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Solutions to thermally developing flow (Graetz Problem) in circular and non-circular ducts
are examined. It is shown that the Nusselt number based upon the square root of the cross-
sectional flow area is a weak function of the shape of the geometry provided an appropriate
aspect ratio is defined. It is also shown that there are two distinct bounds for the fully
developed Nusselt number which depend upon the shape and symmetry of the geometry.
A general model which is valid for many duct configurations is developed by combining a
Leveque model for the thermal entrance region with the fully developed flow asymptote. The
new model is simpler than other general models and provides equal or better accuracy. Finally,
it is shown that the solution for the elliptic duct geometry may be used to accurately predict
results for 8 singly-connected ducts with an accuracy of +12 percent.

NOMENCLATURE z,Yy,2 = cartesian coordinates, m
2 27 = dimensionless axial position for
A = ﬂon area, mv thermally developing flow, = z/LRe.Pr
a = major axis of ellipse or rectangle, m
b = minor axis of ellipse or rectangle, m Greek Symbols
c = linear dimension, m a = thermal diffusivity, m?/s
D = diameter of circular duct, m € = aspect ratio, = b/a
Dy, = hydraulic diameter, = 4A/P ® = angular measurement, rad
d* = dimensionless diameter ratio, Y = symmetry parameter
= Dy,/Dmaz ¢ = dynamic viscosity, Ns/m?
) = complete elliptic integral of v = kinematic viscosity, m?/s
the second kind Subscripts
f = friction factp T =7/(300°) VA = based upon the square root of area
9(e) = shape function, Eq. 14 D = based upon the hydraulic diameter
h = heat transfer coefficient, W/m?K h _ p Y
. fd = fully developed
k = therma} conductivity, W/ m_{( H,H1 = based upon isoflux condition
m = area mlsmat.ch parameter, = Ap, /A L = based upon the arbitrary length £
N = number.of sides of a polygon m —  mixed or bulk value
n = correlation param_eter, Eq. (10,12) P —  based upon perimeter
Nug = Nus;selt number, = hL/k T = based upon isothermal condition
P = perimeter, m w —  wall
Pr = Prandtl number, = v/a o0 = fully developed value
q = heat flux, W/m? ]
Re. = Reynolds number, = wL/v Superscripts
r = radius, m O = circular duct limit
r* = dimensionless radius ratio () = denotes average value of (-)
s = arc length, m
T = temperature, K INTRODUCTION
UWF = uniform wall flux
UWT = uniform wall temperature Thermally fully developed and thermally developing
w = axial velocity, m/s laminar flow heat transfer in circular ducts is discussed in
w = average velocity, m/s most heat transfer texts!:? and in all convective heat trans-
fer texts®~5. Results for other common duct configurations
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Figures 2 and 3 illustrate many common geometries which
have been analyzed for fully developed and thermally de-
veloping flow conditions.

Other common and less common geometries have been
examined in the fluid mechanics and heat transfer litera-
ture. A comprehensive review of this problem was com-
piled by Shah and London,® while shorter reviews have
appeared in Handbooks.” At least forty different geome-
tries have been analyzed using a variety of analytical and
numerical techniques for various thermal boundary condi-
tions for both developing and fully developed laminar flow.

This paper has three objectives. The first objective is
to present a general approach for accurately predicting the
Nusselt number in non-circular ducts for thermally devel-
oping (Graetz problem) and fully developed flows, (refer
to Fig. 1). Secondly, demonstrate that the square root
of the cross-sectional flow area as an alternative to the hy-
draulic diameter leads to better correlation of the results in
non-circular ducts. Finally, develop a simple model which
will predict the results for most non-circular ducts for the
uniform wall temperature and uniform wall flux conditions.

GOVERNING EQUATIONS AND
DIMENSIONLESS GROUPS

The energy equation in cartesian coordinates for ther-
mally developing flow in ducts of constant cross-sectional
area is given by

T T _wdl (1)
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where w = w(z,y) is the fully developed velocity profile
which may be obtained from the solution to
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where —L is the pressure gradient which is constant. Equa-

tion (2) zis subject to the no slip condition w(z,y) = 0 at
the wall of the duct and to the boundedness w(z,y) # oo
condition within the duct cross-section. Yovanovich and
Muzychka!? have developed a simple model which accu-
rately predicts the friction factor in non-circular ducts. It
will be shown that this model may be used to accurately
predict the Nusselt numbers in non-circular ducts.
Equation (1) is subject to the inlet condition

T(z,y,0)=T; (3)
and the following boundary conditions
Qu = kg—T UWF
"l (4)
Tw =Ty UWT

in addition to the boundedness condition, T(z,y, z) # oo,
at any point within the duct cross-section.

