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Abstract

A review of previously published models and solutions pertinent to the issue of modeling thermal resistances
of diamond on copper heat sink systems is presented. The many particular solutions are shown to be special
cases of the comprehensive model developed for a circular heat source in perfect thermal contact with the top
surface of a compound disk which consists of two isotropic layers in perfect thermal contact. The bottom surface
of the compound disk is subjected to a convective or contact cooling condition. Whenever possible simple models
and correlation equations are presented for ease of computation. Bounds are presented for estimating the overall
thermal resistance of several important cases.

Nomenclature

a = source radius, (m) k = thermal conductivity, (W=mK)
Ac = contact area, (m2) q = heat ux, (W=m2)
At = ux tube area, (m2) Q = total heat ow, (W )
b = heat spreader radius, (m) R = thermal resistance, (oC=W )
Bi = Biot number, � hb=k t = layer thickness, (m)
E(�) = complete Elliptic integral T = temperature, (oC)
h = convective coe�cient, (W=m2K) r; z = polar coordinates
J0(�); J1(�) = Bessel functions

Greek Symbols Subscripts

�n = eigenvalues 1; 2 = �rst and second layers
� = relative source size, � a=b
� = conductivity ratio, � k1=k2 Superscripts
� = heat ux distribution parameter, see Fig. 2
 = dimensionless spreading resistance q = isoux solution
� = dimensionless thickness, � t=b T = isothermal solution

Introduction

The recently published paper of Hui and Tan (1994) was the motivation for this review article. In their paper an
elegant mathematical solution was presented for the general problem depicted in Fig. 1a which shows a circular heat
source of radius a in perfect thermal contact with a heat spreader modeled as a circular disk of radius b, thickness
t and thermal conductivity k1 which is in perfect thermal contact with a half-space of thermal conductivity k2.
They assumed a uniform heat ux distribution over the heat source area, and all other free boundaries were taken
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Figure 1: Typical Spreading Resistance Problems

to be adiabatic. They also considered the special cases shown in Fig. 1b and c, where the radius of the spreader
b!1 and they presented the second solution as a semi-in�nite integral. Solutions for the centroid and area-average
temperatures of the heat source were given. They presented numerical results only for k1=k2 = 4 corresponding to
a diamond-copper system, for several values of the relative spreader thickness: 0:25 � t=a � 3:0, and for several
values of the relative spreader size: 3 � b=a <1.

Hui and Tan (1994) did not present simpli�cations of their solutions; they did not indicate whether their
solution could be used to handle the problem depicted in Fig. 1d; and their review of other pertinent publications
was limited.

One objective of this review is to bring to the readers attention the numerous related publications that give
solutions to particular problems that are not handled by the Hui and Tan (1994) results. A second objective is to
present simpli�cations, correlation equations and approximations that have been presented by several researchers.
A third objective is to present the comprehensive solution developed by Yovanovich et al. (1980) for the system
depicted in Fig 2 which shows a circular heat source of radius a in perfect contact with the top surface of a
compound circular disk of radius b and overall thickness t which is cooled over its entire bottom surface through
either a uniform convective or contact conductance h. The compound disk consists of two isotropic materials of
thermal conductivities: k1; k2, and thicknesses: t1; t2, respectively. The free surfaces of the compound disk are
adiabatic and the heat ux over the heat source region is either uniform or has the shapes shown in Fig. 2. It will
be shown that the general solution presented in this paper contains the particular results presented by Hui and
Tan (1994), and several important results which appear in other published works.
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Figure 2: General Two Layer Compound Disk Problem

General Review of Flux Tube and Half-Space Solutions

The solutions pertinent to this topic have been obtained for the heat ux tube and the half-space (or semi-in�nite
space). Since the ux tube solutions are general, they will reduce to the half-space solutions.

The ux tube solutions are given in terms of in�nite series, whereas the half-space solutions are given in terms
of integrals.

