
223

JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER

Vol. 11, No. 2, April– June 1997

Experimental and Approximate Analytical Modeling
of Forced Convection from Isothermal Spheres

G. Refai Ahmed*
R — Theta Inc., Mississauga, Ontario L5T 1Y9, Canada

and
M. M. Yovanovich† and J. R. Culham‡

University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Forced convection heat transfer from isothermal spheres is examined over a wide range of Reynolds
numbers, turbulence intensities, and Prandtl numbers using experimental and analytical techniques. An
approximate analytical solution is presented that is based on a linearization of the thermal energy equa-
tion, for a full range of Prandtl numbers between zero and in� nity, and for Reynolds numbers less than
105. The experimental data presented in this study are con� ned to forced air� ow with Pr = 0.71 and 3000
< ReD< 50,000. Results from the analytical solution are compared against data from the present experi-
mental study plus data from other investigations published in the open literature. These comparisons
reveal good agreement between experimental data and results from the current model.

Nomenclature
A = surface area, m2

b = exponent in Eq. (1)
Cp = speci� c heat, J/kg K
CR = correction factor
c , C = constants in Eq. (1)
D = sphere diameter, m
h = coef� cient of convection heat transfer, W/m2 K
K = von Kármán’s constant
k = thermal conductivity, W/m K
L = reference distance, m

= arbitrary scale length, m
l = mixing length, Ky, m
m = exponent in Eq. (1)
NuD = area-averaged Nusselt number, Dh/k
n = exponent in Eq. (47)
Pr = Prandtl number, /
Q = heat � ow rate, W
q = heat � ux, W/m2

RaD = Rayleigh number, g TL3/
ReD = Reynolds number, DV /
ReD( ) = local Reynolds number, DV( )/
r, , = spherical coordinates
Sc = Schmidt number
ShD = Sherwood number
T = time mean-averaged temperature, K
T = freestream temperature, K
T * = nondimensional time mean-averaged
TF = turbulence factor
Tu = turbulence intensity, u /V
t = time, s
ū = time mean-average velocity, m/s
u = � uctuation velocity, m/s
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V = local velocity at edge of thermal boundary layer,
m/s

V = freestream velocity, m/s
V( ) = local velocity at edge of hydrodynamic boundary

layer, m/s
v̄e = area-averaged effective velocity, m/s
v ( )e = local effective velocity, m/s

0v ( )e = local effective velocity Pr ® 0, m/s
v ( )e = local effective velocity Pr ® , m/s

0v̄ e = area-averaged effective velocity at Pr ® 0, m/s
v̄ e = area-averaged effective velocity at Pr ® , m/s
v̄r = time mean-average velocity in radial direction,

m/s
v̄ = time mean-average velocity in direction, m/s
X, Y, Z = Cartesian coordinates
x, y = local coordinates
x = distance from the end of the contraction area of

the wind tunnel to the location of the test object,
m

= thermal diffusivity, k/Cp , m2/s
t = turbulent thermal diffusivity, m2/s
* = total thermal diffusivity, t, m2/s

= thermal expansion, 1/K
D = constant in Eq. (40)
Nu/Nu = (NuTu NuTu=0)/NuTu

= local thickness of hydrodynamic boundary layer,
m

T = local thickness of thermal boundary layer, m
T
D = displacement thickness of thermal boundary

layer, m
T
M = momentum thickness of thermal boundary layer,

m
= surface emissivity
= similarity parameter, y/
= kinematic viscosity, m2/s

t = turbulent kinematic viscosity, m2/s
* = total kinematic viscosity, t, m2/s

= mass density, kg/m3

= constant in Eq. (50), K Tu ReD

Subscripts
Conv = convection
D = displacement
e = effective
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Fig. 1 Schematic diagram of the boundary layers over the sphere
for Pr ® and Pr ® 0.

