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Abstract

A general model to predict transient thermal stresses in bimaterial systems subjected to arbitrary time
dependent thermal boundary conditions is developed. The model involves two components, one to
compute the transient thermal response in a bimaterial, and another to compute the stresses which arise
as a result of these changes in temperature. The solution to the governing equations for the temperature
distribution in each layer is obtained using the Laplace transformmethod. A numerical inversion scheme
is employed to obtain the solution in the time domain. This solution is then used to compute the thermal
loading terms for a quasi-static thermal stress analysis. The model predicts the axial stress in each layer
along with the normal and shear stresses acting at the interface at any time and for any type of thermal
input. The model not only accounts for the stresses which result from di�erential expansion between the
two layers, but also the stresses which arise as a result of di�erential bending between the two layers. It
is the latter e�ect which leads to greater delamination stresses. The entire model was developed using
the computer algebra system (CAS) Maple.

Nomenclature

Ai = Cross-sectional area � HiW , m2

B1; B2 = Constants
C1; C2 = Constants
D1 : : :C6 = Constants
CAS = Computer Algebra System
Ei = Young's modulus, GPa
Gi = Shear modulus � E=2(1+ �), GPa
hi = Film coe�cient, W=m2K
Hi = Thickness, m
Ii = Moment of inertia � 1

12(W H3
i ), m

4

ki = Thermal conductivity, W=mK
K = Constant
L = Length of bimaterial system, m

�
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m = Roots of Eq.(26)
M = Bending moment, Nm
N = Number of terms in a series
p = Real part of complex root of Eq.(26)
P = Axial force, N
q = Complex part of complex root of Eq.(26)
r = Real root of Eq.(26)
s = Laplace transform variable
t = Time, s
T = Temperature, K
W = Width of bimaterial system, m
x = Length coordinate
y = Thickness coordinate



Greek Symbols

�i = Thermal di�usivity, m2=s
�i = Coe�cient of thermal

expansion, (m=m)=K
�1;�2;�3 = Thermal loading terms
�i = Thermal strain
� = Normal stress, MPa
� = Shear stress, MPa

� = Arbitrary function
� = Interfacial transverse

compliance, GPa=m
	 = Interfacial shear

compliance, GPa=m
� = Radius of curvature, m

Subscripts and Superscripts

a = Denotes adhesive properties
c = Denotes contact properties
i = Denotes the ith layer
o = Denotes initial value
t = Denotes transition
xx = Denotes axial normal stresses
T = Denotes thermal e�ects

Math Symbols

f = Denotes the Laplace transform
of a function, � L(f)

j = Complex number, � p�1
H(�) = Heaviside step function
<(�) = Real part of complex number

Introduction

Bimaterial systems may be found in numerous engineering applications. Some of the more common
applications include laminated beams or micro-electronic chips. Most bimaterial systems are constructed
by bonding together two similar or dissimilar materials with an adhesive. Other systems may be formed
when a material is deposited onto a substrate by means of special deposition techniques. The latter
method usually does not involve the use of adhesives, instead, it relies on the self adhering properties
of the �lm material. Interfacial fracture, speci�cally delamination in bimaterials is the result of a loss
of adhesion between two layers having di�erent or similar mechanical and thermal properties, which are
subjected to thermal and/or mechanical loadings. Thermal loadings are the result of uniform temperature
changes or steady and transient thermal gradients.

Thermal stresses arise because each material expands or contracts at di�erent rates; but because of
mechanical restraint, adhesion between layers and internal restraint, shear and transverse normal (peel)
stresses are induced at the interface of the system along with axial stresses in each layer. A designer may
optimize the properties to minimize the stresses at some elevated temperature or for some steady thermal
gradient, however, under transient conditions these stresses cannot be avoided. Even material combina-
tions with the same mechanical properties and coe�cient of thermal expansion will experience thermally
induced interfacial stress when subjected to a thermal gradient. This is an important consideration in
the design of any bonded component.

