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ABSTRACT K(e) = complete elliptic integral of +
A novel procedure is presented for determining ther- 0 _ :gfaf;s:alzlﬁiw rate: W 1
mal constriction resistances of planar isoflux heat = heat flux; W/m? !
sources of arbitrary shape which are located at arbitrary 33 ~  thermal xjesis tance; K/W ]
depths below the interface formed by two solids of dif- B ; dimensionless ther,m al resistance i
ferent, but isotropic, thermal conductivities. The pro- VA, ] ]
cedure is applied to circular annular heat sources which TLT2 = dlstance's from source and image to g |
includes the circle as a limiting case. Dimensionless con- field point; m
striction resistances are shown to be functions of three $1,82 = source and lmage stn‘angths; w 1
dimensionless parameters which are: the annular radii T, T; = temperatures in medium 1 and 2; K
ratio, ii) the relative depth, and iii) the thermal con- T = area average tefnpera.ture; K 41
ductivity ratio. The constriction resistance is the sum z,y,z = carteslan coordinates; m
of the self-effect which has analytic solutions and the ef- '
fect of the image which requires numerical integration. Subscripts
Numerical results are presented in graphical and tabular o
form. Correlation equations are provided for easy use A, = basedon 4, as the characteristic length
by designers of microelectronic and telecommunication 0 = atthe centxzmd
devices and components. ! = due to the image
s = due to the source
NOMENCLATURE
A = heat source area; m? Greek Symbols
a,b = inner and outer radii of
annulus; m ¥ = relative depth; vy = ¢/b
C1, Cy, € = radii ratio; € = a/b
; C3,Cy = correlation coefficients = conductivity parameter,
' ¢ = distance of planar source from n=(1-x)/(1+x)
interface; m K = conductivity ratio Ay/A,
( complete elliptic integral of the A1,A2 = conductivities of materials; W/m - K
second kind p,0 = polar coordinates

geometric parameter
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INTRODUCTION

The steady-state thermal resistance of heat sources
which are located a certain distance from a plane inter-
face formed by two different solids is currently of some
interest within the microelectronics and telecommuni-
cation industries. Since the heat sources are sufficiently
thin with respect to the other dimensions, therefore they
can be modeled as planar heat sources with uniform heat
flux.

Since the dimensions of the contacting solids are or-
ders of magnitude larger than the largest dimension of
the heat source, therefore the solids can be modeled as
half-spaces.

The interface has very good thermal contact; there-
fore it is taken to be in perfect contact. Further the
contacting solids may have similar or significantly dif-
ferent thermal conductivities.

Conventional solution methods are very difficult or
impossible to apply to this class of thermal problems.
Numerical methods can be applied, but they are com-
putationally intensive and the industries prefer simpler,
less computationally intensive methods.

In electrostatics there is a class of electrical problems
which are mathematically identical to the above thermal
problems, and they are solved by the method of images.
Although this method has been applied to find electri-
cal fields and it is well-established (Kellogg, 1953, Jeans,
1963, and Lorrain and Corson, 1970), it seems that it
has not been used to find temperature fields and ther-
mal constriction resistances which are currently of great
interest to designers of microelectronic and telecommu-
nication devices and components.

The objective of this paper is to present a procedure
based on the method of images to determine thermal

constriction resistances of planar isoflux heat sources of
arbitrary shape which are embedded in an isotropic solid
which is in perfect contact with another solid which is
denoted as the substrate.

The proposed method will be applied to circular an-
nular heat sources (which will be referred to as contacts)
to demonstrate its ease of application and its usefulness.

METHOD OF IMAGES

The method of thermal images will be applied to the
determination of temperature distributions produced by
a point thermal source situated in a material having
thermal conductivity A;. The heat source of strength
s is located a distance ¢ from the plane interface which
separates two media having thermal conductivities Ay
and A, respectively as shown in Fig. 1. Polar coordi-
nates are used in the analysis.

Fig. 1 Source and images and co-ordinate
system.

We begin the analysis by considering the tempera-
ture distribution produced by a single thermal source
of strength s = gdA where g is the local heat flux and
dA is the local elemental source area. The image of the
heat source s, is located on the axis passing through the
point source, a distance c below the common interface.
The presence of s; in the material of conductivity Az
requires an image s; located at the source within the
solid of conductivity A;.

The temperature distribution within the solid z > 01is
obtained by the linear superposition of the temperature
fields produced by the source s itself and its image s»

(1)
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where the distances from the source and its image are
m=vVp+(z—c)?and 12 = /p?+(z+ c)? respec-
tively, and p? = 22 + 3*.