FC = forced convection
M = momentum
NC = natural convection
Rad = radiation
S = surface
To = total
W = wire losses

Introduction

F ORCED convection heat transfer from isothermal spheres
is a fundamental heat transfer problem which has many

industrial applications, such as boiling, air pollution, fermen-
tation, and spray drying. Numerous experimental, analytical,
and numerical studies have been conducted by researchers for
the past 90 years. Most of the researchers presented their re-
sults in an area-averaged form as follows:

m bNu = c C Re Pr (1)

where c , C , m, and b are constants.
Refai Ahmed and Yovanovich1 reviewed various heat trans-

fer correlations, found in previous studies, and found that most
investigators agreed on the following: 1) the diffusive limit
NuD = 2.0 for ReD ® 0 and 2) the exponent on Pr is b = .1–3

In addition, Refai Ahmed and Yovanovich1 concluded that
the main reason for differences in the exponent on Re and
C in the previous studies was because of the � tting of data
over a different range of Re , which produces different veloc-
ity pro� les over the surface of the sphere.

Other studies have investigated the in� uence of freestream
turbulence on � ow and heat transfer over spheres. Loitzianski
and Schwab2 (this reference was used in Raithby3) examined
the in� uence of turbulence intensity on the area-averaged Nus-
selt number for spheres. They found that increasing the tur-
bulence intensity from about 0.5 to 3.0% increased NuD by
30% at ReD = 4 104 and by 36% at ReD = 1.2 105. Maisel
and Sherwood4 also examined the effect of turbulence intensity
on the mass transfer from spheres and found that increasing
Tu from approximately 3.5 to 24% at ReD = 2.4 103 and 2

104 could cause an 18 and 25% increase in NuD, respec-
tively. Rae and Pope5 proposed the following relationship to
account for freestream turbulence:

V = TF V (measured)

where TF was determined through experimental work. Clift et
al.6 examined the effect of the turbulence intensity on the Nus-
selt number for spheres. They presented one equation for the
relationship between Numeasured/Nucorrected vs Reynolds number as
follows:

Numeasured 4 0.57= 1.0 4.8 10 Re D
Nucorrected

Refai Ahmed7 developed the following general form for the
freestream turbulence effect based on the correlation of Clift
et al.6:

Nu Nu Numeasured corrected
=

Nu Numeasured

0.253 n Tu 0.454 n ReD
= (2)0.72326748.5Re D

for

0.02 Tu 0.075

4 40.312 10 Re 7.5 10D

Although the area-averaged Nusselt number from spheres is
known to increase with Tu, the precise relationship between
Nusselt number and turbulence intensity is still not well estab-
lished.

The objectives of the present investigation are to study the
effect of turbulence intensity on heat transfer from spheres, as
shown in Fig. 1, using both an experimental procedure and an
approximate analytical method. This study will help provide
an increased level of understanding into the determination of
the appropriate value that should be used for the Reynolds
number exponent found in Eq. (1). Finally, a general model
for forced convection heat transfer from isothermal spheres
will be developed.

Experimental Procedure and Results
The experimental test program was performed in a suction-

type, open wind tunnel using a centrifugal fan located at the
discharge. The working test section had dimensions 300 300

600 mm. The operating velocity range of the wind tunnel
was 0 < V < 14 m/s (more details are given in Refai Ahmed10).

A 6061-T6 aluminum sphere with a diameter of 60 mm was
suspended close to the test section outlet. The sphere was
maintained isothermal with a maximum temperature variation
of 0.5% at V = 10.1 m/s. Surface emittance measurements
were also performed in a vacuum chamber based on an ap-
proach used by Hassani.8 Radiative heat transfer measurements
were conducted in a vacuum chamber with the pressure main-
tained at 10 5 torr. The emissivity , was estimated to be 0.094
for the polished aluminum sphere. The maximum error and
orthogonal error were 11.72 and 3.26%, respectively.

In addition, the steady-state convection heat loss from the
sphere QConv was obtained as follows:

Q = Q Q Q (3)Conv To Rad W

where QTo is the total power expended toward the Joulean
heating of the sphere, QRad is the radiation heat loss, and QW

is the total conduction losses attributed to the thermocouple
wires and the power leads. Mack9 and Refai Ahmed10 reported
that the conduction losses for the same experimental setup
were on the order of 0.5% of the total input power.

