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Solutions to Poisson’s equation in singly and doubly-connected domains are examined. Ap-
plications for steady heat conduction with uniformly distributed heat sources and fully de-
veloped viscous fluid flow are discussed. By means of dimensional analysis the appropriate
characteristic length and non-dimensional groups are proposed for presenting the results of
many geometries. It is shown that the dimensionless groups based upon the square root of the
cross-sectional area are weak functions of the shape of the geometry provided an appropriate
aspect ratio is defined. Finally, it is shown that the solution for the elliptic geometry and
circular annular geometry may be used to accurately compute results for 27 singly-connected
domains and 9 doubly-connected domains, respectively.

NOMENCLATURE

= flow area, m?

major axis of ellipse or rectangle, m
minor axis of ellipse of rectangle, m
radial and/or linear dimension, see Fig. 2, m
boundary of a domain

diameter of circular duct, m
hydraulic diameter, = 44/P
complete elliptic integral second kind
friction factor = 7/(%pw?)

shape function

thermal conductivity, W/mK

length of domain, m

number of sides of polygons

()
N—
i

RSO UmE® TR s
.~
I

n = hyperellipse shape parameter
P = perimeter, m

p = pressure, N/m?

Pos = Poiseuille number, = 7, L/pyw
q = heat flux, W/m?

r = radius of circular duct, m

r* = dimensionless radius ratio, = r;/r,
Re; = Reynolds number, = @WL/v

§ = volumetric heat source, W/m3
T temperature, K

w = axial velocity, m/s

Greek Symbols

B = aspect ratio, = \/A;/A,

€ = aspect ratio, = b/a
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= dimensionless velocity or temperature
angular measurement, see Fig. 2
temperature excess, T — Ty, K
dynamic viscosity, Ns/m?

kinematic viscosity, m?/s

fluid density, kg/m3

= wall shear stress, N/m?
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Subscripts

N

based upon square root of area
boundary

circumscribed

based upon hydraulic diameter
based upon arbitrary length £
hydrodynamic

inner, inscribed

outer

thermal

= wall

b~
I

Superscripts

denotes average value of (-)
circular

elliptical

polygonal

rectangular

INTRODUCTION

Steady conduction within long singly- and doubly-
connected prismatic rods of constant thermal conductiv-
ity and constant arbitrary cross-section in which there are
uniformly distributed heat sources is of some interest to
thermal analysts. The relationship between the area-mean
temperature and the average boundary heat flux when the
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boundary temperature is taken to be constant is required.

The current undergraduate heat transfer texts, gradu-
ate conduction texts and the heat transfer handbook deal
with a small number of examples such as the circular singly
and doubly-connected rods, the singly-connected rectangu-
lar and square rods, and the elliptical rod. Solutions for
other important shapes are presently unavailable.

There are four objectives for this work. One objective
is to report results which are available in the open litera-
ture. A second objective is to present solutions for several
shapes such as singly-connected regular polygons which in-
clude the equilateral triangle, the square, pentagon, etc.,
rectangular, elliptical, triangular and other miscellaneous
geometries (see Figs. 1 and 2). Doubly-connected rods
which are either (i) bounded internally by regular polygons
and bounded externally by a circle, (ii) bounded internally
by a circle and bounded externally by regular polygons,
and (iii) bounded internally and externally by similar poly-
gons, (see Fig. 3). In all cases as the number of sides of the
polygon increases, the cross-sections approach the circular
annulus.

A third objective is to introduce a non-dimensional pa-
rameter which is based on the cross-section shape param-
eters such as the total perimeter and the cross-sectional
area, the thermal conductivity, the source strength and the
mean temperature of the cross-section. It will be shown by
means of dimensional analysis that the proposed dimen-
sionless group is a weak function of the shape of the cross-
section provided the appropriate characteristic length is
chosen.

A fourth objective is to show that the conduction prob-

lem is related to the problem of fully-developed laminar
flow through ducts of different cross-sections. It will be
shown that the analogy between the two quite different
physical problems is strong and therefore the many results
available in the fluids texts such as White!, Happel and
Brenner?, Shah and London® can be apphed to the analo-
gous conductlon problem.