When the flow becomes thermally fully developed the
energy equation may be written in terms of the mixing cup
temperature® T, (2),

PT 0T _ war,

522 T 3y o dz ()

for the uniform wall lux (UWF) case, and
22_2 ?f_:’:_ﬂ T“’—T\_d.Tm 6
9z " 0y?  a\Ty—Tn/) dz ©)

for the uniform wall temperature (UWT) case.
The dimensionless heat transfer coefficient or Nusselt
number is defined as

WL L
E(Ty—-Tn) k
where T, is the mixing cup fluid temperature.

In terms of the solutions to Eqs. (1-4), the Nusselt
number, Nuz, may be defined as follows

Nug =
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where ——| represents the temperature gradient at the

on
duct wall with respect to an inward directed normal, and £
is an arbitrary characteristic length scale to be determined
later, A is the cross-sectional area and P is the perime-
ter. Traditionally, £ = 4 A/P, the hydraulic diameter of
the duct. If the flow is thermally developing, an additional
parameter, the dimensionless axial duct position defined as

(9)

* = z
" LRe:Pr

arises in the solution. _

Solution to this problem for thermally fully developed
flow in a circular duct is discussed in most basic heat trans-
fer texts!>? and all advanced level texts.>~% Equations (1-4)
may be solved analytically for the circular duct and paral--
lel plate channel, however, the solution requires the evalu-
ation of hypergeometric functions.!3:18 Sellars, Tribus, and
Klein!® developed approximate mathematical relations for
the eigenvalues and eigenfunctions functions for the gen-
eral solution to the circular duct. Levequel!~14 obtained
an asymptotic solution in the entrance region of a circular .
duct where the thermal boundary layer is thin. A general
form of the Leveque solution for non-circular ducts was
later proposed by Shah and London® and is discussed in
the next section. For non-circular ducts, a full numerical
solution to Eqs. (1-4) is required. Numerical solutions have
been found for many non-circular ducts and are compiled
in Shah and London® and Shah and Bhatti.”



PRESENT MODELS

Despite all of the research which has been conducted,
one area which has been ignored is the development of
simple models which accurately predict the heat trans-
fer in ducts of any cross-sectional shape. Several models
have been developed for predicting heat transfer in circu-
lar ducts. The earliest of these was a model developed by
Hausen® for the Graetz problem in a circular duct. Later,
a simple model was proposed by Churchill and Ozoe?1° as
part of their development of a more general model for si-
multaneously developing flow in a circular duct. Churchill
and Ozoe?1? combined the solution of Leveque!!~14 for the
thermal entrance region with the fully developed asymp-
tote.

Presently, only a few studies have been found which ap-
proximate the heat transfer in arbitrary shaped ducts. Yil-
maz and Cihan!!¢ developed models to predict the heat
transfer characteristics in ducts of arbitrary shape for the
Graetz problem. Yilmaz and Cihan'®18 developed models
for predicting the fully developed Nusselt number for the
uniform wall temperature (UWT) and the uniform wall
flux (UWF) conditions. They combined these models with
a generalized Leveque type solution for the entrance to
provide a model which is valid over the entire duct length.
These models accurately predict the Nusselt numbers for
most duct geometries, however they consist of several equa-
tions and are rather cumbersome for engineering calcula-
tions, (see Appendix). In this paper a simpler model is
proposed which provides equally accurate results for engi-
neering calculations.

MODELING

The development of a model for the Graetz problem
will be similar to the development of a model for the hy-
drodynamic entrance problem.2® A general model for the
Graetz problem will be developed by combining a Leveque
model for the entrance region with the fully developed flow
(see Fig. 1) result using the Churchill-Usagi®! asymptotic
correlation method.

The proposed model for thermally developing flow
takes the form

y(2") = 3 S0 + 45500l /™ (10)
where y,+ 0 and y,» ;00 are asymptotic solutions for small
and large values of the independent variable z* and n is
the correlation parameter. The method of superposition
of asymptotic solutions is discussed in detail by Churchill
and Usagi.?!