The turbulence intensity at the inlet and outlet of the test
section are shown with respect to the Reynolds number in Fig.
2. The data at both the inlet and the outlet of the test section
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Fig. 4 Effect of Tu on the relationship between NuDand ReDfor
approximate solution, Eq. (49).

Fig. 3 Relationship between NuDand ReDfor experimental data.

Fig. 2 Relationship between Tu and V at the inlet and the outlet
of the wind-tunnel test section.

have been correlated as function of Reynolds number, using a
simple least-squares linear � t, as follows:

4 0.575Tu = 1.5 10 Re (inlet)D (4)
5 0.575Tu = 9.5 10 Re (outlet)D

The maximum and average differences between the experi-
mental data at the outlet test section and Eq. (4) are 7 and 3%,
respectively. The relationship between Tu and ReD at the outlet
of the test section can also be used to determine the turbulence
intensity in the vicinity of the sphere, which was located near
the outlet of the test section.

Recently, Yovanovich and Vanoverbeke11 developed a mixed
convection model based on the forced convection correlation
of Yuge12 and the free convection correlation of Raithby and
Holland13 for spheres and Pr = 0.71. They also demonstrated
for forced convection from a sphere that the dimensionless
heat transfer rate by convection is the summation of the di-
mensionless heat transfer by conduction, free convection,
forced convection, and CR (for opposing � ow), where CR =
0.86 2.86 Furthermore, Steinberger and Trey-2 1/4(Ra /Re ) .D D

bal14 proposed a formula similar to Yovanovich and Vanover-
beke11 for assisted � ow. The present study uses the concept of
Yovanovich and Vanoverbeke11 to remove the effect of free
convection from the data. Therefore, QFC can be approximated
as follows:

Q = Q Q (5)FC Conv NC

The free convection heat transfer, with radiation effects
eliminated, can be obtained as follows:

1/40.589Ra DNu = 2.0 (6)D 9/16 4/9[1 (0.469/Pr) ]

This model was developed by Churchill15 and has been con-
� rmed through the analytical study of Jafarpur.16

Figure 3 shows the present data of NuD vs ReD for forced
convection heat transfer (Pr = 0.71) from an isothermal sphere.
The effect of free convection is estimated to be 18% at ReD =
20,000 and 5% at ReD = 80,000. While radiation heat transfer
over the same range of Reynolds number was between 3.4–

0.8%, respectively.
The area-averaged Nusselt number can be calculated as fol-

lows:

Nu = hD/k = Q D/kA TD FC

where T = TS T , and the thermal conductivity of the � uid
k is evaluated at the � lm temperature. Figure 4 shows the em-
pirical relationship between the Nusselt and Reynolds num-
bers. The experimental results have been correlated as follows:

0.709Nu = 0.083ReD D

0.174 0.609= 0.415Tu Re (7)D

for

5642 Re 56,420D

0.012 Tu 0.049

The maximum percent difference between the experimental
data and Eq. (7) is 6.6% and the rms percent difference is
3.05%.

In this study, the uncertainty in Nusselt and Reynolds num-
bers was investigated using the maximum error method and
the orthogonal error method, respectively. It was concluded
that the uncertainty in NuD was 2.9% to 5.4%, and the
uncertainty in ReD was 2.1% to 7.2%, with maximum er-
rors in NuD and ReD of 12.6% and 8.54%, respectively,
over the operating temperature range of 300– 330 K.

Theoretical Analysis
Figure 1 shows a sphere of diameter D, which was main-

tained at an isothermal temperature TS while immersed in a
steady, uniform, incompressible � uid with constant properties.
The bulk � uid was assumed to be at a constant temperature
T and a uniform approach velocity V for a range of Prandtl
numbers between zero and in� nity.