MATHEMATICAL FORMULATION

The thermal and hydrodynamic problems will be
stated first in dimensional form, followed by the non-
dimensional formulation to illustrate the similarity of the
two problems.

Dimensional Thermal Problem

The governing differential equation and boundary con-
ditions for the thermal problem are:

o*T  8*T S
% ToE T M

where T'(z,y) is the temperature within the singly- or
doubly-connected domain. The thermal parameters are the
constant and uniform volumetric source strength & and the
thermal conductivity k. The boundary conditions are (i)
T = T, at all points on the inner and outer boundaries B;
and B, respectively of the doubly-connected domain, and
(ii) T(x,y) # oo within the domain. Introduction of the
temperature excess § = T'(z,y) — Ty leads to the homoge-
neous boundary condition of the first kind, # = 0, at all
points on the inner and outer boundaries B; and B,.
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Fig. 1 Common singly-connected geometries
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Fig. 2 Other singly-connected geometries

Dimensional Hydrodynamic Problem

The corresponding hydrodynamic problem for steady
fully-developed laminar flow of a viscous fluid through a
doubly-connected duct or pipe is

2 2
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where w(z,y) is the axial velocity, p is the viscosity,
Ap = p; — pz is the pressure drop over the duct length
L. The no-slip condition requires the homogeneous bound-
ary condition w(z,y) = 0 at all points of the inner and
outer boundaries. The boundedness condition requires
that w(z,y) # oo within the cross-section.

1Ap

Non-dimensional Thermal and
Hydrodyanamic Problem

The thermal and hydrodynamic problems given above
can be transformed into the same non-dimensional prob-
lem by the introduction of the non-dimensional tempera-
ture and velocity. The non-dimensional temperature ¢p
and non-dimensional velocity ¢y are defined as

k@
o = 725 (3)
and
O

‘where £ is some scale length of the cross-section. In fluid

mechanics the scale length is frequently taken to be the
hydraulic diameter defined as

44
L=Dy= 2 (5)
where A = A, — A; is the flow area and P is the total
wetted perimeter. It will be shown in subsequent sections
that there is another more appropriate scale length for both
problems.

For all subsequent discussions the non-dimensional
temperature and velocity will be denoted as ¢ without the

.subscripts.

The non-dimensional Poisson differential equation be-
comes

8% 62¢ _
o Taez Tt

(6)
where n = /L and { = y/L are the dimensionless carte-
sian coordinates. The non-dimensional boundary condi-
tions become (i) ¢ = 0 at all points on the inner and outer
boundaries of the cross-section, and (ii) ¢ # oo for all
points within the cross-section. The two-dimensional Pois-
son equation given above applies to other physical problems
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Fig. 3 Various doubly-connected geometries

such as the torsion of a long prismatic rod, the displace-

ment of a thin membrane stretched over the cross-section,

and the rotation of an inviscid fluid in a long container
of constant cross-section. Several analytical and numerical
methods have been employed to find solutions for different
geometries.

One objective of this work is to obtain a relationship
for the area-mean temperature and area-mean velocity and
the geometric and physical parameters of the cross-section.
The area-mean dimensionless temperature or velocity is de-
fined as

- 1
3= /A¢dA (7)

The dimensionless area-mean velocity is related to the
Poiseuille number 1/Po = p%w/(AP/L)L?, Churchill®.

Dimensionless Thermal and
Hydrodynamic Groups

A thermal energy balance over a macro-control volume
leads to the dimensionless group which brings the mean
wall heat flux and the mean cross-section temperature to-
gether:

Tl
Tur 8
5 (8)

A force balance over a macro-control volume leads to
the dimensionless group which brings together the mean

Np =

wall shear and the mean cross-section velocity together:

Twl

Ny = 2= 9)
In fluid mechanics there is a tradition of introducing
the friction factor f into the dimensionless group Ng. The

friction factor is defined as!:3:4

puw

(10)

The hydrodynamic group with the introduction of the
Reynolds number '

Rep = pOL

(11)

becomes

Ny = %fReg (12)

Since the thermal and hydrodynamic groups are math-
ematically identical, one can write the following relation
between the thermal and hydrodynamic groups:

g,L 1
— = —fRe

The energy balance on a macro-control volume gives

the relation for the mean wall heat flux:

(13)
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qQuw = SF (14)
which gives the desired relation between the thermal and
the hydrodynamic problems:

SAL

koP

The unknown area-mean temperature excess appears

in the denominator and all of the other geometric and ther-

mal parameters are known. The convention in fluid me-

chanics is to select the hydraulic diameter as the length

scale. Introduction of this length scale into the previous
relation gives:

= -;—fReg (15)

SAL 1LP
m =3 T'f Rep,
In the subsequent sections dimensional analysis will be
employed to select the appropriate scale length for singly-
connected cross-sections such as those shown in Fig. 1 and
2. Once the appropriate scale length has been selected, it
will be shown that the dimensionless groups are weak func-
tions of the shape of the cross-section when an appropriate
aspect ratio is defined.

(16)

DIMENSIONAL ANALYSIS

Dimensional analysis using the Buckingham II theo-
rem has been appliéd to many physical phenomena such
as fluid flow, heat transfer, stress and strain, and electro-
magnetic field theory®~7. The basic theory of dimensional
analysis is still presented in most elementary fluid mechan-
ics texts®?, however, its inclusion in heat transfer texts
is non-existent, except for the early texts by McAdams!®
and Rohsenow and Choi'!. Dimensional analysis using the
Buckingham II theorem is one of many methods for deter-
mining the important non-dimensional groups in problems
which contain many dimensional parameters.

In many of the classic texts on dimensional analysis
examples are given only for simple geometries such as the
circular duct or circular cylinder. Application to non-
circular geometries pre-supposes the use of concepts such
as the hydraulic diameter or other equivalent length scales.
In the next section, application of the Buckingham II theo-
rem to the two problems discussed earlier will be conducted
from a general perspective. The results of this analysis
will be applied to several different geometries and a simple
model which is valid for all of the geometries discussed will
be developed.
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Thermal Problem

The variables of interest for the thermal problem are
listed below.

f(6,8,k,A,P)=0 (17)

In order to apply the II theorem, the number of II
groups must be determined. The II theorem states that if

there are m variables and r fundamental units, then there
will be (m — r) II groups. However, this classical approach
does not always yield a solution. In such cases, the value of
7 is then decreased by one and the method repeated. This
approach is generally presented in more elementary texts
such as Vennard and Street® and White®. A more formal
approach is presented in the advanced text by Panton!? or
the texts on dimensional analysis by Huntly®, Langhaar®
and Taylor’. The number of II groups is determined by ex-
amining the dimensional matrix and determining its rank.
The rank of the dimensional matrix is the order of the
largest square sub-matrix which has a non-zero determi-
nant. The dimensional matrix is given below for the mass
(M), length (L), time (T') and temperature (O) system of
units.

M
L
T

—_O O O D

| s
1
-1
-3
0

OO NOI N
oo -~ ol

k
1
1
-3
o -1

Examination of the dimensional matrix reveals that no
4 x 4 matrix has a non-zero determinant. A 3 x 3 nonzero
determinant may be found. The repeating variables for
the II theorem analysis are chosen to be those that form
any 3 X 3 matrix with a non-zero determinant. Several
combinations are possible. The repeating variables will be
chosen to be 8, k and A. Another possible combination is
8, S, and A. These two combinations produce identical II
groups. If the perimeter of the duct P is exchanged for the
cross-sectional area A, then another set of II groups will be
formed from the new set of repeating variables. In all cases
there is one common II group. Combinations of variables
with area A are more favorable since the product S A which
appears has more physical meaning than the product SP>.

Having determined the rank of the matrix to be three,
there will be two II groups. Therefore the problem may be .
more compactly stated in the following dimensionless form
of Eq. (17):

¢(m1,m) =0

Proceeding with the analysis as outlined in any of the
references®~ %12 | the resulting IT groups are found to be

(18)

_s4 P
9k T VA

Now in this case, since there are only two II groups,
Eq. (18) may be written in the following form:

Ty (19)

SA P

6k VA (20)
or it may be expressed as

SAvA _ (21)

gk P




where C is a constant. Finally, by performing a control
volume heat balance at the surface of the solid one arrives
at the following relation for the surface heat flux:

SA=7,P (22)

This leads to the final form of the dimensionless wall
flux:

7,VA
ok

=C (23)

Hydrodynamic Problem
In the case of the analogous hydrodynamic problem
the important variables are

_ dp _ "
f(wr‘azyliyA,P)—O (24)

In many of the classic texts®~°, the density of the fluid
is also included in the II analysis. Use of the fluid density
is not required since the fully developed duct flow problem
represents a balance of pressure and viscous forces. If den-
sity is included, then an additional IT group results which is
merely the Reynolds number. The analysis below excludes
density, however, the final example considers this problem
with density as an additional variable.