In the entrance region where the thermal boundary
layer thickness is small, the results are a very weak func-
tion of the geometry. A Leveque model for the thermal
entrance region may be presented in terms of the friction
factor Reynolds number group fRe®. For any characteris-
tic length £ this result may be written as

fRec)%

NU.[; = 0102 (
ZL

(11)
where the constant C; determines whether the Nusselt
number is an average or local value and the constant C,
determines whether the boundary condition is UWT or
UWF. This asymptotic result is valid in the entrance re-
gion all geometries.

Using the Churchill-Usagi?! asymptotic correlation
method results in the proposed model

i n 1/n
) } +Nu}‘d> (12)

Now it is desirable to develop an expression for the
fully developed flow asymptote and for the friction factor-
Reynolds number group fRe. In a recent paper by the
authors!” a general expression for the fRe group based
upon the solution to the elliptic duct was shown to ac-
curately predict the results for other geometries provided
that the characteristic length scale £ = v/A and a suitable
aspect ratio is chosen. This model takes the form

NU[,(Z*) = ({Clcz <fff£

c

fRe z=8 J (E 1+ 52) 13)
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where E(-) is the complete elliptic integral of the second
kind, and ¢ is an appropriate aspect ratio of the duct given
in Table 1. The aspect ratio € is defined as the ratio of
the maximum width and height of each geometry with the
constraint that 0 < € < 1. Data for many of the geome-
tries shown in Figs. 2 and 3 are shown with the model, Eq.
(13), in Fig. 4.

Table 1
Definitions of Aspect Ratio

Geometry Aspect Ratio
Regular Polygons e=1
Singly-Connected? €= g

2b
Trapezoid €=
a+c
Annular Sect -
r =
nnular Secto € T+

tan except annular sector and trapezoid.

To eliminate the problem of evaluating the elliptic in-
tegral, an approximate expression was developed for the
shape function g(e) defined as

1+¢€

o(e) = (Z——ﬁE( — (14)




such that

fRe /7 =8V7g(e) (15)

The shape function g(e) may be accurately computed
from the following approximate expression:

gle) = [1.0869571“6(\/2 —e¥/%) 4 e] ' (16)
Equation (16) is valid over the range 0.05 < € < 1 with an
RMS error of 0.70 percent and a maximum error less than
+2 percent which occurs at small values of e.

The general result for the fRe group and the shape
function g(e) will be used next in the development of a
general model.

Fully Developed Flow Region

In the fully developed region of the duct, many so-
lutions have been obtained. However, the solutions are
strong functions of the duct geometry. It is desirable to
have a solution in the fully developed region which is in-
dependent of the duct geometry. This may be achieved by
selecting a more appropriate characteristic length which
will collapse most of the results for non-circular ducts onto
a single curve.

In the heat transfer and fluid flow literature, the con-
ventional selection is the hydraulic diameter, Dy =4A/P.
In laminar and turbulent flow theory the results for non-
circular ducts are usually non-dimensionalized using the
hydraulic diameter. This characteristic length arises from
a simple control volume force balance performed on an ar-
bitrary slug of fluid in a duct of arbitrary shape??. For a
circular duct Dy, = D, where D is the diameter of the duct.
One notable drawback of the hydraulic diameter concept
is the fact that the area computed from the hydraulic di-
ameter is not the same as the true area of the duct. This
“mismatch” in areas is often assumed to be the cause of
the mismatch between the results for the circular duct ge-
ometry and non-circular geometries*'?2. In the models de-
veloped by Yilmaz and Cihan!®!® a mismatch parameter
which is defined as the ratio of the true duct cross-sectional
area to the area computed from the hydraulic diameter is
proposed in their development.

The appropriate characteristic length should minimize
the differences between solutions for different geometries
when the results are non-dimensionalized. Three obvious
choices for a characteristic length are the perimeter £ = P,
the hydraulic diameter £ = 4A4/P, and the square root of
the flow area £ = V/A. In a recent paper the authors!?
showed by means of dimensional analysis that the square
root of the flow area is a more appropriate characteristic
length for presenting friction factors of non-circular ducts
than the hydraulic diameter. It was shown that most nu-
merical and analytical results for the fully developed fric-
tion factor-Reynolds number are predicted to within +10
percent by the closed form solution for the elliptical duct
when the characteristic length is £ = v/A.