There has been considerable research into the interfacial failure of microelectronic chip/substrate con-
nections and multilayered components1;2. Current research in the �eld of microelectronics packaging
has produced a number of simple models which consider both uniform temperature change and applied
loadings when computing stresses3�9. These models are all simple extensions of the application of a me-
chanics of materials approach to a bimetallic beam which was �rst developed by Timoshenko10. These
approaches assume a constant material temperature and do not consider thermal gradients.

In many bimaterial applications the system undergoes stress/strain reversals due to transient temper-
ature uctuations. The maximum temperature in the system may not occur when the environment
temperature is at its maximum. In addition, the di�erential strain at the interface may be much larger
during the initial stages of heating if heat di�uses slowly into the substrate, or if there is substantial con-



tact resistance at the interface due to a lack of adhesion or debonding between the adherends. Computing
stresses based upon steady state temperature distributions, may often underestimate the maximum (or
minimum) stresses. It is therefore necessary to determine the temperature pro�le as a function of time,
and to compute the stress distribution or maximum stress as a function of time. In order to achieve
this result, a combined transient thermo-mechanical model is needed. Unfortunately, no such model
exists, and many designers must resort to numerical methods such as �nite element analysis. Even when
resorting to �nite element analysis, the designer is often plagued with meshing problems near the edges
where stresses become large. Finally, complex thermal boundary conditions often cannot be modelled
with conventional computer codes.

This paper presents a new solution for predicting transient thermal stresses in a bimaterial by extending
a model from the literature5�7 to account for thermal bending e�ects produced by the transient thermal
gradients.

Thermal Model

In this section the solution for transient heat conduction in a bimaterial is presented. Classic thermoelas-
tic analysis allows the temperature and stress distributions to be computed separately if the mechanical
deformation of the system does not alter the temperature �eld11;12.

Since it is the through thickness temperature distribution of a bimaterial which produces the greatest
interfacial stresses, a one dimensional transient conduction model will be assumed. A two dimensional
transient temperature distribution may be solved, however, the e�ects of an axial temperature gradient
are small if the axial dimension is large relative to the total thickness, i.e. 2L >> (H1 +H2).

One dimensional steady state heat conduction in layered materials has been dealt with in all basic heat
transfer texts. The mathematical formulation of transient heat ow in layered materials has been dealt
with in a number of advanced texts on heat conduction13;14; however, solutions are generally complex for
systems with non-homogeneous boundary conditions, or systems with more than two layers. Often the
mathematical formulation of heat transfer in composite materials is used only as a guide for numerical
modelling. For the special case of a bimaterial, various analytic solution methods are available; such as
separation of variables or the Laplace transform method. Of these methods, the best suited for solving
transient heat conduction problems with non-homogeneous and/or time dependent boundary conditions
is the Laplace transform method.

The one dimensional temperature pro�le of the bimaterial system shown in Fig. 1 is given by the solution
of

@Ti
@yi

=
1

�i

@Ti
@t

(1)

for i = 1; 2 and subject to the boundary conditions presented in Table 1. The origin is taken at the
center of each layer. In addition to the boundary conditions given in Table 1, an initial condition for
each layer is required. For simplicity, the initial temperature in each layer will be taken to be uniform

Ti(yi; 0) = Ti;o (2)

however, an initial temperature distribution in each layer may also be prescribed.
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Fig. 1: Bimaterial System

Table 1: Thermal Boundary Conditions for a Bimaterial System

Top Face � @T1
@y1

����
y1=H1=2

=
h1
k1
fT11(t)� T1(H1=2; t)g

� @T1
@y1

����
y1=�H1=2

=
hc
k1
fT1(�H1=2; t)� T2(H2=2; t)g

Interface

k1
@T1
@y1

����
y1=�H1=2

= k2
@T2
@y2

����
y2=H2=2

Bottom Face � @T2
@y2

����
y2=�H2=2

=
h2
k2
fT2(�H2=2; t)� T21(t)g

The solution to this system of equations is obtained using the Laplace transform method13�17. The
general solution after taking the Laplace transform of Eq.(1) is

T(yi; s) = Bi cosh(
q
s=�i yi) + Ci sinh(

q
s=�i yi) +

Ti;o
s

(3)

The boundary conditions in Table 1 must also be transformed. After transformation, the boundary
conditions retain their form in Table 1, however, the variable t is replaced by the transform variable s,
and T is replaced by T which denotes transformation. Now applying the boundary conditions results
in a system of four equations which may be solved for the four unkown constants. The solution to this
system of equations is easily obtained using the computer algebra system (CAS) Maple18.