Once again we examine the dimensional matrix and de-
termine the order of the largest square sub-matrix which
has a non-zero determinant.

‘ _d_p w A P p
dz

M 1 0 0 0 1

L -2 1 2 1 -1

T -2 -1 0 0 -1

In this case the rank of the matrix is determined to be
three. One set of repeating variables may be chosen to be
w, u and A. Now Eq. (24) may be rewritten as

¢(m1,m2) =0

Proceeding with the analysis results in the following II
groups:

(25)

dp
M oy
T = dz , T2 = i (26)
wp VA

Now in this case, since there are only two II groups,
Eq. (25) may be written in the following form:

——A
A _ o P (27)
Wy A
or it may be expressed as
dp
——A
dz” VA _ c (28)

Finally, by performing a control volume force balance
at the wall of the duct one arrives at the following relation:
dp

—EA = TwP

This leads to the final form of the dimensionless wall
shear stress

(29)

TwVA
wp
This dimensionless group is sometimes referred to as
the Poiseuille number Po!%. In this case the characteris-
tic length is the square root of the cross-sectional flow area
L=VA.
Finally, the hydrodynamic problem will be re-analyzed
using the IT theorem while considering the fluid density as
an additional variable. Therefore,

=C (30)

_d
f@-F np 4P =0 (31)
The dimensional matrix for the new problem is
dp
I_E w A P u p
M 1 6 0 0 1 1
L -2 1 2 1 -1 -3
T{ -2 -1 0 0 -1 0

Analysis of the matrix above reveals that the rank is
again three. The repeating variables may be chosen to be
W, p and A. This allows Eq. (31) to be written as

(32)

Proceeding with the II theorém analysis the following
II groups will be formed:

¢(my, o, m3) =0

_ 7
m = ————dz 5 , T

e (33)

I S
2 pﬁ)‘\/‘z ’ 3= \/Z
The reader should recognize the first II group as the.
definition of the Darcy friction factor with the characteris-
tic length v/A in place of the hydraulic diameter Dy, and
the second II group as the reciprocal of the Reynolds num-
ber based upon £ = v/A in place of the hydraulic diameter
Dp.
Equation (32) may be written in the more familiar form

"%‘/Z_ (

5 =

m P

P pVA' \/Z> ‘ (34

In all three applications of the IT theorem, the II group
P/+/A appeared. This dimensionless parameter appears
to be an important geometric parameter which leads to
the collapsing of the numerical data for many geometries
onto a single curve. Finally, dimensional analysis also sug-
gests that the characteristic length £ = /A should be




used to non-dimensionalize the thermal and hydrodynamic
problems, rather than the hydraulic or equivalent diameter
Dy, =4A/P.

EFFECT OF LENGTH SCALES
ON NON-DIMENSIONAL GROUPS

In the previous sections dimensional analysis predicted
that the characteristic length for non-dimensionalizing the
thermal and hydrodynamic problems should be £ = v/A.
The analysis also produced the geometric group P/ VA.
This parameter may be viewed as a geometric scaling fac-
tor such that

P
fRe\/;{ = fRBDh (m) (35)

The additional factor of 4 arises from the definition of
the hydraulic diameter. The solutions for several singly
and doubly-connected domains will be re-analyzed using
the results predicted by the dimensional analysis of the
previous section. All of the results are presented in terms
of the dimensionless group fRe since many solutions are
available in the fluid mechanics literature’23, The hydro-
dynamic and thermal prolems are related through Eq. (15)
presented earlier.