Flux Tube Solutions

The general review begins with the ux tube solutions. The ux tube consists of a circular heat source area of
radius a which is in perfect thermal contact with a layer of radius b and thickness t1, as shown in Fig. 3c. The layer
is in perfect contact with the substrate whose thermal conductivity is k2 and with thickness t2 !1. The thermal
conductivities are assumed to be isotropic. The thermal spreading (constriction) resistance has been obtained for
the isoux and isothermal boundary conditions speci�ed over the heat source area. Other boundary conditions
have also been examined. The solutions have been reported for i) conductive layers, k1 > k2, or ii) resistive layers,
k1 < k2.

Antonetti and Yovanovich (1985) presented an analytic solution for a single, conductive layer for both isothermal
and isoux conditions. In a technical note Board (1973a) presented analytic solutions for the e�ect of multiple layers
on the spreading resistance. Hui and Tan (1994) presented analytic solutions for conductive layers for the isoux
boundary condition. Kennedy (1960) presented several analytic solutions for k1 = k2 for the maximum and area-
average source area temperature for the isoux boundary condition. Mal'kov et al. (1969) examined the e�ect of
soft metal coatings and linings on the spreading resistance. Mikic and Carnasciali (1970) presented an approximate
solution for determining the e�ect of thermal conductivity of plating materials on the spreading resistance. In a
recent paper Muzychka et al. (1996) presented analytic solutions for determining the e�ects of relative thicknesses
and relative thermal conductivities of multiple layers. They examined the isoux and the equivalent isothermal
ux boundary conditions. Their solutions are valid for any combination of thermal conductivities. Negus and
Yovanovich (1984a) presented accurate correlation equations of the dimensionless spreading resistance for the
isoux and equivalent isothermal ux boundary conditions for the case of k1 = k2. In a companion paper Negus
and Yovanovich (1984b) used the method of optimized images to calculate accurately the spreading resistance for the
isothermal boundary condition for k1 = k2. Negus et al. (1985) examined the e�ect of boundary conditions on the
thermal constriction (spreading) resistance of a single conductive or resistive layer. Negus et al. (1989) demonstrated
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Figure 3: General Two Layer Compound Disk and Three Special Cases

that for the isoux boundary condition that the dimensionless spreading resistance de�ned as k1
p
AcRc is a weak

function of the relative size of the heat source area de�ned as
p
Ac=At where Ac is the source area and At is the ux

tube cross-section area. They examined three combinations: i) circular area on circular ux tube, ii) square area on
a square ux tube, and iii) a circular area on a square ux tube. The results were obtained for k1=k2 = 1. Schankula
et al. (1982) presented analytic and experimental results for the e�ect of oxide �lms on the constriction resistance of
zirconium alloys for nuclear applications. Simon et al. (1961) presented analytic results for the analogous problem
of current ow from an isopotential circular source area into a circular ux tube. Yip (1975) reported analytical and
experimental results for the e�ect of oxide �lms on thermal constriction resistance. Yovanovich (1976a) developed
a general solution for arbitrary axisymmetric ux distributions for k1 = k2. By means of the general solution he
then presented the general solution for a family of axisymmetric ux distributions of the form: C

p
1� u2

�
where

C is a constant, u = r=a is any point in the source area, and � is a ux distribution parameter. Yovanovich
presented three solutions for � = �1=2; 0; 1=2. He also reported numerical values for the dimensionless constriction
(spreading) resistance for a range of relative source size � = a=b as well as some correlation equations.

Half-Space Solutions

Several studies have produced results for the circular heat source area of radius a placed in perfect thermal
contact with an isotropic layer of thermal conductivity k1 which is in perfect thermal contact with an isotropic
half-space of thermal conductivity k2, as shown in Fig. 3d. The dimensionless spreading resistance in this case
depends on the relative layer thickness t1=a and the relative layer thermal conductivity k1=k2, and the boundary
condition over the source area.

