 C 1/· C .e2³ t1 ¡ 1/
(17)

where the in� uence of the contact conductancehas vanished.

Fig. 4 Finite isotropic channel with rectangular heat source.

Fig. 5 Semi-in� nite isotropic channel with rectangular heat source.

Finite Isotropic Rectangular Flux Channel

The general expression for Á.³ / reduces to a simpler expression
when · D 1 (Fig. 4). The solution for this particularcase arises from
Eq. (14) with

Á.³/ D
.e2³ t C 1/³ ¡ .1 ¡ e2³ t /Bi=L
.e2³ t ¡ 1/³ C .1 C e2³ t /Bi=L

(18)

where the in� uence of · has vanished.

Semi-In� nite Isotropic Rectangular Flux Channel

When the relative thickness ¿ is suf� ciently large, Á ! 1, for the
three basic solutions of Eq. (14), then Ã D Ã.²1; ²2/ is independent
of ¿ and Bi. This correspondsto the case of a rectangularheat source
on a semi-in� nite rectangular � ux channel (Fig. 5). This solution
was � rst reported by Mikic and Rohsenow.1
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Fig. 6 Isotropic half-space with rectangular heat source.

Fig. 7 Compound half-space with rectangular heat source.

Fig. 8 Finite compound channel with strip heat source.

Fig. 9 Semi-in� nite compound channel with strip heat source.

Fig. 10 Finite isotropic channel with strip heat source.

Fig. 11 Semi-in� nite isotropic channel with strip heat source.

The general solution may also be used to obtain the solution
for an iso� ux square area on the end of a square semi-in� nite � ux
tube.5 For the special case of a square heat source on a semi-in� nite
square, isotropic � ux tube, the general solution reduces to a simpler
expression that depends on one parameter only. The solution1 was
recast into the form5

k As Rs D
2

¼ 3²

1

m D 1

sin2.m¼²/

m3

C
1

¼ 2²2

1

m D 1

1

n D 1

sin2.m¼²/ sin2.n¼²/

m2n2
p

m2 C n2
(19)

where the characteristic length was selected as L D
p

As . The rel-
ative size of the heat source was de� ned as ² D

p
.As=Ac/, where
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Ac is the � ux tube area. A correlation equation was reported for
Eq. (19):

k As Rs D 0:47320 ¡ 0:62075² C 0:1198²3 (20)

in the range 0 · ² · 0:5, with a maximum relative error of approxi-
mately 0:3%. The constant on the right-hand side of the correlation
equation is the value of the dimensionless spreading resistance of
an iso� ux square source on an isotropic half-spacewhen the square
root of the source area is chosen as the characteristic length.

Iso� ux Rectangular Heat Sources on a Half-Space

The spreading resistance for an iso� ux rectangular source of di-
mensions 2a £ 2b on an isotropichalf-space(Fig. 6) whose thermal
conductivity is k has a closed-form solution6:

k As Rs D
p

%

¼
sinh¡1 1

%
C 1

%
sinh¡1 %

C %

3
1 C 1

%3
¡ 1 C 1

%2

3
2

(21)

where% D a=b ¸ 1 is theaspectratio of the rectangle.When the scale
length is L D

p
As , the dimensionlessspreadingresistancebecomes

a weak functionof%. For a squareheat source,the numericalvalueof
the dimensionlessspreadingresistance is k

p
As Rs D 0:4732, which

is very close to the numerical value for the iso� ux circular source
on an isotropic half-space and other singly connected heat source
geometries, such as an equilateral triangle and a semicircular heat
source.

The solution for the rectangular heat source on a compound half
space (Fig. 7) can be obtained from the general solution for the
� nite compound � ux channel, provided that t2 ! 1, c ! 1, and
d ! 1. No closed-form solution such as that given by Eq. (21)
exists. The size of the computational domain may be determined
by comparing the series solution with the closed-form solution
[Eq. (21)] using the dimensions of the source and the conductiv-
ity of the more conductive material to determine the approximate
outer dimensions,which have little in� uence on the isotropic result.

Spreading Resistance for Two-Dimensional Systems
Several two-dimensionalsolutionsmay beobtainedfrom the gen-

eral solution presented earlier. Four special cases that are summa-
rized in Table 1 are discussed next.

Finite Compound Rectangular Flux Channel

When the rectangular heat source on the system shown in Fig. 1
hasdimensionssuch that 2b D 2d, the systemshown in Fig. 8 results.
The solution may be written as

Rs D 1
a2ck1

1

m D 1

sin2.a±m/

±3
m

¢ Á.±m/ (22)

where Á is given by Eq. (15).

Semi-In� nite Compound Rectangular Flux Channel

The solution for Rs when t2 ! 1 (Fig. 9) is obtained from
Eq. (22) with Á de� ned by Eq. (17).

Table 2 Numerical values of for = ¡¡ 1
2 , 0, and 1

2

Parameter ² 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60 0.80

¹ D ¡ 1
2 Eq. (26) 1.1011 0.8808 0.7518 0.6609 0.5902 0.3729 0.1658 0.0607 0.0067

¹ D 0 Eq. (24) 1.1377 0.9172 0.7883 0.6970 0.6263 0.4083 0.1984 0.0882 0.0255
¹ D 1

2 Eq. (28) 1.1545 0.9340 0.8051 0.7138 0.6430 0.4247 0.2134 0.1007 0.0338
T D const Eq. (27) 1.1015 0.8811 0.7523 0.6611 0.5905 0.3738 0.1691 0.0675 0.0160

Finite Isotropic Rectangular Flux Channel

The solutionfor Rs when· D 1 (Fig. 10) is obtainedfromEq. (22)
with Á de� ned by Eq. (18). For this system the appropriate scale
lengthmay be chosen to be L D c, the half-widthof the � ux channel.
The general solution may then be written in an alternative form:

k Rs D 1

¼ 3²2

1

n D 1

sin2.n¼²/

n3

n¼ C Bi tanh.n¼¿ /

n¼ tanh.n¼¿ / C Bi
(23)

with ² D a=c; ¿ D t=c, and Bi D hc=k.