Singly-Connected Domains

The fRe results for polygonal shapes are presented
in Table 1 for the characteristic lengths £ = 4A/P and
L = VA. Also presented in Table 1 is the ratio of the
fRe result of the polygon to the fRe result of the circle
for each case. It is clear from the fourth column of Table
1, that when £ = v/A is used, there is very little difference
between the regular polygons and the circular geometry.
The largest difference occurs with the triangular geometry.
When N > 4, the difference is negligible. If the triangular
geometry is excluded, the difference between the solutions
for the polygonal domains and the circular domain is less
than 0.2 percent.

Table 1
fRe Results for Polygonal Geometries!3!*
Ref Ref
v sme (f5e), imea ()
3 13.33 0.833 15.19 1.071
4 14.23 0.889 14.23 1.004
5 14.73 0.921 14.04 0.990
6 15.05 0.941 14.01 0.988
7 15.31 0.957 14.05 0.991
8 15.41 0.963 14.03 0.989
9 15.52 0.970 14.04 0.990
10 15.60 0.975 14.06 0.992
20 15.88 0.993 14.13 0.996
00 16 1.000 14.18 1.000

Figure 4 presents the results for the rectangular and
elliptical geometries. The fRe results for these two geome-
tries vary substantially with the aspect ratio b/a which is
a ratio of the minor and major axes when £ =4A/P.

30 T T T 1
X Duct Geomerry 1
o Eliipse (Shah and London, 1978) 4
L o Rectangle (Shah and London, 1978) N
25 4 Recrangle with Circular Segment Ends, Cheng and Jamil (1970) -
3 < Rectangle with Semi-Circular Ends, Zarling (1976) :
] nnﬂ 41
L “n“‘u « ;
Ba0t; G 1
O oy, P 7
& < a :
2 - 3 !
] § 3
e o ° »9 0 e © > O > r>.
15+ ° B
-] o a I
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e=b/a

Fig. 4 fRep, for singly-connected geometries
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Fig. 5 fRe sz for singly-connected geometries

If the results are replotted according to Eq. (35), very
little difference is observed between these geometries. Nu-
merical values for the elliptic and rectangular geometries
are presented in Table 2 for both definitions of £. Also
presented in Table 2 are the ratios of fRe results for the
rectangular geometry and fRe results for the elliptic ge- |
ometry at the corresponding aspect ratio. It may be seen
from the last column of Table 2, that £ = v/A appears to
be more appropriate than £ = 4A/ p.

All of the results in Fig. 5 may be approx1mated by the
solution for the elliptical geometry. The elliptical geometry
was chosen to model all of the results since it has a closed
form solution, whereas the rectangular geometry requires
a series solution to describe the velocity or temperature
distribution.



: Table 2
fRe Results for Elliptical and Rectangular Geometries®

fRep, fRe 7
b/a  Rectangular Elliptical <E> Rectangular  Elliptical (ﬁi)
fRe®E ) fRe® ] 4
0.01 23.67 19.73 1.200 119.56 111.35 1.074
0.05 22.48 19.60 1.147 52.77 49.69 1.062
0.10 21.17 19.31 1.096 36.82 35.01 1.052
0.20 19.07 18.60 1.025 25.59 24.65 1.038
0.30 17.51 17.90 0.978 20.78 20.21 1.028
0.40 16.37 17.29 0.947 18.12 17.75 1.021
0.50 15.55 16.82 0.924 16.49 16.26 1.014
0.60 14.98 16.48 0.909 15.47 15.32 1.010
0.70 14.61 16.24 0.900 14.84 14.74 1.007
0.80 14.38 16.10 0.893 14.47 14.40 1.005
0.90 14.26 16.02 0.890 14.28 14.23 1.004
1.00 14.23 16.00 0.889 14.23 14.18 1.004
The general expression is boundary with a polygonal core and a polygonal boundary
with circular core. At first sight, these appear to be very
fRe s =8 N ( T~ (1+ ) ) (36) different geometries. However, if the fRe results are based
\ 4 Ve E( /1— €2) upon the square root of the flow area, /A, — A;, and a

where E(-) is the complete elliptic integral of the second
kind and 0 < € = 2 < 1 is the aspect ratio of the geom-
etry. To eliminate the problem of evaluating the elliptic
integral, an approximate expression was developed for the
shape function g(¢) defined as

s 1+ €2
g(e) = (Zm> (37)
such that
fRe sz = 8v/mg(e) (38)

The shape function g(€) may be accurately computed
from the following expression:

g(e)  [(1/0.92)1 (Ve — €¥/?) +e]_1

Equation (39) is valid over the range 0.05 < € < 1 with an
RMS error of 0.70 percent and a maximum error less than
+2 percent.