An approximate analytical solution has been developed by
Refai Ahmed and Yovanovich1 in which the conventional form
of the energy equation is used:

T 1 T 1 T2v v = r (8)r 2r r r r r
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Table 1 Prediction of t/ using � at
plate information

ReD
a Tu, %b

t /

100 0.13 4.15 10 4

1,000 0.507 0.0512
10,000 1.905 0.60

100,000 7.16 7.23
a
D is the plate length in this table.

bTu = 9.55 5 0.57710 Re .D

This particular form of the energy equation could not be
used in the current analysis because of the signi� cant turbu-
lence intensity effect observed during experimental testing.
The thermal diffusivity in Eq. (8) fails to address the phys-
ical behavior encountered in turbulent � ow problems.

The present investigation must consider the effect of the
turbulence intensity. Therefore, the energy equation can be
written using a Boussinesq approximation17 and assuming that
negligible heat is dissipated inside the boundary layer:

T 1 T 1 T2v̄ v̄ = *rr 2r r r r r

LHS

1 T T *2= * r2r r r r r
(9)

RHS

The diffusivity * is the sum of the laminar diffusivity
and the turbulent diffusivity t. The turbulent thermal diffusiv-
ity is approximated as the turbulent kinematic viscosity t,
when the turbulent Prandtl number is equal to unity. Arpaci
and Larsen18 reported values of the total thermal diffusivity
between 1.0– 0.9. For simpli� cation of the present analysis the
turbulent Prandtl number is considered to be equal to 1.0. vt

is determined from Bejan19 through scaling analysis and using
the mixing length theory of Prandtl20 for � at plates. Bejan19

reported that

ū2 2= K y (10)t t
y

ū
u = Ky (11)

y

Therefore

= Ky u = KyTuV (12)t t

where

at V ® 0 * =

or Tu ® 0 =

For spheres t K(r D/2)TuV , where K is the constant
in the mixing length, l = Ky.

The terms on the left side of Eq. (9) are approximated using
a single equivalent term

t 1 T v̄ Te
LHS = v̄ v̄ (13)r

r r r

where will be determined later. This idea has been proposedv̄e

by Oseen21 to linearize the inertia term for creeping � ow,
where he assumed the convective term to be V v (see Hap-
pel and Brenner22). In addition the RHS of Eq. (9) can be
simpli� ed through scaling analysis as follows:

2T Tt
RHS = ( )t 2r r r

D T
= KTuV r 22 (r D/2)

T
KTuV (14)

(r D/2)

To obtain an estimate of ( T/ ) over the range of Reynolds
numbers from 102 to 105, one can use the � at plate information
as follows:

K TuV (15)t t

where and K 0.45– 0.5 (von Ká rmán’s con-x/ Rex

stant), therefore

0.45 Pr Tu Ret
(16)

for air / 0.3 Tu Ret

The prediction of t/ from the � at plate analysis for the
range of Reynolds numbers between 102– 10 5 is given in Table
1. One observes that * approaches for small values of Tu
and V , therefore, * can be considered a weak function of
(r), i.e., independent of r up to ReD = 104.

Therefore, Eq. (9) is reduced to Eq. (17), where * is as-
sumed to be constant in r direction.

v̄ T 1 Te 2= * r (17)2r r r r

where Eq. (17) is limited to the range: r (D/2) and 0
.

Equation (17) is then transformed to an equivalent transient
heat conduction problem to � nd a suitable solution. Assuming
that the � ow particles are moving with a constant effective
velocity around the body, the particles will take time t tov̄e

travel a distant r . Furthermore, for ® 0 and t ® 0,
one obtains

D D
v̄ = r where r (18)e

t 2 2

Thus, by substituting Eq. (18) into Eq. (17) the energy equa-
tion is written as follows:

T * 1 T *2= * r (19)2t r r r

where

D D T T
r , 0 t and T * =

2 2v̄ T Te S

The solution to Eq. (19) can be obtained from Carslaw and
Jaeger23 and is given as

