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General models are proposed for natural convection from horizontal circular and square isothermal
toroids. The models consist of the linear superposition of the corresponding diffusive limits (shape factors)
and the laminar boundary-layer asymptotes. The asymptote for the dimensionless shape factor for the
circular toroid is used to � nd simple expressions for accurate calculation of the diffusive limits for the
circular and square toroids over the full range of the outer-to-inner diameter ratios. Simple expressions
are developed for accurate evaluation of the body– gravity function of the boundary-layer asymptote for
the circular and square toroids by the method of inscribing and circumscribing circular cylinders and
circular toroids within the equivalent square cylinder or square toroid. The Nusselt and Rayleigh num-
bers, and the dimensionless shape factor and body– gravity function are based on the characteristic body
length, the square root of the total surface area of the body. The proposed models are compared against
air data obtained for the circular and square toroids and equivalent cylinders. The agreement between
theory and experiment is very good.

Nomenclature
A = surface area of the body, m2

A = characteristic length of the body, m
Ã = area fraction
Ã i = area fraction of the ith component
CCT, CST = circular and square toroid body– gravity function

coef� cients
C , CCT ST = circular and square toroid shape factor

coef� cients
D = mean diameter of circular toroid,

(Do Di)/2, m
D i, Do = inner and outer diameters of toroid, m
d = ring or cylinder diameter, (Do Di)/2, m
F(Pr) = Prandtl number function,12

0.670/[1 (0.50/Pr)9/16]4/9

G A = laminar boundary-layer body– gravity function
based on A

Gr A = Grashof number, g (Ts Ta)( )3/ 2A
g = scalar gravitational acceleration, m/s2

H = cuboid height, m
h = heat transfer coef� cient, W/(m2 K)
k = thermal conductivity, W/(m K)
L = cylinder or cuboid length, m
Nu A = Nusselt number, h A/k
Nu A = diffusive limit, Nu = S *A A

P i, Po = inner and outer perimeter of circular toroid, m
Pn 1/2( ) = toroidal or ring function of the � rst kind
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Pr = Prandtl number, /
P( ) = local perimeter, m
Q = natural convection heat � ow rate, W
Qn 1/2( ) = toroidal or ring function of the second kind
Qr = radiation heat � ow rate, W
Q total = total heat dissipation rate, W
Ra A = Rayleigh number, Gr PrA

S = side of square cylinder or square toroid, m
S *A = dimensionless shape factor
sq tor = square toroid
Ta = ambient temperature, K
Ts = surface temperature, K
W = cuboid width, m

= thermal diffusivity, k/ cp, m2/s
= volumetric expansion coef� cient, K 1

= emissivity
= angle between gravity vector and outward

normal to surface, rad
= kinematic viscosity, / , m2/s
= density, kg/m3

= Stefan– Boltzmann constant,
5.67 10 8 W/(m2 K4)

Subscript
A = based on , as the characteristic lengthA

Superscript
= estimated at Ra ® 0

Introduction

N ATURAL convective cooling of certain electronic equip-
ment requires correlation equations for predicting heat

transfer from horizontal square toroids. A search of the heat
transfer literature did not reveal any information about the
natural convection heat transfer characteristics of horizontal
square and circular toroids (see Fig. 1), which are also char-
acterized by their inner and outer diameters and frequently by
the ring diameter d = (Do Di)/2 and the mean diameter D =
(Do D i)/2. Aihara and Saito1 measured the free convective
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Fig. 1 Pertinent dimensions for circular and square toroids and
cylinders.

Fig. 2 Flow visualization for a circular toroid.2

velocity � eld and � ow patterns around the periphery of hori-
zontal circular toroids and compared their results with velocity
measurements around the periphery of horizontal circular cyl-
inders. The � ow patterns are similar to that shown in Fig. 2
for a toroid with D/d = 2 at Grd 105. Aihara2 did not, how-
ever, report heat transfer results.