Having solved for the constants, all that remains is to de�ne the transformed boundary temperatures
T1;1(s) and T 2;1(s) and obtain the inverse Laplace transform. Obtaining the inverse transform is often
quite di�cult or impossible for a system such as the one above. Therefore, it would be bene�cial to



obtain the inverse transform through some other means such as numerical methods. Several methods
exist for numerically inverting the transformed solution19�21. They are discussed in the next section.

Numerical Inversion of the Laplace Transform

Several methods for numerically inverting the Laplace transform are available and are discussed in Chu
et al.19, Cheng et al.20, and Honig and Hurdes21. These methods provide a simple means of obtaining
the inverse Laplace transform to problems with no known inverse or for problems whose inverse requires
considerable mathematical e�ort.

In Chu et al.19, a method based upon using a Fourier series approximation of the complex inversion
integral is developed. This method is then applied to obtain the solution to two dimensional transient
heat conduction in composite �ns15. In Mujahid and Zedan16;17, this method is also applied in obtaining
the solution to one-dimensional transient conduction in a composite wall under both sudden and periodic
temperature changes at a boundary. Several other methods have been developed and are discussed in
Cheng et al.20 and Honig and Hurdes21. Each of these methods works well for particular types of
functions or over a particular time interval. One method from Cheng et al.20 and the method presented
in Chu et al.19 are discussed in this section.

Two numerical inversion algorithms which have been examined are given below. In each case the inverse
transform is represented by �(t) and its Laplace transform represented by �(s).

Fourier Series Method19
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Stehfest Method20

�(t) � ln 2

t

NX
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t

�
(5)

where

cn = (�1)n+N

2

min(n;N
2
)X

k=floor(n+1
2

)

k
N

2 (2k)!

(N2 � k)!k!(k� 1)!(n� k)!(2k� n)!

The inversion given in Eq.(4) is referred to as the Fourier Series method, while that given by Eq.(5) is
referred to as the Stehfest method. Both methods have been examined in detail by Muzychka22. The
advantages and disadvantages of each method are summarized in Table 2.

Each method works well for a wide variety of functions. The primary advantage of the Stehfest method
is its computational speed and accuracy. However, its primary disadvantage is that it does not invert
functions which are periodic or discontinuous. The Fourier series method, although not as e�cient
computationally, is more robust. It is capable of inverting periodic and discontinuous functions, such
as the triangular wave function, square wave function, and combinations of ramp and step inputs.
Approximately 50 terms are required when using the Fourier series method and 12 or 14 terms when



using the Stehfest method, to produce extremely accurate results. In addition, the Fourier series method
requires an additional parameter ct which is generally taken to be ct = 3 with little e�ect on error. The
e�ect of this parameter and the number of terms in the inversion series are discussed in Muzychka22.

Table 2: Summary of Numerical Inversion Algorithms

Characteristic Fourier Series Method Stehfest Method

Periodic Functions Yes No

Non-Periodic Functions Yes Yes

Discontinuous Functions Yes No

Extra Parameters 2 � ct � 6 None

Number of Terms 20 � N � 50 10 � N � 14(Even)

Divergence t! 0 t! 0

N odd or N � 20

Error Term Dependent (� 2%) Term Dependant (� 1%)

Steady Thermal Stress Model

In the previous sections the formulation and solution of the one dimensional transient temperature �eld in
layeredmaterialswith arbitrary boundary conditions was presented. Classic thermoelastic analysis allows
the solution of the stress �eld and temperature �eld to be computed independently if the mechanical
deformation of the system does not alter the temperature �eld11;12. This section discusses the prediction
of thermal stresses in a bimaterial system which is subjected to a steady thermal gradient.