The temperature distribution within the solid z < 0
of conductivity A; is produced by the image s; which
is at the distance r; and it is assumed that the entire
system has conductivity A; as shown in Fig. 1. The
temperature field is given by
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The strengths of the two images s; and s, respectively
can be obtained from the application of the perfect con-
tact conditions at the common interface z = 0. These
conditions are

T1 = T2 (3)




and

The temperature equality condition requires that
s+382=%1 (5)

and the normal heat flux equality condition requires that

o (1 @ (1y_, 8 (1
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which gives

—cs+csz | _ —C381
. [(p2 + 62)3/2] = [(p2 + cz)"'/z} il
From Eq. (7) we find
—A18 + A183 = —A281 (8)

The image strengths are obtained from the solutions of
Egs. (5) and (8):
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s = s and 32=~[ ]3 (9)
After finding the image source strengths the temper-
ature distributions within the two solids can now be

written as

8 Az - /\1 8
= - >0 10
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and o
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Limiting Cases

The limiting cases of 7} can be deduced by examina-
tion of the second term of Eq. (10). If A2 > Ay, the
term is negative and it (image) behaves like a thermal
sink. On the other hand if A5 < A1, the term is positive
and it (image) behaves like a thermal source.

If A2 >> Ay, the interface is isothermal (T = 0), and
when A, << Aq, the interface is adiabatic.

Therefore the general solution, Eq. (10), yields two
limiting cases of a point heat source located a distance c
from 1) an isothermal plane and 2) an adiabatic plane,
respectively.

PLANAR HEAT SOURCES-INTEGRAL SO-
LUTION

T.he fundamental solutions developed in the preceding
section can be used to develop temperature fields pro-
d'uced by distributed planar heat sources which are posi-
tioned a fixed distance below the plane interface formed

by two isotropic media having conductivities A; and A,
respectively.

Consider a planar heat source of active planar area
Ay located a distance ¢ from the interface z = 0 which
separates two semi-infinite media having conductivities
A1 and A; as shown in Fig. 2.
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Fig. 2 Planar source and its image.

The heat flux ¢ over the heat source is assumed to be
uniform. The image of the heat source having surface
area A, is shown as a broken line in the material A;. Its
heat flux ¢ is also taken to be uniform.

The temperature distribution at an arbitrary field
point within material A\; produced by arbitrary point
heat sources lying within areas 4, and A, is obtained
by means of the fundamental solution given above:

qd A, qdA;
T, = - 12
1= dmdr amhirs (12)

and after integration over the heat source area and its
image area we obtain the temperature distribution at
any field point to be

Lo [[[ e, [f i
T1 - 4:7('/\1 [/ A, T K A, T2 (13)

where the thermal parameters are defined as

11—k
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n and K= ) (14)
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Both sides of the heat source and its image must be

included in the integrations of Eq. (13). The basic

solution, Eq. (13), can be used to determine the local
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and area-average temperatures of the planar heat source
of any shape.

AVERAGE SOURCE TEMPERATURE AND
CONSTRICTION RESISTANCE

Average Source Temperature

For applications of the fundamental solutions given
above it is necessary to define the average source tem-

perature as
— 1
T, = — TdA
1 A //:41 1¢A1

After substitution of Eq. (13) with Eq. (14) into the
above definition we obtain the area-average temperature
of the isoflux heat source:
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(16)

(15)

Constriction Resistance

The constriction (or spreading)
resistance (Yovanovich, 1976a) is a useful concept for
providing means of simple analysis. It is defined as the
average temperature of the heat source minus the aver-
age temperature of the heat sink (which is taken to be
zero) divided by the total heat transfer rate from the
source. Therefore

(1n

which yields

e 1R
4rh A% Ay A T Az T2
(18)

The above result can be applied to any singly-
connected or doubly-connected planar heat source ge-
ometries. The first term represents the self-effect of the
heat source and the second term accounts for the effect
of the image on the source temperature.

The previous expression will be nondimensionalized
with respect to the thermal conductivity of the solid
in which the heat source is embedded A;. The square
root of the projected area is chosen as the characteristic
length \/Z; (Yovanovich and Burde, 1977).