The objectives of this paper are the following:
1) Propose procedures for developing models to predict nat-

ural convection from horizontal, isothermal circular and square
toroids and equivalent cylinders.

2) Obtain simple correlation equations for air cooling.
3) Compare the proposed models and correlation equations

with some experimental data.

General Three-Dimensional Natural
Convection Model

The general expression for natural convective heat transfer
from three-dimensional isothermal bodies

1/4
Nu = Nu F(Pr)G Ra (1)A A A A

was � rst proposed by Yovanovich.3– 5 This relationship is based
on the linear superposition of the diffusive limit (shape factor)

corresponding to ® 0 and the thin laminar bound-Nu RaA A

ary-layer asymptote F(Pr) .
1/4

G RaA A

The laminar boundary-layer asymptote consists of the prod-
uct of F(Pr), , and . The characteristic length in theG RaA A

Nusselt and Rayleigh numbers and the body– gravity function
is the square-root of the total active surface area , whichA
was � rst proposed by Yovanovich3– 5 for natural and forced
convection heat transfer from bodies of arbitrary shape. Yov-
anovich has previously used this characteristic length to non-
dimensionalize thermal constriction resistance6– 8 and conduc-
tion shape factors.9– 11

The laminar Prandtl number function

0.670
F(Pr) = (2)9/16 4/9[1 (0.5/Pr) ]

was recommended by Churchill and Churchill12 as the approx-
imate universal function valid for all geometries and all values
of the Prandtl number.

The body– gravity function

1/3 3/4

1 P( )
G = sin d A (3)A

A AA

was proposed by Lee et al.13 for axisymmetric and two-di-
mensional geometries.

The proposed three-dimensional model, Eq. (1) has been
experimentally validated14 for a range of body shapes such
as 1) axisymmetric spheroids (oblate and prolate), sphere; 2)
elliptic and circular cylinders; 3) thin circular and square
plates in the vertical and horizontal orientation; and 4) other
body shapes (cube, cones with apex facing upward and down-
ward).

Buoyancy-induced � ow over complex body shapes can be
modeled by 1) partitioning the total body surface into com-
ponent surfaces corresponding to the � uid � ow and 2) using
the general formula, Eq. (3), for each component surface Ai

to � nd the corresponding component body– gravity function
.G Ai

The overall body– gravity function for the total body surface
is determined by combining the component surfaces Ai and
their respective into a composite value. Equation (3) canG Ai

be used for all surfaces except horizontal surfaces (sin = 0).
At present, semiempirical methods must be used to model
buoyancy-induced � ow over horizontal surfaces.14,15

There are two important � ow patterns for which the com-
posite or overall body– gravity function can be determined
with relative ease. These are complex bodies such as a circular
cylinder with hemispherical ends that is placed in a large ex-
tent of air in either the horizontal (axis perpendicular to the
gravity vector) or vertical (axis parallel to the gravity vector)
orientations.

In the � rst orientation the two ends and the horizontal sur-
face are cooled by different � ows of air, and the component
surfaces are said to be in the parallel � ow pattern. In the
second orientation the component surfaces are cooled by the
same � uid � ow that starts at the lower stagnation point, � ows
over the lower hemispherical end, then over the vertical cy-
lindrical surface, and � nally over the top hemispherical end.
In this case the component surfaces are said to be in the series
� ow pattern.

The previous method of partitioning a complex body shape
into parallel or series � ow patterns can be applied to many
interesting natural convection problems. Some orientations
such as inclined short cylinders with � at ends or hemispherical
ends, or inclined cuboids are more dif� cult to model.