(39)

Doubly-Connected Domains

Another useful group of geometries are the polygonal
annular geometries. Several variations are possible. They
may be circular-polygonal, polygonal-circular, or a com-
bination of similar polygons which are concentric. Only
the first two of these cases were examined in the literature
by Ratkowsky and Epstein'® and Hagan and Ratkowsky!®.
The results are plotted in Fig. 6 for the case of a circular

more suitable aspect ratio defined as g8 = /A4;/A,, the
results are identical to the results predicted by the solu-
tion for the circular annular geometry for a wide range of
0 as shown in Fig. 7. The solution for the circular annular
geometry is given by

(40)

In(1/9)

where # = \/Ai/A,, which reduces to 8 = r;/r, = r* for
the circular annulus. .

As the inner boundary approaches the outer boundary
several smaller regions are formed. At this point the do-
main is no longer doubly-connected, but is now composed
of several singly-connected areas in parallel. Thus the def-
initions of flow area and aspect ratio are no longer valid in
this region. The area should now be based upon the area of
the singly-connected domain and the aspect ratio defined -
in terms of this new geometry. It is for these reasons that
the results diverge from the solution of the circular annu-
lar region in Fig. 7. The fRe 4 results may be predicted
from the expression for the singly-connected regions, with
the appropriate aspect ratio e.

For most practical applications the value of 3 is such
that the numeric values of the fRe ,; may be accurately
computed from the solution for the circular annulus. Ta-
ble 3 summarizes the critical and maximum values of



B = \/Ai/A, for the data of Ratkowsky and Epstein!®
and Hagan and Ratkowsky!®.

are plotted versus an aspect ratio €. The aspect ratio ¢ is
defined as the ratio of the maximum width and height of

Finally, it may be reasonable to expect the results each geometry with the constraint that 0 < € < 1.

for concentric homologous polygons, i.e. triangle-triangle,
square-square, (see Fig. 3), to behave approximately as
a concentric circular annulus for the entire range of g =

VA A,.

Critical and Maximum Values of VAilA,

Table 3

N Maximum Values
1 i 1 i
1 ' NERE g I S ¢ § f L N N  Critical Polygonal Core Circular Core
L4 - S O Y » .
[y § . : N S Values
20l IS a a e * o ¢ s
<
3 . . RO 3 052 0.643 0.778
LI
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L S a o ]
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ML L, Pa The numerical results for these geometries do not dis-
o ; - - . play any clear trend versus the aspect ratio ¢ in Fig. 8.

VA,/A,
Fig. 7 fRe sz for doubly-connected geometries

Other Singly-Connected Domains

A comparison of the proposed model for other singly-
connected domains is presented below in Figs. 8-11 and in
Table 4. The fRe results are shown for both £ = 44/P
and £ = +/A. The additional geometries of interest are the.
isosceles triangle!”, right triangle'®, circular sector!®, cir-
cular segment?®, sinusoid!”, rhombus'?, cusp shapes!3:1%:21
and the circular annular sector®. The results for two other
geometries, namely the circular duct with diametrically
opposed flat sides®?, and the rectangular duct with semi-
circular ends??, are presented in Figs. 4 and 5 along with
the elliptic and rectangular geometries. All of the results

® Some geometries show an increase in fRep, with decreas- -

ing €, while others decrease with decreasing ¢. When the
results are presented in terms of fRe sz as shown in Fig. 9
the trend is quite clear, all geometries have fRe vA Which
increase with a decrease in ¢. The results for these other
geometries are predicted reasonably well by Eq. (36) for
€ > 0.4. At lower values of ¢, the effect of small corner an-
gles is quite prominent. However, most of the results are
predicted by Eq. (36) within £10 percent as shown in Fig.
9.