Thermal stresses in bimaterial strips and plates were �rst examined by Timoshenko10. Timoshenko10

used a mechanics of materials approach to predict the axial stresses and deections of bimetallic strips
and plates under uniform thermal loading and various restraint conditions. The main advantage of this
model is its simplicity and accuracy in predicting axial stresses and forces. However, it does not predict
the edge stresses which are a result of self equilibriating forces which arise due to the thermal loading.
Timoshenko10 recognized their presence, but stated that they were of a \local" type concentrated near the
edges. These local stresses are primarily responsible for edge cracking and delamination in bimaterials.
Extension of Timoshenko's model for a through thickness thermal gradient is discussed later.

Various models to predict the interlaminar stresses in a bimaterial beam or strip have been developed
by a number of researchers. All of these models typically fall into one of two classes: either a mechanics
of materials approach or a theory of elasticity approach. The simpler of these two types of models is the
mechanics of materials approach.

Simple models proposed by Chen and Nelson3, Grimado4, Mirman5�7, and Suhir8;9 are based on the
mechanics of materials approach. A number of these models were originally developed for analysis of
laminated beams and layered microelectronic components. The models proposed by Chen and Nelson3

and Grimado4 may be obtained as special cases of the model generalized by Mirman5�7. The models
of Chen and Nelson3 and Grimado4 consider two materials bonded together with an adhesive, which is
treated as a third material. The model presented by Mirman5�7, which is also referred to as the Built
Up Bar (BUB) theory, also considers materials which are joined without an adhesive. Finally, Suhir8;9

has also developed a number of approximate solutions for bimaterial and multilayered structures.

The models which will be examined more closely are the model of Timoshenko10 for computing axial
stresses and the model of Mirman5�7 for computing interfacial stresses. The results of Timoshenko10may



be obtained from the more general model presented by Mirman5�7. These models have been chosen for
their simplicity and for their accurate determination of the interlaminar and axial stresses. Comparisons
to numerical data obtained through �nite element analysis23�25 demonstrate the accurate approximation
of applying a mechanics of materials approach. The development of these models is discussed below.

The details of the derivation of the basic equations may be found in Mirman5�7 and will not be presented
here. Application of the mechanics of materials approach yields two di�erential equations, one for the
axial force P (x) and one for the bending momentM(x). They are given below:

1

	

d2P

dx2
�AP (x)�BM(x) = �T2 � �T1 +

MT
2 H2

2(EI)2
+
MT

1 H1

2(EI)1
(6)

and

1

�

d4M

dx4
+ CM(x) +BP (x) =

MT
2 H2

(EI)2
� MT

1 H1

(EI)1
(7)

where

A =

(
1

E1A1
+

1

E2A2
+

H2
1

4E1I1
+

H2
2

4E2I2

)
(8)

B =

�
H1

2E1I1
� H2

2E2I2

�
(9)

C =

�
1

E1I1
+

1

E2I2

�
(10)

are constants which depend upon the material properties and dimensions of the bimaterial system. The
interfacial compliances are computed from the following equations

	 =

�
Ha

Ga
+K

�
H1

G1
+
H2

G2

���1
(11)

and

� =

�
Ha

Ea
+K

�
H1

E1
+
H2

E2

���1
(12)

where Ha is the thickness of the adhesive layer if present. K is a constant which is usually set to K = 0
if the adhesive layer is relatively thick. If no adhesive is present, the value of K may be chosen to be
K = 1 if the adherands are of equal thickness for both the shear 	 and transverse � compliances, and
K = 1=3 if the adherands are of unequal thickness for transverse compliance only. The choice of values
for this constant is discussed in Mirman6 and in Muzychka22 who examined the e�ect of this parameter
by comparing the stress distributions predicted by solution of Eqs. (6,7) with data obtained from �nite
element analysis presented in Eischen et al.23.