If the buoyancy-induced � ow over a complex body shape
can be partitioned into N component surfaces with , whereÃi

= 1, and the corresponding can be determined,i=N Ã Gi=1 i Ai

then the composite body– gravity function for the entire body
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Table 3 Dimensionless shape
factor for square toroids

2S/D0

S * ,A
SEM

S * ,A
approximate

0.9999 3.419 3.374
0.9 3.345 3.311
0.8 3.302 3.280
0.7 3.289 3.277
0.6 3.310 3.307
0.5 3.374 3.378
0.4 3.496 3.510
0.3 3.712 3.744
0.2 4.106 4.167
0.1 5.012 5.075
0.05 6.241 6.321
0.01 10.90 11.02
0.001 26.17 26.38
0.0001 66.64 67.07

Table 2 Dimensionless shape
factor for large D/d

D/d
S * ,A
exact

S * ,A
modi� ed

2 3.439 3.449
3 3.570 3.548
4 3.728 3.703
5 3.885 3.868
6 4.036 4.030
7 4.179 4.183
8 4.314 4.327
9 4.442 4.463

10 4.564 4.534
20 5.548 5.537
30 6.286 6.279
40 6.893 6.889
50 7.418 7.415

Table 1 Dimensionless shape
factor for small D/d

D/d S *A D/d S *A

1.0 3.483 1.6 3.415
1.1 3.455 1.7 3.418
1.2 3.437 1.8 3.423
1.3 3.425 1.9 3.430
1.4 3.417 2.0 3.439
1.5 3.414 —— ——

surface can be evaluated by means of either the parallel � ow
pattern formula13

N

7/8˜G = G A (4)A A ii
i=1

or the series � ow pattern formula

3/4N

4/3 7/6˜G = G A (5)A A ii
i=1

For two-dimensional surfaces, such as vertical disks or
plates of arbitrary shape with variable perimeter P(z), the
body– gravity function can be easily obtained from the follow-
ing simple formula, which was derived from Eq. (3) after set-
ting sin = 1

P /2max
2 3/4G = S(z) dz (6)A 7/8A 0

where S(z) denotes the � ow distance from the leading edge to
the trailing edge of the differential surface dz and Pmax is the
maximum perimeter of the surface.

These formulas along with the semiempirical results rec-
ommended by Yovanovich and Jafarpur15 for horizontal sur-
faces facing upward or downward will be used to determine
the composite body– gravity function for the horizontal cir-
cular and square toroids and their equivalent cylinders.

Diffusive Limits
Since is identical to , (Ref. 3) analytical or nu-Nu S *A A

merical solutions for the circular and square toroids and their
equivalent cylinders must be obtained.

Circular Toroid

Analytical and numerical solutions for isothermal circular
toroids are available.11,17– 19 The dimensionless shape factor ob-
tained from the analytical solution is

4 D d Q (D/d ) Q (D/d )1/2 n 1/2
S * = 2 (7)A

d D P (D/d ) P (D/d )1/2 n 1/2n=1

with D/d 1. The special functions Pn 1/2(D/d ) and Qn 1/2(D/
d ) are called toroidal or ring functions. These functions can
be calculated accurately by means of Mathematica,20 and their
properties are known.18,21 The previous series solution con-
verges very slowly as D/d ® 1; however, it converges rapidly
to the asymptote for D/d > 8:

D/d
S* = 2 (8)A

n (8D/d )

For D/d = 1, the value of can be computed numericallyS *A

with acceptable accuracy,16 as

8 dt
S * = = 3.4827 (9)A 2I (t)00

where I0(t) is the modi� ed Bessel function of the � rst kind of
zero order.

Values of for small and large values of D/d are givenS *A

in Tables 1 and 2, respectively. The values of in Table 1S *A

can be approximated by the constant 3.449 with a maximum
error less than 1%.

The asymptote for large values of D/d, given in Eq. (8),
when multiplied by

D/dC = (81/80) (e / 4.5) (10)CT

provides a means of estimating in the range 2 D/d <S *A

10. Table 2 compares the exact values of , obtained fromS *A

Eq. (7) with values computed by means of the modi� ed as-
ymptote for 2 D/d < 10 and values calculated using the
asymptote for D/d 10. The maximum error is less than 0.7%.