The approach applied in Yovanovich and Muzychka!”

not only simplifies the results for the f Re number, but may
also be used to non-dimensionalize the Nusselt numbers
for various flow conditions and thermal boundary condi-
tions. Table 2 compares the Nusselt number for both slug
and fully developed flows for both the (UWT) and (UWF)
boundary conditions. The Nup, results of many polygonal
ducts were obtained from Shah and London® and Bejan?.
These data are from the work of Cheng?®?* Shih?®, and
Asako et al.?®. The results for Nu_ 4 for each flow condi-
tion and thermal boundary condition approximately reduce
to a single constant for the duct geometries presented. The
maximum difference between the triangular duct (N = 3)
and the circular duct (N = oo) are 16.1 percent and 10.2
percent for the isothermal and isoflux boundary conditions
respectively, for the fully developed flow condition. This
difference reduces to 8.7 percent and 7.2 percent for the
square duct. This difference is much less for the slug flow
condition since the uniform velocity distribution includes
the corners, whereas for fully developed flow the effect of
sharp corners is more pronounced. This exclusion of the
corners suggests that an effective flow area which is smaller
than the true flow area should be considered. However, for
this paper, it will be assumed that the true duct area fully
participates. This simplifies the current analysis consider-
ably. The square root of the cross-sectional flow area as a
characteristic length is essentially the same as defining an
equivalent diameter.

Table 2
Nusselt Numbers for Slug and Fully
Developed Flow (FDF) for Regular Polygons

Isoflux Isothermal

Geometry FDF' Slugt FDF! Slugt
Triangle 3.11 - 2.47 -

Square 3.61 7.08 2.98 4.93

Nup, Hexagon 400 753  3.35% 538
Octagon 4.21 7.69 3.47* 5.53

Circular 4.36 7.96 3.66 5.77
Triangle 3.51 - 2.79 -

Square 3.61 7.08 2.98 4.93

Nu 7 Hexagon 3.74 7.01 3.12 5.01
Octagon 3.83 7.00 3.16 5.03
Circular 386 706 324 511

t Data of Shih (1967) and Cheng (1966, 1969)
1 Data of Asako et al. (1988)

The results given in Table 2 are for the polygonal duct
geometries. To extend this analysis to geometries which
have varying aspect ratios, we will examine the rectangu-
lar duct, elliptical duct, and some miscellaneous geome-
tries of elongated shape. Figures 5 and 6 compare the data
for the rectangular duct obtained from Shah and London$,
the elliptical duct obtained from Ebadian, Topakoglu, and
Arnas?”, and some miscellaneous ducts from Shah and
London® when the characteristic length is £ = v/A. If the
results are based upon the square root of cross-sectional




area there is less variation between these geometries for
each boundary condition. It is also clear that geometries
with angle(s) less than 45 degrees appear to form a lower
bound, while geometries with corner angle(s) greater than
45 degrees form an upper bound. Many of the geometries
which form the lower bound possess one plane of symmetry
with the exception of the rhombus, while all of the geome-
tries which possess more than one plane symmetry form
the upper bound.

A model has been developed which accurately predicts
the data for the elliptic duct by comparing the solution of
the friction factor of Eq. (13) with the data for the Nusselt
numbers. The shape function g(e) which accounts for the
aspect ratio effects in the friction factor-Reynolds number
group may also be used to obtain a model for the Nusselt
number in elliptic ducts. Multiplying the shape function
by the Nusselt number for the circular duct gives

1+¢€
Num = Nu‘\’/z (%7.&—)(— fle—_-e—i-)> = N'U'?/ZQ(C) (17)

where N "?/A‘ is equal to 3.24 for the (UWT) boundary con-

dition and 3.86 for the (UWF) boundary condition. This
simple expression predicts the data of Ebadian, Topakoglu,
and Arnas®’ with an RMS error of 3.78 percent for the
isothermal boundary condition and 4.70 percent for the
isoflux boundary condition.