D 1 r D/2
T * = erfc

2 r 2 *t t=( D)/(2v̄ )e

D 1 r D/2
= erfc (20)

2 r 2 ( * D/(2v̄ )e



AHMED, YOVANOVICH, AND CULHAM 227

The local Nusselt number is

Nu ( ) = q ( )D/(T T )k (21)D S S

where

T *
q ( ) = C *(T T )S p S

r r=D/2

C *(T T ) C (T T )p S p S
= (22)

D/2 *D /2v̄e

The transient conduction solution provides an analytical so-
lution for the local Nusselt number that consists of the linear
sum of the local boundary-layer term and the constant term
corresponding to the diffusive limit (ReD ® 0). The area-av-
eraged Nusselt number NuD = (1/A) a NuD( ) dA, is given
by

Nu = (2 */ ) (0.714 */ ) Dv̄ / * (23)D e

The diffusive term in the previous equation is multiplied by
( */ ). This factor */ goes to unity at the diffusive limit
ReD ® 0. Furthermore, to complete the analysis, can bev̄e

de� ned for the limiting cases of Pr ® and Pr ® 0, allowing
an interpolation function to be obtained, providing a relation-
ship valid for all Prandtl numbers.

Despite the fact that � ow separation can occur at high Reyn-
olds numbers, the present analysis is based on the assumption
that the � ow does not separate at any point over the surface
of the sphere for the full range of Reynolds numbers examined.
We will proceed with the analysis and compare the results with
available experimental results (which include the separation
effects), to determine the capabilities of the present model.

at Pr ®v̄ e

First, one can consider high Prandtl number � uids. Scaling
analysis is applied to the continuity, momentum, and energy
equations to determine the area-averaged effective velocity.
Assume that the hydrodynamic boundary layer (HBL), , is
very thin, i.e., D/2 D/2 (see Fig. 1), where ReD >> 1.
It is also assumed that the � ow outside of the hydrodynamic
boundary layer is effectively inviscid. Thus, the local velocity
at the edge of the HBL is equal to ) = V( ), wherev̄ (D/2
V( ) is the solution to the inviscid � ow problem, as shown in
Fig. 1. The continuity equation in an axisymmetric incom-
pressible turbulent � ow inside the HBL can be approximated
as follows:

2 v̄ 1 v̄ cotr
v̄ v̄ = 0 (24)r

r r r r

Using scaling analysis (the scaling analysis rules are stated
in Bejan24) on the continuity equation within the HBL gives
the relationship:

4v̄ v̄ v̄ 2 v̄ 2 v̄r D/2 r D/2 r D/2
0

D D D

With = V( ) and the inviscid � ow solution withv̄ D/2

= 0, we obtainv̄r D/2

V( )
v̄ 2 (25)r D/2

D

Applying scaling analysis on the continuity equation inside
the thermal boundary layer (TBL), gives the relationship:

2 V( )T
v̄ 2 (26)r D/2T D

where it is assumed that the ratio V/V( ) is approximately
equal to T/ , i.e., the � ow has a linear velocity distribution
(as shown in Fig. 1).

One can assume that the � ow outside the boundary layer is
inviscid. Therefore, the pressure term in the momentum equa-
tion ( direction) can be approximated as

V( ) V( )

r

by using the Bernoulli equation. The momentum equation in
a steady axisymmetric � ow along the body becomes

v̄ v̄ v̄ V( ) V( ) 1 v̄2v̄ *r (27)r 2r r r r r r

Using scaling analysis on the momentum equation inside the
HBL with Eq. (24) gives the following relationship:

2 2 22 V ( ) 2V ( ) 2V ( ) V( )
* (28)2D D D

The local hydrodynamic boundary-layer thickness can then
be written as

*/
(29)

D 2Re ( )D

where ReD( ) = DV( )/ .
Applying scaling analysis to the energy equation, Eq. (17),

and keeping in mind that D/2 >> T and v T = V = [( T/ )
V( )], one can obtain that