Square Toroid

The square toroid shown in Fig. 1 does not have an analyt-
ical solution. Numerical results based on the surface element
method (SEM) using ring sources11,22 are available for a range
of values of 2S/D0. For convenience and completeness, the
SEM values of are given in Table 3.S *A

An accurate correlation equation for the square toroid results
can be developed by transforming the square toroid into a sim-
ilar circular toroid. This is accomplished by two simple geo-
metric rules: 1) set the surface area of the similar circular to-
roid equal to that of the square toroid and 2) set the mean
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Table 4 Values of body– gravity function for circular
toroid and equivalent circular cylinder

D/d Go Gi Gtor Gcyl % difference

1.5 1.072 0.870 1.089 1.081 0.70
2.0 1.093 0.938 1.125 1.121 0.36
2.5 1.112 0.986 1.155 1.153 0.23
3.0 1.129 1.022 1.181 1.179 0.15
3.5 1.145 1.052 1.204 1.202 0.11
4.0 1.159 1.076 1.224 1.223 0.08
4.5 1.172 1.098 1.241 1.240 0.06
5.0 1.185 1.117 1.258 1.257 0.05

perimeter of the similar circular toroid equal to that of the
square toroid. Applying these rules gives the geometric rela-
tionship between the transformed circular toroid and the square
toroid as

D D D0
= 1 = (11)

d 4 S 4 S

which provides good results when it is substituted into Eq. (8)
for 2S/D0 0.1.

To achieve good agreement with the SEM results for 2S/D0

> 0.1, the correction

D/dC = (161/160) (e / 18) (12)ST

is recommended, where the equivalent D/d is given by Eq.
(11). These correlation equations provide values of for theS *A

square toroid over the full range of the parameter 2S/D0, and
when compared with the SEM results the maximum difference
is less than 0.8%.

Circular Cylinder

The dimensionless shape factor equation for circular cylin-
ders of L and d

0.763.192 2.773(L /d ) L
S * = 0 8 (13)A

d1 2(L /d )

was recommended by Yovanovich3 and

4 L/d L
S * = > 8 (14)A

n (2L /d ) d

which is based on the long prolate spheroid asymptote.3

Square Cylinder

Analytical solutions for the square cylinder are not available.
One can, however, estimate the values of by means of theS *A

process of inscribing and circumscribing circular cylinders
inside and outside the square cylinder. This method provides
two estimates of the length-to-diameter ratio: 1) L /S and 2)
L /( ). It is recommended that one take the geometric mean2S
of these values, i.e., L /(21/4S ), to represent the effective aspect
ratio of the similar circular cylinder. Inserting the recom-
mended value of the aspect ratio [i.e., L /d = L /(21/4S )] into the
equation for the circular cylinder [Eq. (13) or Eq. (14)] pro-
vides values of , which agree well with reported numericalS *A

values obtained for square cylinders.
The previous equations for the dimensionless shape factor

for circular and square toroids and circular and square cylin-
ders will be used to develop general models for natural con-
vective heat transfer from these bodies in a subsequent section.

Body– Gravity Functions for Toroids and Cylinders
The general expression for the body– gravity function with

the parallel and series � ow pattern composite equations13 will
be used to develop general equations for 1) horizontal circular
cylinders with active ends, 2) horizontal square cylinders with
active ends, 3) horizontal circular toroids, and 4) horizontal
square toroids.

Circular Cylinder with Active Ends

The body– gravity function for the sides of a horizontal cir-
cular cylinder is = 0.891(L /d )1/8, and it is = 1.0209G GA A

for each vertical circular end according to Lee et al.13 By
means of the composite formula [Eq. (4)], these relationships
combine to

(0.681 L/d ) L
G = 0.891 0 < (15)A 7/8(0.5 L /d ) d

The constants in the numerator and denominator account for
heat transfer through the two active ends.