Beck et al. (1993) presented a novel surface element method for calculating the maximum temperature. They
developed a set of convenient algebraic equations for calculation of the maximum temperature for a diamond layer
on a copper half-space for the isoux boundary condition. Board (1973b) presented the solution for the isoux



annular source on a single layer in contact with a half-space. He developed simple approximate expressions for
both conductive and resistive layers for the circular source. Dryden (1983) developed an analytic solution for the
equivalent isothermal boundary condition for a single layer. He presented approximate solutions valid for thin and
thick layers for both conductive and resistive layers. In a second paper Dryden et al. (1985) developed short and long
time solutions for the e�ect of a single layer which is either conductive or resistive, and for arbitrary, axisymmetric
ux distributions. Hui and Tan (1994) also developed the solution for an isoux source on a single layer. Yovanovich
(1976b) developed a surface element method for determining the constriction (spreading) resistance of arbitrary
singly or doubly-connected heat source areas which are subjected to the isoux boundary condition for the case
where k1 = k2.

Finite Circular Disk Solutions

The solutions for the spreading resistance of a circular source of radius a placed in perfect thermal contact with
an isotropic layer of thermal conductivity k1 and thickness is t1, which is in perfect thermal contact with a second
layer of thermal conductivity k2 and thickness t2. The two layers form a compound disk of radius b and thickness
t = t1 + t2 as shown in Fig. 3a. The lower face of the disk is in contact with a thermal sink through a uniform
convective or contact conductance h. The free surfaces of the disk are adiabatic.

The dimensionless constriction (spreading) resistance will be a function of the boundary condition over the
heat source area, the basis for the constriction resistance (average or maximum source temperature), the relative
layer thicknesses: t1=a; t2=a, the relative conductivity k1=k2, the relative size of the heat source � = a=b and the
boundary condition at the sink boundary Bi = hb=k. The solution to this general problem clearly contains the
solutions described above. Kennedy (1960) presented the solution for the maximum temperature for the isoux
source for k1=k2 = 1 and Bi = 1. In a technical note Kharitonov et al. (1974) presented the analytic solution
for the isoux circular source. They also proposed an approximate relationship for the ratio of the spreading
resistance with a layer to the spreading resistance without a layer. The simple relationship is reported to be
accurate to approximately 30%. Yovanovich et al. (1980) presented the most comprehensive solution valid for any
axisymmetric ux distribution over the source area. They reported analytic results for three ux distributions.
Saabas et al. (1985) developed the analytic solution for the isoux circular source area and the isoux annular
area placed in perfect contact with a compound disk. The solution can handle the special case of a circular heat
source and a circular heat sink with uniform ux over both areas. Nelson and Sayers (1992) reported in tabular and
graphical form the results of an extensive numerical study for the isoux source. Song et al. (1994) and Lee et al.
(1995) in two related papers presented analytic solutions for the isoux circular source. They reported expressions
for the area-average and maximum temperatures. They also proposed a simple closed form expression which they
reported is accurate to 10% of the full solution. They reported that their computed full solution results were in
excellent agreement with the numerical values reported by Nelson and Sayers (1992).

Since the solution for the compound disk is more general than the ux tube and half-space solutions, it will be
considered in the subsequent section. The general solution of Yovanovich et al. (1980) will be examined in detail
to reveal its characteristics and to show that it reduces to the particular solutions presented in the papers reviewed
above.

Spreading Resistance Within Compound Disks

The compound disk is shown in Fig. 2. The disk consists of two isotropic materials of thickness: t1; t2 and
thermal conductivities: k1; k2 which are in perfect contact. The radius of the compound disk is denoted b and its
thickness is denoted t = t1 + t2. The lateral boundary r = b is adiabatic, the face at z = t is either cooled by
a uid through the �lm conductance h or it is in contact with a heat sink through a contact conductance h. In
either case h is assumed to be uniform. The face at z = 0 consists of the heat source area of radius a and the
remainder of that face a < r � b is adiabatic. The boundary condition over the contact area can be modeled as
i) uniform heat ux or ii) isothermal. The complete solution for these two boundary conditions has been given by
Yovanovich et al. (1980) The general solution for the dimensionless spreading parameter  = 4k1aRc depends on
several dimensionless parameters: � = t=b; �1 = t1=b; �2 = t2=b; � = a=b; � = k1=k2; Bi = hb=k1; �. The parameter
� de�nes the heat ux distribution over the contact area. When � = 0, the heat ux is uniform (isoux), and
when � = �1=2, this heat ux distribution is called the equivalent isothermal distribution because it produces an
almost isothermal contact area provided a=b < 0:6. The general compound disk solution given below reduces to
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Figure 4: Special Cases of the Two Layer Compound Disk for k2 = k1

the several special cases shown previously in Fig. 3 and in Fig. 4.