The thermal loading terms in Eqs. (6,7) are de�ned as follows:

�Ti = �i(Ti;avg � Ti;o) = �i

(
1

Hi

Z Hi=2

�Hi=2
Ti(yi)dyi � Ti;o

)
(13)

and

MT
i =

Z Hi=2

�Hi=2
�(yi)yidyi =

Z Hi=2

�Hi=2
Ei�iTi(yi)yidyi (14)

The system of equations given by Eqs. (6,7) are subjected to the following boundary conditions:

dP (0)

dx
= 0;

dM(0)

dx
= 0;

d3M(0)

dx3
= 0 (15)

P (L) = 0; M(L) = 0;
dM(L)

dx
= 0 (16)

Once the general solutions for the axial force P (x) and bending momentM(x) are obtained, the interfacial
stresses per unit width may be obtained from the following relationships:

�(x) = � d

dx
P (x) (17)

and

�(x) =
d2

dx2
M(x) (18)

The axial stresses may be computed from the expressions derived by Timoshenko10 given below

�xx;1 = � P

A1
+
E1y1
�

(19)

and

�xx;2 =
P

A2
+
E2y2
�

(20)

where

� =
E1I1 + E2I2
(H1 +H2)P

(21)

The axial stress distributions computed from Eqs.(19,20) are exactly the same as those computed from
the equations developed by Timoshenko10 when the axial force P is evaluated at a position far removed
from the edges, i.e. P = P (0).

Finally, if the state of stress is plane strain rather than plane stress, then each layer is treated as a bar
of unit width (W = 1) having a coe�cient of thermal expansion which is replaced by an e�ective value
de�ned by �i = �i(1 + �i), and an elastic modulus replaced with Ei = Ei=(1� �2i ) (see Mirman6;7).



Solution Procedure

The solution to the system of equations given by Eqs.(6,7) subject to the boundary conditions given
by Eqs.(15,16) is easily obtained. First, Eq.(6) is substituted into Eq.(7) resulting in a new sixth order
di�erential equation for the axial force P (x) which is given below

d6

dx6
P (x)�	A

d4

dx4
P (x) + �C

d2

dx2
P (x) (22)

+�	(B2 � CA)P (x) = ��	(B�3 + C(�1 ��2))

where

�1 = �T1 � �T2 (23)

�2 =
MT

1 H1

2E1I1
+
MT

2 H2

2E2I2
(24)

�3 =
MT

1

E1I1
� MT

2

E2I2
(25)

are the thermal loading terms. The auxiliary equation for Eq. (22) is given by

m6 � �Am4 +�Cm2 +�	(B2 � CA) = 0 (26)

Equation (26) has six roots, two real and four complex. The solution for these roots is easily obtained
in all (CAS) such as Maple18. The form of these roots are:

r;�r; p+ qj; p� qj;�p+ qj;�p� qj (27)

The general solution for P (x) in terms of the real roots r and the real and complex parts, p and q

respectively, of the complex roots is

P (x) = D1 cosh(rx) +D2 sinh(rx) + (D3 cosh(px) +D4 sinh(px)) cos(qx) (28)

+(D5 cosh(px) +D6 sinh(px)) sin(qx) +
C(�2 ��1)�B�3

B2 � CA

Finally, the solution for the bending moment M(x) is obtained by substituting Eq.(28) into Eq.(6).
Application of the boundary conditions Eqs.(15,16) results in six equations in six unknowns which may
be solved for using a (CAS) such as Maple18. This completes the solution for the interfacial and axial
stresses in a bimaterial.



Transient Thermal Stress Model

In the previous section the solution to the thermal stress equations were presented in terms of Ti(yi),
the temperature distribution in each layer. However, the solution in terms of Ti(yi; t) is desired for the
arbitrarily prescribed boundary conditions T1;1(t) and T2;1(t). Using the results presented in the �rst
section, the temperature distribution in the transform domain is substituted into the solution for the
interfacial stresses and numerically inverted using Eqs.(4,5). The thermal loading terms are now de�ned
as follows:

�Ti = �i

(
1

li

Z li=2

�li=2
T i(yi; s)dyi � To

)
(29)

and

MT
i =

Z li=2

�li=2
Ei�iT i(yi; s)yidyi (30)

The entire procedure for determining transient thermal stresses in bimaterial systems subject to arbitrary
time dependant boundary conditions is outlined in Table 3.