Square Cylinder with Active Ends

The body– gravity function for horizontal square cylinders
with active ends can be developed directly from the cuboid
model of Yovanovich and Jafarpur15

3/44/3 4/30.625(L /S ) (1 L /S ) L1/8G = 2 0 <A 7/6(1 2L /S ) S
(16)

after putting H = W = S, where H and W represent the height
and width, respectively, of the cuboid.

The body– gravity function can also be estimated by the
method of inscribing and circumscribing a circular cylinder
inside and outside the square cylinder. This approach gives two
values of the effective length-to-diameter ratio: D/d = L /S and
D/d = L /( ) for the inscribed and circumscribed cylinders,2S
respectively. When these two values are substituted into Eq.
(15), two estimates of are obtained that are usually quiteG A

close.

Horizontal Circular Toroid

The toroid surface is partitioned into the outer and inner
subsurfaces by passing a vertical plane through the ring axis.
The geometric parameters for the outer and inner subsurfaces
in terms of the toroid parameter D/d > 1 are as follows:

Local Perimeter and Differential Area:

P = ( /2)d[(D/d ) sin ] (17)o,i

D2d A = d sin d (18)o,i
2 d

The positive and negative signs are appropriate for the outer
and inner subsurfaces, respectively.

Area and Area Fraction:

2A = ( /2)d [ (D/d ) 2] (19)o,i

1˜ –A = 1/[ (D/d )] (20)o,i 2

Body– Gravity Function :
Integration of the general expression with the previous ge-

ometric parameters yields the body– gravity functions for the
outer and inner subsurfaces

1/8 4/3 3/4

2 D1/3G = sin sin do,i 7[ (D/d ) 2] d0

(21)
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The overall body– gravity function for the toroid can be ob-
tained by means of the composite expression

7/8 7/8˜ ˜G = G A G A (22)tor o o i i

Numerical integrations of Eq. (21) with Eq. (22) yield val-
ues of Go, Gi, and Gtor, given in Table 4 for 1.5 D/d 5.

Equivalent Circular Cylinder

The equivalent horizontal circular cylinder is de� ned to be
a cylinder whose diameter is equal to the diameter of the toroid
and whose length is L = D. By means of Eq. (3) with ap-
propriate geometric parameters (P = 2L, d A = Ld d , A =

Ld ), one obtains

3/4 1/8 1/8

1 D D1/4 1/3G = 2 sin d = 1.028 (23)cyl
d d0

in terms of the toroid parameter D/d. Numerical values of
Gcyl are presented in Table 4 along with the percent difference
between Gtor and Gcyl. The values of the body– gravity func-
tion for the toroid are greater than the values for the equiv-
alent cylinder; however, the percent difference is less then
0.7%.

The body– gravity function for the equivalent cylinder can
be used to estimate the body– gravity function for all toroids
(D/d 1.5) with negligible error.

Horizontal Square Toroid

The body– gravity function for the horizontal square toroid
cannot be developed in a simple direct manner because of its
geometric complexity. It is, therefore, necessary to obtain ap-
proximate solutions using known solutions. This can be ac-
complished in two related ways:

1) By inscribing and circumscribing circular cylinders inside
and outside the equivalent square cylinder of length L = D,
then using Eq. (23) for the body– gravity function of the equiv-
alent circular cylinder with insulated ends, � nd two values of

that are expected to bound the value for the square toroid.G A

2) Inscribing and circumscribing circular toroids inside and
outside the square toroid, then using the result obtained for the
equivalent circular cylinder. This method of inscribing and cir-
cumscribing circular cylinders inside square cylinders has been
used by Jafarpur14 to � nd bounds on that were observedG A

to be close.