Mathematical Formulation

The governing equation for the steady-state axisymmetric temperature distributions within the layer 0 � z � t1
of thermal conductivity k1 and within the substrate t1 � z � t = t1 + t2 of thermal thermal conductivity k2 is

r2Ti = 0; i = 1; 2 (1)

where

r2 =
@2

@r2
+
1

r

@

@r
+

@2

@z2
(2)

The boundary condition along the axis r = 0 in both regions is the symmetry condition:

@Ti
@r

= 0; i = 1; 2 (3)

The boundary condition along the lateral boundary r = b in both regions is the adiabatic condition:

@Ti
@r

= 0; i = 1; 2 (4)

The boundary conditions over the top surface z = 0 of the �rst layer are

�k1 @T1
@z

= q (r) ; 0 � r < a and � k1@T1
@z

= 0; a < r � b (5)



where the heat ux distribution over the heat source area 0 � r � a can be i) uniform where q (r) = Q=(�a2), or
ii) the equivalent isothermal heat ux distribution q (r) = Q=2�a

p
a2 � r2 where Q is the total heat transfer rate

dissipated by the heat source. The perfect contact boundary conditions along z = t1; 0 � r � b are

T1 = T2; �k1@T1
@z

= �k2@T2
@z

(6)

The �nal boundary condition along the lower face z = t; 0 � r � b is the Robin condition

�k2
@T2
@z

= h (T2 (r; t)� Tref) (7)

where Tref is some convenient reference temperature.

Thermal Resistances

Total System Resistance

The total resistance of the system is de�ned as

QRtotal = �T1 (0)� Tref (8)

where the area-mean source temperature is de�ned as

�T1 (0) =
1

�a2

Z a

0

T1 (r; 0) 2�rdr (9)

Spreading (Constriction) Resistance

The spreading (constriction) resistance is one of the components of the total resistance

Rtotal = Rc +R1D (10)

where the one-dimensional conduction resistance of the system is

R1D =
t1

k1�b
2
+

t2

k2�b
2
+

1

h�b2
(11)

The general solution is

 =
8 (� + 1)

��

1X
n=1

An (n; �)Bn (n; �; �1)
J1 (�n�)

�n�
(12)

The coe�cients An depend on the heat ux parameter �. They become for � = �1=2:

An =
�2� sin (�n�)
�2nJ

2
0 (�n)

(13)

and for � = 0:

An =
�2�J1 (�n�)
�2nJ

2
0 (�n)

(14)

The function Bn is de�ned as

Bn =
�n tanh (�n�1) � 'n

1� �n
(15)

and the two functions which appear in the above relationship are de�ned as

�n =
�� 1

�
cosh (�n�1) [cosh (�n�1) � 'n sinh (�n�1)] (16)



and

'n =
�n + Bi tanh (�n� )

�n tanh (�n� ) +Bi
(17)

The eigenvalues �n are the positive roots of J1 (�) = 0. They can be computed quickly and accurately by means of
the modi�ed Stokes approximation (Muzychka et al. 1996):

�n =
�n
4

�
1� 6

�2n
+

6

�4n
� 4716

5�6n
+

3902918

70�8n

�
; n � 1 (18)

where �n = � (4n+ 1).

Characteristics of 'n

The function 'n accounts for the e�ects of the parameters: �n; �; Bi. For limiting values of the parameter Bi
it reduces to

'n = tanh (�n� ) ; Bi!1 (19)

and
'n = coth (�n� ) ; Bi! 0 (20)

For all 0 < Bi <1 and for all values � > 0:72, tanh (�n� ) = 1 for all n � 1. Therefore �n = 1 for n � 1.