The Nusselt number for thermally fully developed flow
in other non-circular ducts may be approximated by the
following relation

fRﬂ) (18)

_ 0
Nu‘/Z_Nu‘/Z(S\/Tre’Y

The parameter v is chosen based upon the symmetry
and corner angle of the non-circular geometry. Values for v
which define the upper and lower bounds are v = 1/10 and
v = —3/10, respectively. Data for many geometries?8—36
are shown in Figs. 5 and 6 with the bounds determined
by Eq. (18). It is clear that using the square root of the
cross-sectional flow area reduces the variation in results
of similar geometries. It is also clear that most geometries
which do not possess two or more planes of symmetry form
a lower bound, while geometries with two or more planes
of symmetry form an upper bound. The exception to this
rule is the rhombic duct which follows the lower bound due
to the small angles formed at vales of € < 0.5.

Entrance Region

Substituting the result from the previous section for
the fRe sz, a simple Leveque model is obtained for the
elliptical duct:

g@) 19

Nu\/z(z*) = C]_Cz ( .
“Va

This new result differs by only 1.2 percent compared

to the predictions with Leveque type models derived by

Someswara et al.3” and James®®, and 1.5 percent compared
to the model derived by Richardson3?, for the elliptic duct.
The new Leveque model is also much simpler than the mod-
els of Someswara et al.37, James®®, and Richardson3® which
all require numerical integrations. Richardson®® provided
a series approximation to avoid numerical integration.

Full Model

Now using the result for the fully developed friction
factor presented earlier and the result for the fully devel-
oped flow Nusselt number developed in the previous section
a new model is proposed having the form

fRe\/Z % ’
.._*__ +
*va

1
(o (522)}]
Cs | —==
8y/meY
where the constants Cq, C2, C3 and v are given in Table
3. These constants define the various cases for local or av-

erage Nusselt number and isothermal or isoflux boundary
conditions.

(20)

Table 3
Constants for Thermally Developing
Flow Model in Elliptical Duct

Local Average
Ch 1 1.5
Isothermal (T) Isoflux (H)
Cs 0.427 0.517
Cs 3.24 3.86
1% 0 0

An optimal value of the correlation parameter n may
be obtained for each geometry. In the interest of simplicity
it may be chosen to be constant without introducing signif-
icant error. Analysis of the available data has shown that .
the optimal value for the parameter n is n &~ 5. The above
model accurately predicts the data for all of the geometries
examined in this study. The proposed model is consider-
ably simpler than that of Yilmaz and Cihan!%1!® and is
valid for both boundary conditions (UWT or UWF) and
for local and average conditions. Comparisons of this new
model with data from Shah and London® for the geome-
tries in Figs. 2 and 3 reveal that it predicts the numerical
data for many geometries within +20 percent. In addition,
to its simplicity, the new model is also more flexible, in
that both thermal boundary conditions may be handled,
whereas the models of Yilmaz and Cihan5:1® are different
for each thermal boundary condition. In order to provide
a model which is more accurate for predicting the results
of many geometries, the constants Cy and C3 have been
modified slightly such that the predicted curve represents




an average value of similar geometries at each value of the
aspect ratio € = b/a. These new constants are summarized
in Table 4. The accuracy of the model with the modified
constants is improved to + 12 percent. Comparisons of
this new model with predictions of the models of Yilmaz
and Cihan'51® are given in the next section.

Table 4
Modified Constants for Thermally Developing
Flow Models in Non-Circular Ducts

Local Average
Ci 1 1.5
Isothermal (T) Isoflux (H)
Cs 0.409 0.501
Cs 3.01 3.66
Upper Bound Lower Bound
¥ 1/10 -3/10
RESULTS

A comparison the proposed model with the available
data®40—%3 is presented in Figs. 7-9. Table 5 presents a
summary of the maximum and minimum percent differ-
ences between the data and the proposed model. A com-
parison of the proposed model with the models of Yilmaz

and Cihan'®1? is also presented in Table 5. Good agree-
ment between the model and data is observed for all of
the geometries except the isosceles triangular duct for the
UWT boundary condition. In the case of the elliptic duct,
no published data are available for comparison. However,
Yilmaz and Cihan'®*¢ provide comparisons of their model
with their own numerical data. A comparison of the pro-
posed model with that of Yilmaz and Cihan!%18 shows that
good agreement should be obtained if direct comparison
with their data were possible. Also, the proposed model is
developed from asymptotic solutions for the elliptic duct.
Thus the model is expected to provide very accurate re-
sults for the elliptic duct geometry. This particular ge-
ometry is extremely important in heat exchanger design
where large heat transfer coefficients are desired. A com-
parison with the data for the parallel plate channel is also
provided. For this geometry v A — oo, however, this ge-