22 V( ) T V( ) T * TT T (30)2D D/2T T

The two convective terms on the LHS of Eq. (30) have a
similar order of magnitude; therefore, it can be equated to one
of the convective terms to the diffusion term as follows:

V( ) T * TT (31)2D/2 T

The local dimensionless thermal boundary-layer thickness is
given by

1/3

* */T (32)
D * 2Re ( )D

Comparing Eq. (32) with Eq. (29) one can � nd that

1/3
V *T (33)

V( ) *

This result will be used subsequently to de� ne v̄ .e

The local effective velocity for large Prandtl numbersv ( )e

� uids will be obtained from momentum � ux balances through
the thermal boundary-layer thickness. The momentum � ux in-
side the thermal boundary layer is

T

v̄ (V v̄ ) dy (34)
T 0

On the other hand, if we determine the momentum � ux by
assuming that the � ow has a uniform local effective velocity,
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is constant in the y direction and variable in the x direc-v ( )e

tion, we have

T

v ( )(V v̄ ) dy (35)e
T 0

Equating Eqs. (34) and (35) and solving for the local effec-
tive velocity we obtain

T

v̄
(V v̄ ) dy

V0

v ( ) = V (36)e T

(V v̄ ) dy
0

which can be expressed in terms of the momentum and dis-
placement thicknesses as follows:

1/3T T*T M M
v ( ) V( ) V( ) (37)e T T*D D

For convenience of the subsequent analysis, a similarity pa-
rameter = y/ T is introduced. This allows one to express the
momentum and displacement thicknesses in the following
forms:

1

v̄ v̄T = 1 d (38)M T
V V0

1

v̄T = 1 d (39)D T
V0

Clearly, these important hydrodynamic thicknesses depend
on the velocity distribution within the TBL. One may assume
that is a power-law function of y to have a general form forv̄
the velocity pro� les at different Reynolds numbers, i.e., v̄ /V
= or = where 0 1.DD( y/ ) v̄ /V ,T

Introducing the power-law velocity distribution into Eqs.
(38) and (39) and integrating, one obtains the relationship be-
tween the momentum and displacement thicknesses in terms
of the power-law exponent ( D):

T 1M
= (40)T 2 1D D

Therefore, the local effective velocity from Eq. (37) with
Eq. (40) is

1/3
V( ) *

v ( ) (41)e (2 1) *D

The area-averaged effective velocity is de� ned as

1/3

1 * 1
v̄ V( ) dA (42)e (2 1) * AD A

Furthermore, the ideal � ow solution can be used to represent
the � ow in the region outside of the boundary layer; therefore,

v̄ = V( ) = 1.5V sin (43)D/2

After substitution of Eq. (43) into Eq. (42), we � nd that the
area-averaged effective velocity as Pr ® is given by

1/3

1.178V *
v̄ (44)e (2 1) *D

at Pr ® 00v̄ e

If one considers that the viscosity is very small, i.e., Pr ®
0, and ReD >> 1. The HBL, , is very small and the TBL, T,
is very large relative to ; therefore, at the edge of the TBL
we have

3
V D

v̄ = 2 sin (45)( D/2)
2 2( D/2)

Equation (45) can be reduced to v̄ = V = 1.5V( D/2)

sin , where << D/2.
Therefore, the local velocity at arbitrary will be considered

uniform across the TBL. As a result, = V, as shown in0v ( )e

Fig. 1 [V is the local maximum velocity at the edge of the
TBL and is the local effective velocity at Pr ® 0]. The0v ( ),e

area-mean effective velocity is

10v̄ = V dA = 1.178V (46)e A A

for All Prv̄e

At this point the effective velocity has been determined for
the two limiting cases where Pr ® and Pr ® 0. To develop
an expression for that is valid for all Prandtl numbers, thev̄e

Churchill and Usagi25 blending technique will be used. The
area-averaged effective velocity can now be expressed, as rec-
ommended by Refai Ahmed and Yovanovich,1 in the following
form:

v̄ e
v̄ = (47)e 0 n 1/n[1 (v̄ /v̄ ) ]e e

Substituting and into Eq. (47) gives the effective ve-0v̄ v̄e e

locity valid for all Prandtl numbers in terms of the power-law
parameter D and the blending parameter n

1/3v̄ 1.178/[(2 1)( */ *) ]e D
= 0 < Pr < (48)1/3 n 1/nV (1 [1/(2 1)( */ *) ] )D

where 0 D 1. The constant n will be determined in the
following section.