The results for the circular annular sector are presented

_ in Figs. 10 and 11. For this geometry the aspect ratio is

defined as the ratio of the spacing of the annular sector
(ro — ;) to the average arc length (r, + r;)® such that
0 < € < 1. As the value of »* = r;/r, = 0, the an-
nular sector becomes a circular sector and the definition
of the aspect ratio is no longer appropriate. However, as



the value of r* = r;/r, — 1 the annular sector becomes a
curved rectangular geometry and the definition is compat-
ible with that of the rectangular geometry. For compara-
tive purposes, the results for the circular sector are plotted
along with the results for the annular sector in Fig. 11.

50 p—rprr———— —

. Isosceles Triangle (Shah, 1975)
v Right Triangle (Sparrow and Haji-Sheikh, 1965)
®  Circular Segment (Sparrow and Haji-Sheikh, 1966)
' 8 Circular Sector (Eckert and Irvine, 1955)
| < Sinusoid (Shah, 1975) 1
©  Rhombus (Shah, 1975) ]
Y\ <9 Trapezoid (Shah, 1975)
Model, Eq.(36)
+/- 10 Percent

10 1 L L " I i i
0.0
e=b/a
Fig. 9 fRe sz for singly-connected geometries
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Data from Shah and London (1978)
Table 79 and Figure 75 pp. 270-271

04 06

-
r=r/r,

08

Fig. 10 fRep, for circular annular sector

This comparison illustrates the importance of the defi-
nition of aspect ratio. At small values of € which correspond
to small values of r*, the definition of the aspect ratio needs
to be modified to the ratio of the radius and chord length
of the sector as shown in Fig. 2. It is for this reason that a
few of the data points in Fig. 11 are not predicted by the
model defined by Eq. (36).

Finally, for the cusp shaped geometries shown in Fig.
2, the results are approximately equal to the value for
the circular duct provided that the characteristic length is
taken to be £ = +/A. The results for these geometries are
presented in Table 4. Application of this analysis demon-
strates that £ = v/A appears to be more appropriate than
L =4A/P, for both the thermal and hydrodynamic prob-
lems.

100 T T T T
%0 |- 3
[ o  Annular Sector (Shah and London, 1978)
8o [-b * Cicular Sector (Eckert and Irvine, 1956) 3

Model, Eq.(36)
+/- 10 Percent

06

0.4 ‘ X
e=(I-r)/(1+r)®
Fig. 11 fRe ;5 for circular annular sector

Table 4
fRe for Various Cusps!3152!

Geometry [Rep, fRe/z
Square Corner Cusp 7.06 13.60
Triangular Corner Cusp  7.80 13.10
Side Cusp 6.50 12.75
3 Sided Cusp 6.50 12.72
4 Sided Cusp 6.61 11.20
Circular Duct 16.00 14.18

SUMMARY AND CONCLUSIONS

This paper examined solutions to Poisson’s equation
in singly and doubly-connected domains with applications
in heat conduction and fluid mechanics. By means of
dimensional analysis using the Buckingham II theorem,
the appropriate non-dimensional form and characteristic
length were obtained. Simple expressions for predicting
the non-dimensional groups were developed for the singly
and doubly-connected domains. These solutions represent
the exact solutions for the elliptic geometry and circular an-
nular geometry. The characteristic length based upon the
square root of the effective cross-sectional area £ = VA was
found to be more useful in collapsing the results of similar
geometries than the characteristic length £ = 4A/P, also
known as the hydraulic diameter. It was shown that if the
characteristic length £ = v/A is used to non-dimensionalize
the solutions, the dimensionless groups are weak functions
of the shape of the geometry, provided the an appropri-
ate aspect ratio is defined. Definitions of aspect ratio
for various geometries are summarized below in Table 5.
The results for 27 singly-connected domains and 9 doubly-
connected domains are accurately predicted by the solu-
tions for the elliptic geometry Eq. (36) and circular an-
nulus Eq. (40) respectively, when the appropriate aspect

10



ratio is defined. Finally, the relation between the ther-
mal and hydrodynamic problem was examined such that
solutions®?? for other complex geometries not examined in
this paper may be applied to thermal problem.

Table 5
Definitions of Aspect Ratio

Geometry Aspect Ratio
Regular Polygons e=1
Singly-Connected? €= g

Trapezoid €= 26

a+c
Annular Sector €= 1-r
s ~+r)3
Doubly-Connected 8= —A—'
A,
tan except annular sector and trapezoid.
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