Characteristics of Bn

When �1 > 0:72; tanh(�n� ) = 1, �n = 1 for all 0 < Bi <1, therefore Bn = 1 for n � 1. These characteristics
lead to the following ux tube solutions.

Spreading Resistance Within Flux Tubes

The general compound disk solution reduces to the ux tube solutions, as shown in Fig. 4c and presented by
Yovanovich (1976a):
for � = �1=2:

 =
8

��

1X
n=1

J1 (�n�) sin (�n�)

�3nJ
2
0 (�n)

(21)

and for � = 0:

 =
16

��

1X
n=1

J21 (�n�)

�3nJ
2
0 (�n)

(22)

The two ux tube solutions have been correlated by Negus and Yovanovich (1984a) over a wide range of the
parameter �, (0 < � � 0:9). They reported for � = �1=2:

 T = 1� 1:40978�+ 0:34406�3+ 0:04305�5+ 0:02271�7 (23)

and for � = 0:
 q = 1:08076� 1:41042�+ 0:26604�3� 0:00016�5+ 0:058266�7 (24)

where the superscripts T and q denote the equivalent isothermal and isoux solutions respectively. For small values
of � the thermal spreading parameter for the isoux boundary condition is approximately 8% greater than the
spreading parameter for the isothermal boundary condition.

Spreading Resistance Within Isotropic Finite Disks

The dimensionless spreading resistance for isotropic � = 1 �nite disks �1 < 0:72 with negligible thermal resistance
at the heat sink interface Bi =1, as presented in Fig. 4b, is given by the following solutions:
for � = �1=2:

 =
8

��

1X
n=1

J1 (�n�) sin (�n�)

�3nJ
2
0 (�n)

tanh (�n� ) (25)



and for � = 0:

 =
16

��

1X
n=1

J21 (�n�)

�3nJ
2
0 (�n)

tanh (�n� ) (26)

If the external resistance is negligible Bi ! 1, the temperature at the lower face of the disk is assumed to be
isothermal. The solutions for isoux � = 0 heat source and isothermal base temperature were given by Kennedy
(1960) for i) the centroid temperature and ii) the area-average contact area temperature.

Correlation Equations for � = 0 and 0 < Bi <1
The solution for the isoux boundary condition and with external thermal resistance was recently re-examined

by Song et al. (1994) and Lee et al. (1995). They nondimensionalized the constriction resistance based on the
centroid and area-average temperatures using the square root of the contact area as recommended by Negus et al.
(1989), and compared the analytic results against the numerical results reported by Nelson and Sayers (1992) over
the full range of the independent parameters: Bi; �; � . Nelson and Sayers (1992) also chose the square root of the
contact area to report their numerical results. The agreement between the analytical and numerical results were
reported to be in excellent agreement.

Song et al. (1994) and Lee et al. (1995) developed simple closed-form expressions for the dimensionless
constriction resistance based on the area-average and centroid temperatures. They de�ned the dimensionless
constriction parameter as  =

p
�kaRc and gave the following expressions:

for the area-average temperature

 ave =
1

2
(1� �)3=2'c (27)

and for the centroid temperature:

 max =
1p
�
(1� �)'c (28)

with

'c =
Bi tanh (�c� ) + �c
Bi + �c tanh (�c� )

(29)

and

�c = � +
1p
��

(30)

Song et al. (1994) and Lee et al. (1995) reported that the above approximations are within �10% of the analytical
results and the numerical results of Nelson and Sayers (1992). They did not, however, indicate were the maximum
errors occur.