Results and Discussion
To determine an analytical expression for NuD, one must

substitute Eq. (48) into Eq. (23). NuD becomes

1/6
(1/Pr) ( / )t0.50.775Re D

1 ( / )t
t

Nu = 1 Pr 2 (49)D
n/3 1/2n

1 (1/Pr) ( / )t t(2 1) 1D 3Pr (2 1) [1 ( / )]D t
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Table 2 Prediction of t/
using Eq. (53)

Re Tu, %a /t

100 0.13 5.68 10 4

1,000 0.507 6.74 10 3

10,000 1.905 7.95 10 2

100,000 7.16 1.79
a
Tu = 9.5 5 0.57710 Re .D

The numerical range of n is between 1 and . However, Eq.
(49) changes signi� cantly in the range of 1 n 3. In con-
trast, the range of n > 3 does not change Eq. (49) with respect
to n = 3. Therefore, the region of interest of n is between 1–

3. One can obtain linear superposition at n = 1, but this does
not give the best � t. On the other hand, it is found that n = 3
gives the best � t by matching Eq. (49) with the present air
data and D = 1/(1 (Refai Ahmed and Yovano-1.25 1/5Re )D

vich1,26). As mentioned before, the turbulent Prandtl number

t / t is set to unity. Therefore, t = t K[r (D/2)]TuV ,
where (r D/2) is , which is de� ned in Eq. (29). There-
fore,

V [1 ( / )]t t= KTu = KTuReD
2Re ( )D

which can be rewritten:

/t
= KTuReD

2Re ( )1 ( / ) Dt

= KTuRe = (50)D
DV( )/ 1.5 sin

The previous equation is a function of . Therefore, the av-
erage value of t / over the entire surface can be determined
in the two limits: t / ® and t/ ® 0.

Finally, the general form of t / can be obtained using
blending techniques as shown next:

/ ® :t

1t 2 2 2= dA = 1.645K Tu Re (51)D
A 1.5 sinA

/ ® 0:t

1t
= dA = 1.668KTu Re (52)DA 1.5 sinA

0 < t / < :

t 3 2 2 3 1/3= [(1.668KTu Re ) (1.645K Tu Re ) ] (53)D D

K is estimated to be between 0.3– 0.4 for � at plates, as re-
ported by Arpaci and Larsen.18 In addition, Smith and Kuethe27

recommended that K = 0.164 for the circular cylinder. There-

fore, it was found that K = 0.05 to give the best � t by matching
Eq. (49) with the present experimental air data.

One can verify the previous � at plate approximation of t /
by using Eq. (53). Table 2 shows the estimation of t /

(where t / = Pr t / ) in the range of 102 ReD 105 and
con� rms the assumption that * is a weak function of r in that
range.

One can expand Eq. (49) to four terms; term I is the dif-
fusive limit, and terms II– IV are the boundary-layer regime
with turbulent intensity effects as follows:

1/6
(1/Pr) ( / )t0.50.775Re D

1 ( / )t

Nu = 2D 1/6
1 (1/Pr) ( / )t t(2 1) 1D 3I Pr (2 1) [1 ( / )]D t

II

1/6
(1/Pr) ( / )t t0.50.775 Pr Re D

1 ( / )tt
Pr 2

1/6 (54)
1 (1/Pr) ( / )t t(2 1) 1D 3Pr (2 1) [1 ( / )]D tIII

IV

Also, one can observe that the terms III and IV vanish when
t or t ® 0, i.e., Tu ® 0. However, the second term is reduced

to the following form:

0.5 1/30.775Re PrD (55)
3 1/6(2 1) [(2 1) (1/Pr)]D D

The sum of the diffusive term I and Eq. (55) is identical to
the solution of Refai Ahmed and Yovanovich.1 Figure 4 shows
the relationship between NuD and ReD for several values of the
turbulence intensity in the range 0 Tu 0.1. One � nds that
the effect of Tu on NuD is negligible for low Reynolds numbers
ReD 100. Furthermore, for Tu = 0.01, the effect of Tu on
NuD is less than 3% for ReD 104. By contrast, this effect is
more signi� cant for high Tu or ReD. For example, Nu/Nu is
100% at ReD = 105 and Tu = 0.1 and 9.5% at ReD = 103 and
Tu = 0.1. Also, Fig. 4 shows that the relationship between NuD

and ReD at Tu = 0, Eq. (54), is identical to the Refai Ahmed
and Yovanovich1 solution. Thus, the present solution, at Tu =
0 and 0 ReD < 105, is found to be in very good agreement
with many previous studies such as Refs. 12 and 28– 30 (more
detailed comparisons of this case can be found in Refai Ahmed
and Yovanovich1).

Figure 5 shows a comparison between the present experi-
mental results and the upper and lower bounds of NuD vs ReD,
calculated using the approximate analytical solution, Eq. (49),
for turbulence intensities corresponding to the range of Tu
(0.0– 0.045) found in testing. Since each of the data points is
a function of Tu, as shown in Eq. (7), a single line cannot be
passed through all of the data points; however, the experi-
mental data is clearly bounded by the curves corresponding to
Tu = 0 and 0.045. The maximum difference between the ex-
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Fig. 5 Comparison between data and proposed model, Eq. (49).

Fig. 6 Comparison between previous studies and Eq. (49).

perimental data and the approximate solution is 7.7% at ReD

11,000. It is expected that at ReD 11,000, the experimental
error is larger than the error at ReD 5 104. Figure 6 also
shows the comparison between the present model, Eq. (49),
and the experimental data of Raithby3 in the following ranges:
0.01 Tu 0.044 and 3000 < ReD < 6 104. The maximum
difference of approximately 17% between the Raithby data3

and the proposed model occurs at low Reynolds number, and
the average difference between the present investigation and
the Raithby data3 is within 8%. The present model also com-
pared against the correlations of the experimental data of
Yuge,31 Lavender and Pei,32 and Sandoval-Robles et al.33 These
correlations are as follows.

Yuge31:

0.585 0.085Nu = 2 0.0339Re Tu Re Tu < 7000 (56)D D D

Lavender and Pei32:

0.535 0.035Nu = 2 0.629Re Tu Re Tu < 1000D D D (57)
0.75 0.25Nu = 2 0.145Re Tu Re Tu > 1000D D D

Sandoval-Robles et al.33:

0.566 0.066 1/3Sh = 0.549Re Tu Sc 12 < Re Tu < 600 (58)D D D

Figure 6 shows that the average differences between Eq. (49)
and Yuge31 Lavender and Pei,32 and Sandoval-Robles et al.33

are 10, 28.8, and 11.23%, respectively.

Summary and Conclusions
An approximate analytical solution, supported by an ex-

perimental investigation, is presented for predicting forced
convection heat transfer from isothermal spheres. This model
is valid for a range of Reynolds numbers between 0 ReD

105 and a full range of Prandtl numbers between zero and
in� nity. In addition, the present study examined the effect of
turbulence intensity on the heat transfer results. The approxi-
mate analytical solution is found to be in very good agreement
with the present experimental results and the data of Raithby3

and the correlations of the experimental data of Yuge31 and
Sandoval-Robles et al.33 Furthermore, in the present study, it
is concluded that the main reason for the differences in the
exponent of ReD in the previous studies is because of their
curve-� tting data in various ranges of ReD, which have differ-
ent velocity pro� les and turbulence intensities.
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