The dimensionless constriction resistance can be writ-
ten simply as

i/z: = Gs - T]Gl (19)
where G, is a geometric parameter which represents the
self-effect of the source, and Gi1s a geometric parameter
which represents the effect of the image on the source.
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The first geometric parameter can be derived directly
from the analytic expression developed for constriction
resistances of isoflux annular contact areas situated on
the surface of insulated half-spaces. Using the result of
Yovanovich and Schneider (1976b) which was obtained
by means of the integral formulation of Yovanovich
(1977) and taking into account the differences between
full-space and half-space solutions one obtains:

4
Gy = (3#3/2) (1 _12)3/2 [1+€3 _ (1+€2)E(€)

+ (1-)E(e)]

(20)

where K(¢) and E(e) are the complete elliptic integrals
of the first and second kinds respectively. They are
computed quickly and accurately by Mathematica (Wol-
fram, 1991) or any other Computer Algebra System.

This parameter has the value 0.23945 for the circular
source € = 0, and it varies slowly in the range 0<e<
0.7.

The parameter which accounts for the effect of the
image on the source does not have an analytic solution.
Numerical integration methods were used to obtain ac-
curate values for several values of the independent pa-
rameters ¢ and y which is the relative depth parame-
ter. The numerical results were correlated accurately
by means of the following simple poylnomial:

Cy Cs
Gi = +
Ca+v  (Cat)’

(21)

The correlation coefficients Cy through Ci for selected
values of the parameter € are given in Table 1. The max-
imum difference between the correlation and the numer-
ical results is 0.76 % which occurs at € = 0.7.

Table 1: Correlation Coefficients for Geometric Effect
of the Image

€ C]_ Cz Ca 04 ‘ % difu
0.0 | .0754568 | 2.5773 | .141128 .81999 0.22
0.1 | .0692988 | 1.9399 | .127318 79615 0.40
0.3 | .0565473 | .40206 | .064440 93120 0.34
0.5 | .0371546 | .29559 | .112403 1.4833 0.58
0.7 | .0141819 | .18178 | .159437 1.8690 0.76

NUMERICAL RESULTS AND DISCUSSION

The numerical results are presented’in Figures 3
through 7 for several circular annular sources. The di-
mensionless constriction resistances are plotted against
the thermal conductivity parameter 7 for the full range
~1 < 5 < 1, and the relative source depth range
0 <y <oo.
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Figure 3 shows the results for a circular heat source

¢ = 0. The horizontal line at R:/X = 0.23945 repre-

sents the case where the source is embedded deep inside
the solid and the effect of the substrate conductivity is
negliglible. Results to the left of 7 = 0 pertain to a sub-
strate whose conductivity is less than that of the solid
in which the source is embedded. This is the resistive
portion of the solution and the dimensionless resistances
are seen to be greater than the isolated source value. At

n = —1 the interface is adiabatic.
R =1 RVA,
0.5 ¥ 1 | 1 L] 1 ] T 1 b
] y=00 ~P ia, ]
0.4 .'\0_2 . i : d
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Fig. 3 Constriction resistance of circular heat
source.

Results to the right of 7 = 0 correspond to a substrate
whose thermal conductivity is greater than the conduc-
tivity of the solid. This is the conductive portion of the
solution and the dimensionless constriction resistance is
seen to be lower than the isolated source value. At =1
the interface is at the sink temperature which was set
to zerc in this analysis.

Figures 4 through 7 show the dimensionless constric-
tion resistance plotted against 7 for selected values of ¥
and €. Each figure corresponds to a different value of e.
These figures show the slow change in the dimensionless
constriction resistance as e varies.

CONCLUDING REMARKS

The method of images has been used to develop so-
lutions of the Laplace equation for planar isoflux heat
sources of arbitrary shape. The solutions in the form of
temperature distributions at arbitrary field points are
used to determine the dimensionless constriction resis-
tance of arbitrary planar heat sources which are placed
at arbitrary points below an interface separating the

solid in which the heat source is embedded and the sub-
strate.

The general expressed is used to derive the solution
for a circular annular heat source. The solution was ex-
pressed in terms of two geometric parameters pertaining
to the self-effect of the source and the effect of the image
on the source. The geometric parameter for the image
depends on the size of the circular annular area and its
relative depth. A correlation equation was presented for
accurate calculation of the image parameter G;.

Numerical results for the circular and annular sources
were presented for a selected range of the pertinent ge-
ometric and thermal parameters.
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Fig. 4 Constriction resistance of annular heat

source, ¢ = 0.1.
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Fig. 6 Constriction resistance of annular heat

source, € = 0.5.
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Fig. 5 Constriction resistance of annular heat

source, ¢ = 0.3.
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Fig. 7 Constriction resistance of annular heat

source, € = 0.7.
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