Spreading Resistance of Single Layer on Flux Tube

In a recent publication by Muzychka et al. (1996) solutions were presented for the e�ect of multiple layers on
the thermal constriction resistance of a circular heat source which is subject to either i) a uniform heat ux or
ii) the equivalent isothermal heat ux. The solution for an isoux circular heat source in perfect contact with a
single layer of thickness t1 and thermal conductivity k1 which is placed in perfect thermal contact with an isotropic
ux tube whose thermal conductivity is k2 as shown in Fig. 3c is presented next. The dimensionless spreading
resistance which is de�ned as  = 4k1aRc is given by

 =
16

��

1X
n=1

J21 (�n�)

�3nJ
2
0 (�n)

� (31)

The e�ects of the layer and substrate thermal conductivities and the layer thickness are determined by the parameter

� =
(1 + k2=k1) + (1� k2=k1) exp (�2�n��1)
(1 + k2=k1)� (1� k2=k1) exp (�2�n��1) (32)



where � = a=b is the relative contact radius, and �1 = t1=a is the relative layer thickness. The parameter �n are the
roots of J1 (�n) = 0 and they are computed quickly and accurately by means of the modi�ed Stokes approximation
given above. The parameter � is clearly equal to one when k2=k1 = 1 and when the product ��1 � 0:72. This
solution then approaches the ux tube solution developed for an isotropic ux tube whose thermal conductivity is
k1 (Fig. 4)

Single Layer on Half-Space Solutions

Equivalent Isothermal Flux

Dryden (1983) obtained the solution for the equivalent isothermal heat ux distribution

q (r) =
Q

2k1�a
�
a2 � r2�1=2 (33)

He used the Hankel transform to obtain the temperature distributions within the layer and the substrate. The
area-average temperature �Tc of the contact area was obtained and by means of the de�nition Rc = �Tc=Q he obtained
the expression for the constriction resistance which is reported below in a modi�ed form:

Rc =
1

�k1a

Z 1

0

�
1 +K exp (�2�t=a)
1�K exp (�2�t=a)

�
J1 (�) sin (�)

d�

�2
(34)

where the thermal conductivity parameter K is de�ned as

K =
1� k2

k1

1 +
k2
k1

(35)

The range of this parameter is [�1; 1]. It has the values �1; 0; 1 corresponding to the values k2=k1 =1; 1; 0 respec-
tively. The function that appears within the square brackets accounts for the e�ects of the thermal conductivity
ratio k2=k1 and the relative thickness of the layer t=a.

Characteristics of the Dryden Solution

For k2 = k1, K = 0, the solution reduces to the well-known problem of an isothermal contact area situated
on the surface of an isotropic half-space of thermal conductivity k1 whose solution is (Carslaw and Jaeger, 1959,
Yovanovich, 1976b)

Rc =
1

�k1a

Z 1

0

J1 (�) sin (�)
d�

�2
=

1

4k1a
(36)

If k1 6= k2 and t=a! 0, then the solution reduces to

Rc =
1

�k2a

Z 1

0

J1 (�) sin (�)
d�

�2
=

1

4k2a
(37)

Dryden (1983) proposed two simple expressions for thin and thick layers for the general case k1 6= k2.

Thin Layers: 0 < t=a � 0:10

The spreading resistance is

Rc =
1

4k2a
+

1

�k1a

�
t

a

�"
1�

�
k1
k2

�2
#

(38)

which consists of two terms. The �rst term is the spreading resistance within the substrate and the second term is
a correction factor that accounts for the e�ects of the relative layer thickness and the thermal conductivity ratio.



Thick Layers: 2 < t=a <1
The spreading resistance is

Rc =
1

4k1a
� 1

2�k1a

�a
t

�
ln

�
2

1 + k1=k2

�
(39)

where the �rst term is the constriction resistance within the layer and the second term is the correction factor due
to the relative layer thickness and the conductivity ratio.

Intermediate Range: 0:1 < t=a < 2

In the intermediate range the full integral solution must be used. It is relatively easy to obtain numerical values
for all values of k1=k2 in this range by the use of Computer Algebra Systems such as Maple (1996), Mathematica
(1996), and MATLAB (1996).

Isoux Contact on Layer on Half-Space

Hui and Tan (1994) used the separation of variables method combined with the Hankel transform to obtain
expressions for the temperature distributions within a �nite circular cylinder of radius b and thickness t1 and
thermal conductivity k1 which is in perfect contact with an isotropic half-space of thermal conductivity k2 as
shown in Fig. 3c. They considered the isoux boundary condition q = Q=�a2 over the circular source area of radius
a which is located at the free end of the cylinder. The boundary condition outside the contact area is adiabatic
and so is the lateral boundary of the cylinder. The free surface of the half-space is assumed to be adiabatic. They
also report the special case where the radius of the �nite thickness cylinder becomes in�nitely large relative to the
contact radius. This corresponds to an isoux circular contact situated on an in�nite layer which is perfect contact
with a half-space as shown in Fig. 3d. They presented expressions for the heat source temperature rise and the
area-average heat source temperature rise.