Table 3: General Procedure to Compute Transient Thermal Stresses

Step Description

1 Solve system de�ned by Eq.(3) and Table 1 for B1; B2; C1, and C2

2 Use Eq.(28) to solve Eqs.(6,15,16) for M(x) and D1 �D6

3 De�ne T 1;1(s) and T2;1(s)
4 De�ne the thermal and mechanical properties ki; hi; �i; �i; Ei; Gi; �i

and the dimensions Hi; L;W

5 De�ne the state of stress i.e. Plane Stress or Plane Strain
6 Compute the roots to Eq.(26) and �nd r; p; q

7 Compute �1;�2;�3 using Eqs.(29,30) and the results from step 1
8 Compute �(x; s); �xx(y; s); �(x; s)
9 Invert using Eqs.(4,5) to get �(x; t); �xx(y; t); �(x; t) for all t
10 Compute �(x; t); �xx(y; t); �(x; t)

Following the procedure outlined in Table 3, computation of the transient thermal stresses in a bimaterial
system is given below for the following thermal boundary conditions:

8<
: T1;1(t) = To +

(Tmax � To)

to
H(tt � t) + (Tmax � To)H(t� tt)

T2;1(t) = To

(31)

where To is the initial temperature, Tmax is the maximum temperature, tt the time at which the maxi-
mum temperature is reached, and H(�) is the Heaviside step function. The T1;1(t) boundary condition
represents a ramp startup condition followed by a uniform temperature. The Laplace transform of these
boundary conditions is



8>><
>>:

T1;1(s) =
To
s
+

(Tmax � To)(1� exp�tts)

tts2

T2;1(s) =
To
s

(32)

For this particular example the thermal and mechanical properties of the bimaterial system are given in
Table 4. In addition to the properties presented in Table 4, Tmax = 75C, To = 25C, tt = 1800 s, and the
heat transfer coe�cients hi =1, i.e. perfect contact. The state of stress is taken as plain strain assuming
�i = 0:3. The complete solution was programmed using the symbolic programming language ofMaple18.
Subroutines or procedures were written to solve each system of equations symbolically, compute the
expressions for each stress, compute the roots to Eq.(26), and numerically invert the Laplace transform
solution into the time domain. In order to provide a computationally e�cient procedure, the numerical
inversion was computed symbolically and the general expression evaluated at each point in time, rather
than numerically invert each point in time. This process is similar to expanding a function in a series
representation.

Table 4: Mechanical and Thermal Properties

Property Aluminum PMMA

k (W=mK) 230 0:185
� (m2=s) 8:45e�5 1:10e�7
E (GPa) 70 3
� ((m=m)=K) 24e�6 63e�6
H (mm) [in] 2 [1=16]; 4 [1=8]; 7 [1=4] 13 [1=2]
2L; 2W (mm) 150 150

The results for the maximum interfacial stresses �(L; t) and �(L; t) of this example are presented in Figs.
2 and 3. It can be seen that the maximum shear stress follows the prescribed thermal boundary condition
with the maximum stress occurring much later than the maximum surface temperature. However, the
transverse normal or peeling stress does not behave the same way. In this particular example the
maximum peel stress occurs in the early stages of heating before the maximum surface temperature is
reached. Also, the steady state value of the peel stress is much less than that experienced in the early
stages of heating, demonstrating the need for a transient analysis.

Summary and Conclusions

A general procedure to analytically compute transient thermal stresses in bimaterials for arbitrary ther-
mal boundary conditions was presented. The model was developed using the computer algebra system
Maple18. This (CAS) provided the symbolic solution for two complicated systems of equations which
describe the temperature and stress distributions in the bimaterial.

The solution to the temperature problem was obtained using the Laplace transform method and results
obtained in the time domain by means of a numerical inversion scheme. This method of solution en-
ables the prediction of the interfacial and axial thermal stresses for complex time dependant boundary
conditions such as triangular waves, square waves, and/or combinations of ramp and step inputs.

The thermal stress model was based upon a mechanics of materials approach which was generalized
by Mirman7;8. This model is an extension of a simpler model originally proposed by Timoshenko10 for
computing the axial stress distribution in a bimaterial subject to a uniform temperature change.
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Finally, illustration of the method for a transient boundary condition composed of a ramp and step
input showed that prediction of the maximum peel stress under steady conditions would show smaller
or negative stresses, where as, the transient solution shows that a very large positive maximum stress
occurs during the initial heating stage.
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