“ometry is accurately approximated by the rectangular duct

when € = 0.01. Good agreement is obtained with the cur-
rent model when the parallel plate channel is modeled as
a finite area duct with low aspect ratio. In all cases the
proposed model provides equal or better accuracy than the
models of Yilmaz and Cihan'®!® and is also much simpler.
Finally, the proposed model is able to determine local or av-
erage Nusselt numbers, whereas the models of Yilmaz and
Cihan!51® were developed for the average Nusselt number
(UWT) and local Nusselt number (UWF).

Table 5
Comparison of Percent Differences* Between Models
and Data for Thermally Developing Flow

Nuaz—(z" ) (Average)

Nugi(z’*) (Local)

Ref. Geometry Proposed Yilmaz and Cihan Proposed Yilmaz and Cihan
Model (1993) Model (1995)

6 Circle -1.24/8.57 -0.47/-3.89 -1.60/5.27 -3.83/0.70

40 Rectangle e =1 -7.53/-1.07 -3.52/0.58 . -2.76/1.73 -3.95/4.80

41 Rectangle ¢ = 0.5 -4.26/1.38 -0.86/4.16 -3.16/1.31 -4.1/0.24

41 Rectangle ¢ = 0.25 3.01/10.85 0.54/7.43 1.80/7.01 0.44/8.20

41 Rectangle ¢ = 0.167 3.84/11.86 3.32/1.59 - -

6 Rectangle ¢ — 0 1.6/10.0 0.24/3.70 -9.93/7.03 -2.2/5.86
41,42 Isosceles Triangle 2¢ = 30°  25.75/3.92 33.8/0.88 - -
41,42 Isosceles Triangle 2¢ = 60° -12.11/-6.81 -4.36/-1.29 -7.24/-2.09 -4.79/-1.38
41,42 TIsosceles Triangle 2¢ = 90°  -24.45/1.56 -12.28/-1.97 -9.88/3.35 -3.72/0.76

43 Semi-Circle ¢ = 0.5 - - -7.90/7.78 -0.91/8.83
15,16 fEllipse e=09 5.61/11.81 - 3.46/7.85 -4.7/-1.2
15,16 "Ellipse € = 0.8 3.35/10.82 -2.66/-1.06 1.14/6.77 -5.8/-0.8
15,16 'Ellipse € = 0.6 -5.82/7.18 1.4/4.7 -8.23/4.04 -

* %diff= (Analytical — Predicted)/{ Analytical) x 100

t Comparison of proposed model with results predicted by model of Yilmaz and Cihan!5:18




SUMMARY

A simple model for predicting the Nusselt numbers for
fully developed flow and thermally developing flow condi-
tions was developed for both the uniform wall temperature
and uniform wall flux boundary conditions. The proposed
model only requires three parameters, the aspect ratio of
the duct, the dimensionless duct length, and a geometry
parameter, whereas the models of Yilmaz and Cihan!5:16
consist of several parameters and equations. The model
predicts most of the thermally developing flow data avail-
able in the literature to within £+ 12 percent for 8 singly
connected ducts. The proposed model may also be used
to accurately predict results for ducts which no solution
or tabulated data exist. Finally, it was shown that the
square root of the cross-sectional flow area was more effec-
tive than the hydraulic diameter at collapsing the results
of geometries having similar shape and aspect ratio.
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APPENDIX

Yilmaz and Cihan!'®!® developed models for the
Graetz problem in a duct of arbitrary shape. Each of these
models follows a similar development, however, the model
for the constant temperature or isothermal boundary con-
dition is for the average Nusselt number, whereas the model
for the constant flux or isoflux boundary condition is for
the local Nusselt number. No explanation is given for this
development. The basic equations for each model are pre-
sented below in Table 6. In both cases m = A/Ap, and
d* = Dp[/Dpaz where Ap, is the area based upon the hy-
draulic diameter, Ap, = wD%/4, and D, is the diameter
of the maximum inscribed circle.

Table 6
Models of Yilmaz and Cihan!?16

Isothermal (UWT)

Isoflux (UWF)
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