Since the two approaches just described lead to similar re-
sults, the second approach will be used here. The inscribed
circular toroid parameter is

D/d = (D /S ) 1 = D/S (24)i

and for the circumscribed circular toroid the parameter is

D 1 D Di
= 1 = (25)

d S2 2S

These relationships, after substitution into Eq. (23), give the
general relationship for bounds on the body– gravity function
for horizontal square toroids

sqtor1/8 1/80.984(D/S ) < G < 1.028(D/S ) (26)A

The maximum and minimum values of differ by 4.4%,G A

which supports the � ndings of Jafarpur14 for other body shapes.
For the square toroid with D/S = 3, we � nd the body– grav-

ity function to lie in the tight range

sqtor
1.129 < G < 1.179 (27)A

The third more complex method of determining isG A

based on the partitioning of the square toroid surface into com-
ponent surfaces. One approach is based on dividing the total
surface into the inner and the outer portions that consist of the
bottom, side, and top components. The inner and outer portions
can be modeled as component surfaces that are in the series
� ow pattern similar to the approach taken for the circular to-
roid. This will give complex relationships for the body– gravity
functions for the inner and outer portions. Finally, the overall
body– gravity function can be determined by using the parallel
� ow pattern equation. When this method is applied to the
square toroid with D/S = 3, one � nds = 1.1988, which isG A

1.7% greater than the value obtained by inscribing a circular
toroid inside the square toroid or inscribing a circular cylinder
inside the equivalent square cylinder.

Models for Circular and Square Toroids
The shape factor and body– gravity function results pre-

sented in the preceding sections can be used to develop general
models for natural convective heat transfer from horizontal
circular and square toroids and their equivalent cylinders. The
general expression for natural convective heat transfer for
three-dimensional bodies, as given in Eq. (1), can be used in
conjunction with the shape factors and body– gravity functions
presented next, to obtain expressions for for circular andNu A

square toroids and circular and square cylinders.

Circular Toroid:

3.449 for D/d < 2.0
1/2(D/d )Nu = Eq. (10) for 2 D/d < 10A C 2 where C =CT CT 1 for D/d > 10n (8D/d )

1/8G = C (D/d ) with 1.028 < C < 1.121A CT CT

Square Toroid:

1/2(D/S ) Eq. (12) for 2S/D > 0.103/2Nu = C with C =A ST ST 1 for 2S/D 0.1n (2 D/S ) 0

1/8G = C (D/S ) with 0.984 < C < 1.028A ST ST
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Circular Cylinder (Ends Active):

0.763.192 2.773(L /d )
for 0 L /d 8.0 [Eq. (13)]

1 2(L /d )
Nu =A

4 L /d
for L /d > 8 [Eq. (14)]

n (2L /d )

(0.681 L /d )
G = 0.891 for 0 L /d < [Eq. (15)]A 7/8(0.5 L /d )

Square Cylinder (Ends Active):

1/4Nu = same as circular cylinder with L/d = L /(2 S )A

4/3 4/3 3/4[0.625(L /S ) (1 L /S ) ]
G = 0.595 for 0 L /S < [Eq. (16)]A 7/8(0.5 L /S )

Table 5 Critical dimensions for body
shapes tested

Shape
D,

mm
d or S,

mm
L,

mm

Circular toroid 58.62 19.54 ——
Square toroid 51.96 17.32 ——
Circular cylinder —— 19.54 174.43
Square cylinder —— 17.32 154.58

Experiments and Results
Steady-state heat transfer measurements were made for the