Heat Source Temperature Rise

The temperature rise distribution within the contact area is

T (r) =
qa

k1

Z 1

0

�
k1 + k2 tanh (�t1=a)

k2 + k1 tanh (�t1=a)

�
J1 (�)

�
J0

�
�
r

a

�
d� (40)

Area-Average Heat Source Temperature Rise

The area-average temperature rise of the heat source area is

�T =
qa

k2

(
8

3�

�
k2
k1

�2

+ 2

"
1�

�
k2
k1

�2
#Z 1

0

J21 (�) d�

[1 + k1=k2 tanh (�t1=a)] �
2

)
(41)

Spreading Resistance

The spreading resistance can be obtained from the area-average temperature expression through Rc = �T=q�a2.
Since the dimensionless spreading resistance parameter is de�ned as  = 4k2aRc, it takes the form:

 q =
32

3�2

�
k2
k1

�2

+
8

�

"
1�

�
k2
k1

�2
#Z 1

0

J21 (�) d�

[1 + k1=k2 tanh (�t1=a)] �
2

(42)

If k2 = k1, the above expression reduces to the well-known value (Carslaw and Jaeger, 1959, and Yovanovich,
1976b)

 q =
32

3�2
= 1:08076 (43)



Hui and Tan (1994) did not provide simple algebraic expressions for thin and thick layers. It is therefore necessary to
evaluate the above in�nite integral numerically. Computer Algebra Systems provide convenient means for obtaining
accurate values of  q .

Isoux, Equivalent Isothermal and Isothermal Solutions

The problem of �nding the thermal constriction resistance for a circular contact area on an in�nite isotropic
layer of thickness t1 and thermal conductivity k1 placed in perfect contact with an isotropic half-space of thermal
conductivity k2 was undertaken by Negus et al. (1985). The solutions were obtained with the application of the
Hankel transform method for ux speci�ed boundary conditions and with a novel technique of linear superposition
for the mixed boundary condition (isothermal contact area and zero ux outside the source area). There results
were presented below.

Isoux Contact Area

For the isoux boundary condition they reported the result for  q = 4k1aRc

 q =
32

3�2
+

8

�2

1X
n=1

(�1)nKnIq (44)

The �rst term is the dimensionless isoux constriction resistance of an isotropic half-space of thermal conductivity
k1 and the second term accounts for the e�ect of the relative layer thickness and the relative thermal conductivity.
The thermal conductivity parameter K is de�ned as

K =
1� �

1 + �
(45)

with � = k1=k2. The layer thickness-conductivity parameter Iq is de�ned as

Iq =
1

2�

(
2
p
2 ( + 1) E

�p
2= ( + 1)

�
� �

2
p
2
I � 2�n�1

)
(46)

with

I =

�
1 +

0:09375

2
+
0:0341797

4
+

0:00320435

6

�
(47)

The relative layer thickness is �1 = t=a and the relative thickness parameter is

 = 2n2�21 + 1 (48)

The special function E (�) is the complete elliptic integral of the second kind (Abramowitz and Stegun, 1970).
The following approximations of the complete elliptic integral of the second kind are provided to simplify the
computational e�ort.

Complete Elliptic Integral

E (k) =
�=2

1 + k1

�
1 +

k21
4
+
k41
64

+
k61
256

�
(49)

where the parameter k1 is de�ned as

k1 =
1�

p
1� k2

1 +
p
1� k2

(50)

This approximation provides 6 digit accuracy everywhere except at k = 1 where the error is approximately 0:3%.