Semi-In� nite Isotropic Rectangular Flux Channel

When the relativethicknessexceedsthe criticalvalue ¿ > 2:65=¼ ,
the earlier result reduces to the result for the case shown in Fig. 11,
an iso� ux strip on an isotropic, semi-in� nite � ux channel for which
the spreading resistance is obtained from the expression1

k Rs D 1
¼ 3²2

1

n D 1

sin2.n¼²/

n3
(24)

that depends on the relative strip size only.

Effect of Heat Source Flux Distribution

The effect of the heat � ux distributionon a semi-in� nite isotropic
strip source was examined by Yovanovich.7 Flux distributions are
of the form f .u/ D .1 ¡ u2/¹, where u D x=a is the arbitrary rela-
tive position in the strip source and the � ux shape parameter is ¹.
Yovanovich7 reported the general result

k Rs D 1

¼ 2
0 ¹ C 3

2

1

²

1

n D 1

sin.n¼²/

n2

2
n¼²

¹ C 1
2

J
¹ C 1

2
.n¼²/

(25)

where J¹ C 1=2 is the Bessel functionof the � rst kind of order ¹ C 1
2 .

By means of the general expression, Yovanovich7 obtained results
for three� uxdistributions:1)equivalentisothermal� uxdistribution,
when ¹ D ¡ 1

2 , 2) iso� ux strip, when ¹ D 0, and 3) parabolic � ux
distribution,when ¹ D 1

2 . The general expression with ¹ D ¡ 1
2 for

the equivalent isothermal � ux distributionreduces to the previously
reported result1

k Rs D 1

¼ 2²

1

n D 1

1
n2

sin.n¼²/J0.n¼²/ (26)

This expression can be compared against the true isothermal
closed-form expression2;3

k Rs D .1=¼/ ..fsin[.¼=2/²]g¡1// (27)

For ² < 0:2, the earlier result approaches the asymptote k Rs D
¼¡1 .2=¼²/.

The parabolic � ux distribution result7 was obtained by setting
¹ D 1

2
:

k Rs D 2

¼ 3²2

1

n D 1

1
n3

sin.n¼²/J1.n¼²/ (28)

Numerical values of Ã D k Rs are given in Table 2 for the � ux
distributionsde� ned by the � ux distributionparameter¹ D ¡ 1

2 ; 0; 1
2
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Table 3 Typical numerical values of Eq. (29) and the average
of Eqs. (24) and (26)

² 0.02 0.20 0.40 0.60 0.80

Eq. (29) 1.122 0.3936 0.1860 0.0794 0.0214
[Eq: .24/ C Eq: .26/]=2 1.120 0.3911 0.1838 0.0779 0.0208
% Difference 0.24 0.65 1.21 1.95 3.04

Fig. 12 In� nite channel with abrupt
change in channel width.

and the true isothermal result for a range of the relative strip size
parameter ².

For completeness, the analytical, closed-form result for the � ux
channel shown in Fig. 12 is reported. In this case the � ux chan-
nel is isotropic, the cross section changes abruptly from a width
of 2a to a width of 2b. The boundary condition over the interface
between the upper and lower parts is not known. For the general
case, ² D a=b < 1, the boundary condition is neither isothermal nor
iso� ux. The true condition is an unknown variable temperature dis-
tributionand an unknownvariable� ux distribution.When ² D 1, the
temperature and � ux distributions are known; however, the spread-
ing resistance is not present. The spreading resistance can be ob-
tained by means of the closed-form result4

kRs D 1

2¼
² C 1

²

1 C ²

1 ¡ ²
C 2

1 ¡ ²2

4²
(29)

We observe that the numerical values for the equivalent isother-
mal � ux distribution [Eq. (26)] and the true isothermal [Eq. (27)]
approach each other as ² ! 0; however, there are large differences
in the numerical values for ² > 0:6. The numerical values for the
parabolic distribution are greater than the iso� ux values, which are
greater than the values for the isothermal strip. For very narrow
strips, ² < 0:02, the maximum difference between the highest val-
ues corresponding to ¹ D 1

2 and the lowest values corresponding
to ¹ D ¡ 1

2
differ by less than 5%. This implies that the spreading

resistance for very narrow strips depends weakly on the heat � ux
distribution.

In Table 3 the numerical values obtained from Eq. (29) are com-
pared against the mean values of Eqs. (24) and (26) for a range of
the relative strip sizes.The differencesare less than 1% for ² · 0:20,
and the differences become negligible for ² ! 0.

Conclusion
A general expression for the spreading resistance of an iso� ux

rectangular source on the surface of a � nite compound rectangu-
lar � ux channel is presented. The series solution consists of three
summations that correspond to two strip solutions and a rectangle
solution.In general, the dimensionlessspreadingresistancedepends
on several dimensionless geometric and thermal parameters.

Results are presented for isotropic � nite and semi-in� nite rectan-
gular� ux channelsfor the stripsource.Resultsare also presentedfor
the iso� ux rectangular and square source areas on an isotropic half-
space. A correlation equation is reported for the three-dimensional
spreading resistance for an iso� ux square source on an isotropic
semi-in� nite square � ux tube.

Expressions that show the effect of heat � ux distributionover the
strip source area are presented. Tabulated values of the dimension-
less spreadingresistanceforvarious� ux distributionsare also given.
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