body shapes depicted in Fig. 1. The body dimensions are found
in Table 5. All bodies had the same total surface area. Each
body was machined from aluminum alloy 6061-T6 to a 0.1
mm tolerance, and then highly polished. The low emissivity
of the polished surface minimized the radiation heat loss, and
the high conductivity (201 W/mK) of the material produced a
nearly isothermal surface temperature. The measurements for
each case were obtained when the body was suspended in the
central square section of the vertical wind tunnel whose cross-
sectional dimensions are 300 by 300 mm. Each body was sus-
pended in the test section using the lead wires of the embedded
heater and thin low conductivity cotton � laments to level and
support the bodies in a horizontal orientation. The surface tem-
perature Ts was measured by three 5-mil copper– constantan
thermocouples epoxied into 0.5-mm holes. Power was supplied
to the body through a 95- resistance heater that was ce-
mented into a hole 7 mm in diameter by 45 mm deep. To
minimize conduction losses from the body, the diameter of the
copper heater leads and the thermocouple leads were made as
small as possible. To ensure that the bodies were maintained
isothermal, a high-conductivity aluminum-based thermal ep-
oxy was used to attach all leads and thermocouples.

Three thermocouples located within the test section were
used to measure the ambient temperature Ta.

The power to the resistance heaters ranged between 0.5– 11
W in increments of 0.5 W. Steady state was achieved when
the following three conditions had been satis� ed. First, the
temperature difference between two consecutive readings was
less than 0.1 C, the percent difference between two consecu-
tive temperature readings was less than 0.1%, and � nally a
minimum time of 20,000 s, based on the lumped-capacitance
of the body, must be exceeded. When these conditions were
achieved, the heater power and the thermocouple readings
were determined based on the average of the next � ve con-
secutive readings. All tests were conducted with half the data
obtained for heater power increasing from its lowest level to
its highest, and the other half of the data were obtained for
heater power decreasing from the high to low power levels.
Typically about 22 sets of data were obtained for each body.

The average surface temperature ranged between 30– 120 C;
and the average surface-to-ambient temperature drop ranged
between 7– 95 C. The thermophysical properties in the Nusselt
and Rayleigh numbers were evaluated at the � lm temperature
(Ts Ta)/2. The volumetric coef� cient of expansion was cal-
culated at the ambient temperature. Property equations were
developed23 from the tabulated data of Hilsenrath et al.24

The Nusselt and Rayleigh numbers for all bodies were based
on = 106.3 mm. The Rayleigh number range was from 8A

105 to 7 106 and the Nusselt number range was from 20
to 35.

The emissivity of each body was measured in a vacuum
system. The emissivity-area product A was determined for
each body by means of

4 4Q = A (T T ) (28)r s a

where Ts is the average of three thermocouple measurements
and Ta is the average of three thermocouples that were attached
to the walls of the bell-jar or freely suspended near the bell-
jar wall. The measured surface temperatures did not vary by
more than 1.5% and the ambient temperature had a small var-
iation of 0.9%. The power to the resistance heaters varied from
0.75 to 2.4 W in increments of 0.825 W to produce a surface
temperature range of 95– 190 C. The measured emissivity for
each body ranged between 0.081– 0.095.

The net heat transfer by natural convection Q was calculated
as the difference between the total power supplied to the re-
sistance heaters and the radiative heat loss plus lead losses [Q
= Q total (Qr Q leads)].

Conduction losses from each body along the heater leads
were calculated as 0.0024(Ts Ta), whereas the losses from
the thermocouple leads were calculated as 0.00041(Ts Ta)

number of thermocouples attached to the body. All conduc-
tion lead losses were based on conduction through a rod with
a diameter and thermal conductivity equivalent to the leads.

Comparison of Models and Air Data
The proposed general models for natural convection from

isothermal circular and square toroids and equivalent cylinders
will be compared against air data (Pr = 0.71) for which the
Prandtl number function F(Pr) = 0.513.

Circular and Square Cylinders

The air data of Clemes25 for a circular cylinder with L /d =
10.24 and a square cylinder with L /S = 10.13 are used to
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Fig. 5 Comparison of experimental data and prediction for a
circular and square toroid.

Fig. 4 Comparison of circular cylinder experimental data with
bounding solutions for L /d = 10.24 and 8.93.