Complementary Elliptic Integral



E
�p

1� k2
�
=
�

4
(1 + k)

�
1 +

p2

4
+
p4

64
+

p6

256

�
(51)

where p = (1 � k)=(1 + k). This approximation provides 6 digit accuracy everywhere except at k = 0 where the
error is approximately 0:3%.

Equivalent Isothermal Source Area

For the equivalent isothermal ux boundary condition they reported the result for  ei = 4k1aRc

 ei = 1 +
8

�

1X
n=1

(�1)nKnIei (52)

where as discussed above the �rst term represents the dimensionless constriction resistance of an isothermal source
area on an isotropic half-space of thermal conductivity k1 and the second term accounts for the e�ect of the relative
layer thickness and the relative thermal conductivity. The thermal conductivity parameter K is de�ned above.
The relative layer thickness parameter Iei is de�ned as

Iei =

�p
1� ��2 �� � ��1

�
+

1

2
sin�1

�
��1

�� 2n�1

�
(53)

with �1 = t=a and

� = n�1 +
q
n2�21 + 1 (54)

Isothermal Source Area

For the isothermal source area Negus et al. (1985) developed a correlation equation for their numerical results.
They reported  T = 4k1aRc in the form

 T = F1 tanhF2 + F3 (55)

where
F1 = 0:49472� 0:49236�� 0:00340�2 (56)

and
F2 = 2:8479 + 1:3337� + 0:06864�2 with � = log10 �1 (57)

and
F3 = 0:49300 + 0:57312�� 0:06628�2 (58)

where � = k1=k2. The correlation equation was developed for resistive layers: 0:01 � � � 1 over a wide range of
the relative thickness: 0:01 � �1 � 100. The maximum relative error associated with the correlation equation is
approximately 2:6% at �1 = 0:01 and � = 0:2. Numerical results for  q ;  ei;  T for a range of values of �1 and �
were presented in tabular form for comparison. They found that the values for  q >  ei and that  ei �  T . The
maximum di�erence between  q and  T was approximately 8%. They found that  T >  ei for very thin layers:
�1 � 0:1 and for � � 0:1; however, the di�erences were less than approximately 8%. For most applications the
equivalent isothermal ux results and the true isothermal results are similar.

Bounds on Total Thermal Resistance

Upper and lower bounds on the total resistance of the general case shown in Fig. 1a) will be proposed based on
the results presented above. The actual resistance will lie between the upper and lower bounds which will be close
in most applications.

The upper bound can be determined from:

Rupper bound =
t

k1�b
2
+
 (� = 0)

4k1a
+

1:0808

4k2b
(59)



and the lower bound by:

Rlower bound =
t

k1�b
2
+
 (� = �1=2)

4k1a
+

1

4k2b
(60)

In the above two expressions the spreading parameter  (�) is determined by means of Eq. (12) with Eqs. (13)-(16).
For the problem shown in Fig. 1a) � = 1, therefore �n = 0, and Bn = �'n. The relationship given by Eq. (17)
is replaced by Eq. (20) for the upper bound, and by Eq. (19) for the lower bound. The largest uncertainty in the
estimate of the spreading resistance will occur when t=b ! 0. In this limit, the second term in the above two
relationships becomes negligible. When t=b > 0:72 as shown in Fig. 1d), 'n = 1 for all n � 1. The di�erence
between the upper and lower bounds will be less than 8% which occurs when t=b = 0.

Summary and Conclusions

A review of the papers that present solutions for the e�ect of single layers on the thermal spreading resistance
of a circular heat source that is subjected to various heat ux distributions has been presented. The review covers
solutions for compound disks, for heat ux tubes and for in�nite layers in perfect thermal contact with a half-space.
It is shown that the compound disk solution presented by Yovanovich et al. (1980) can be used to calculate the
spreading resistance for all cases including the ux tube and half-space problems.

Approximations proposed by various researchers are presented for quick calculations of the spreading resistance.
Upper and lower bounds on the total thermal resistance are proposed for the spreader-heat sink problem which
can be applied to the diamond spreader-copper heat sink system. The maximumdi�erence between the upper and
lower bounds on the total resistance will be less than 8% for most applications.
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