Fig. 3 Comparison of experimental data25 with correlation equa-
tions for circular and square cylinders.

validate the proposed cylinder models that reduce to the fol-
lowing correlation equations:

0.682 1/4Nu = 4.24 Ra (29)A A0.625

for the circular cylinder and

0.625 1/4Nu = 4.12 Ra (30)A A0.603

for the square cylinder. The two values before the Rayleigh
number represent the upper and lower values of the body–

gravity function multiplied by the Prandtl number function.
The correlation equations and the data of Clemes25 are com-

pared in Fig. 3. The agreement between the correlation equa-
tions (which differ by less than 9%), for the circular cylinder
and the circular and square cylinder data is excellent over � ve-
to-six decades of the Rayleigh number. The very close agree-
ment of the data for the circular and square cylinders also
con� rms the proposed method of inscribing and circumscrib-
ing circular cylinders within and outside square cylinders to
obtain estimates of the body– gravity function.

The equivalent circular cylinder L /d = 8.93 used in this re-
search has the correlation equation

0.673 1/4Nu = 4.15 Ra (31)A A0.617

and the equivalent square cylinder L /S = 8.92 has the corre-
lation equation

0.617 1/4Nu = 4.05 Ra (32)A A0.596

The circular cylinder data of Clemes25 and the present data
are compared with the model predictions in Fig. 4. The two
sets of data are in excellent agreement with each other and
they lie between the bounds that differ by less than 9% at the
higher values of Rayleigh number. The data are very close to
the lower bound established for the L /d = 10.24 cylinder.

Circular and Square Toroids

The correlation equations for the circular and square toroids
in the present investigation, with D/d = 3.0, are based on the
exact solution value and the numerical value, respectively, for
the shape factor, and the upper and lower values of the body–

gravity functions as discussed in previous sections on the
body– gravity function.

The circular toroid equation reduces to

0.660 1/4Nu = 3.57 Ra (33)A A0.605

and for the square toroid the equation becomes

0.605 1/4Nu = 3.37 Ra (34)A A0.579

The circular toroid data and the corresponding predictions
are compared in Fig. 5. The agreement between the upper
bound equation and the data is excellent. The lower bound
predictions lie approximately 9% below the data.

The square toroid data and the model predictions that differ
by less than 4.5% are also compared in Fig. 5. The data lie
very close to the lower bound curve at the lower values of
Rayleigh number and fall between the two curves at the higher
values of Rayleigh number.

The comparisons shown in Figs. 3– 5 con� rm the validity
of the correlation equations that come from the general equa-
tions developed in this work. The general equations were based
on the general two-term model proposed by Yovano-
vich3– 5 for natural convection heat transfer from three-dimen-
sional, convex, isothermal bodies of arbitrary shape.



422 YOVANOVICH, CULHAM, AND LEE

It should be noted that the lower and upper bound values in
Eqs. (29), (31), and (33) were calculated based on F(Pr)G A

with Pr = 0.71, where the upper bound is a factor of 21/8 larger
than the lower bound. The effect of this factor is seen in Figs.
4 and 5.

Summary and Conclusions
General models for natural convection from horizontal iso-

thermal circular and square toroids and their equivalent cyl-
inders have been presented. Simple relationships are proposed
for accurate calculation of the diffusive limits (shape factors)
for the circular and square toroids for a wide range of their
outer-to-inner diameter ratios. Methods and relationships are
presented for the evaluation of the body– gravity functions for
the circular and square toroids and their equivalent cylinders.
The numerical values of the body– gravity function are found
to lie in relatively narrow ranges for both circular and square
toroids.

Results from an experimental program are also presented.
The air data are found to be in very good agreement with the
proposed models and their corresponding correlation equa-
tions. The circular toroid data agree well with the upper bound
model and the square toroid data lie between the bounds es-
tablished by the models based on the inscribed and circum-
scribed method. The difference between these two models is
approximately 4.4%, and the data were in excellent agreement
with the mean values of the two models.

The data from the equivalent circular and square cylinders
were in very good agreement with the proposed models.
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