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ABSTRACT

A general equation in orthogonal curvilinear coordi-
nates for heat transfer through extended surfaces(�ns)
is developed. The general solution for perfect contact
at the �n base and end cooling is presented. The heat
transfer rate through the �n is obtained and the �n resis-
tance is de�ned. Several examples of the application of
the general results are given. The temperature distribu-
tion, heat transfer rate and corresponding �n resistance
are given for three coordinate systems: Cartesian, cir-
cular cylinder and spherical. Solutions for (i) insulated
�n end and (ii) perfect contact at the �n end are also
presented. It is shown that the well-known solutions
(longitudinal �n of rectangular pro�le, circular annular
�n of rectangular pro�le) are special cases of the given
general solution.
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p
g1;
p
g2;
p
g3 metric coe�cients

p
g Jacobian,

p
g =

p
g1
p
g2
p
g3

h; he convective coe�cients, W=m2 �K
k thermal conductivity, W=m �K
Q heat transfer rate, W

Qcond, Q�n conduction heat transfer rate, W

Qconv convection heat transfer rate, W

R�n thermal resistance of �n, K=W

T temperature, K

t thickness, m

r; �; z circular cylinder coordinates

r; �;  spherical coordinates

u1; u2; u3 curvilinear coordinates

Greek Symbols

� �n function

� temperature excess � = T � Tf , K

Subscripts

b �n base

e �n tip

f 
uid

1



INTRODUCTION

Many conduction problems in practice can be mod-
eled as extended surfaces because conduction frequently
occurs in thin metallic solids which are cooled by gases,
e.g. air. Since the heat transfer takes place along
one coordinate direction and the temperature variation
through the thickness (perpendicular to the 
ow direc-
tion) is negligible, the temperature is essentially a func-
tion of one space coordinate only provided the appro-
priate coordinate system is used in the problem formu-
lation.

Steady, one-dimensional conduction with convection
cooling solutions are available for several simple ge-
ometries such as longitudinal extended surfaces having
di�erent pro�les such as rectangular, triangular, con-
cave and convex parabolic. Solutions for heat transfer
through pin �ns having pro�les as described above are
also of some interest to thermal analysts. Another very
important case corresponds to heat transfer through ex-
tended surfaces which are part of or attached to circular
tubes. The complete solutions for the three families of
geometries are available in the excellent text of Kern
and Kraus1.

Although these geometries are useful for many con-
ventional applications, there are many other cases for
which these solutions are not useful and their applica-
tion may lead to large errors in estimating the total heat
transfer rate through the system.

There is, therefore, a need to develop equations and
solutions for other geometries not covered by Kern and
Kraus1, and which are not available in the open litera-
ture.

A general equation will be developed in orthogonal
curvilinear coordinates. The developed general equa-
tion will reduce to the particular cases found in Kern
and Kraus1 and Carslaw and Jaeger2. There are many
other cases which arise from the general equation, e.g.,
solutions which are valid for conduction through cylin-
drical and spherical shells, to name only two.

GENERAL PROBLEM FORMULATION

Governing Di�erential Equations

The general equation can be obtained in a direct man-
ner. It is assumed that one can select a coordinate
system which is compatible with the geometry of the
physical system. A proper choice allows one to assume

that the temperature �eld is one-dimensional, i.e. T (u1)
where u1 is one of the three curvilinear coordinates.
The conduction takes place in a thin curvilinear shell
c � u2 � d of thickness t = d� c whose surfaces u2 = c
and u2 = d are convectively cooled through two di�er-
ent �lm coe�cients h1 and h2 in the general case. For
many applications one can assume that the �lm coe�-
cients are equal. There is no conduction along the u3�
coordinate which means that constant u3 surfaces are
adiabatic. The above assumption that T (u1) is valid
provided the �n Biot numbers are su�ciently small, i.e.
Bi1 = h1t=k < 0:1 and Bi2 = h2t=k < 0:1:

Applying the Fourier rate equation to an appropriate
di�erential control volume of sides ds1 =

p
g1 du1; ds2 =p

g2 du2; ds3 =
p
g3 du3, and di�erential volume dV =p

g du1du2du3 as shown in Fig. 1, the heat conduction
rate into the control volume is

dQu1 = �kdA1

d�

ds1
= �kds2ds3

d�

ds1

= �k 1p
g1

d�

du1

p
g2
p
g3 du2 du3 = 0 (1)

where �(u1) = T (u1) � Tf is the local temperature
excess, and the metric coe�cients

p
gi (i = 1; 2; 3)

are given in Moon and Spencer3 for several orthogonal
curvilinear coordinate systems.

u1

u2

u3

Qconv

T∞

Qu1 + dQu1

Qu1

Qconv

T∞

h

h

Fig. 1 General Curvilinear Fin Element

The heat convected from the di�erential volume is
described by Newton's Law of Cooling which has the
general form

dQconv = h �
p
g1
p
g3 du1du3 (2)
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Since both u2�surfaces are convectively cooled through
di�erent �lm coe�cients, the total local convection cool-
ing is given by

dQconv =

�
h1 �

p
gp
g2
du1du3

�
u2=c

+

�
h2 �

p
gp
g2
du1 du3

�
u2=d

(3)

If the heat transfer coe�cients over the two convection
surfaces u2 = c and u2 = d are equal, i.e. h1 = h2 =
h, then the total convection loss from the di�erential
control volume is given by the following relationship:

dQconv =

"� p
gp
g2

�
u2=c

+

� p
gp
g2

�
u2=d

#
h � du1 du3

(4)
The assumption of equal convection heat transfer coef-
�cients is not too restrictive.

A heat balance over the control surfaces of the di�er-
ential control volume is given by:

dQu1 = dQconv + dQu1+du1 (5)

After substitution of the previously developed conduc-
tion and convection relationships into the heat balance,
and integration over the cross-section of the �n, one ob-
tains the di�erential equation for a curvilinear extended
surface or �n:

d

du1

�
d�

du1

Z
u3

Z
u2

p
g

g1
du2 du3

�

�h
k
�

Z
u3

"� p
g

p
g2

�
u2=c

+

� p
g

p
g2

�
u2=d

#
du3 = 0 (6)

The above di�erential equation is applicable to
isotropic �ns whose surfaces u2 = constant are con-
vectively cooled through equal and constant �lm coe�-
cients. The u3�surfaces are adiabatic.

Boundary Conditions

Boundary conditions at the �n base (u1 = a) and the
�n tip (u1 = b) are required to complete the mathemat-
ical description of the problem.
The conventional boundary condition at the base is

perfect contact:

� = �b; u1 = a (7)

where �b = T (u1 = a) � Tf . The general convection
boundary condition is speci�ed at the �n tip provided
the �n is not truncated:

d�

du1
= �he

k

p
g1 �; u1 = b (8)

The �lm coe�cient he at the �n tip is chosen to be dif-
ferent from the value along the sides of the �n. The tem-
perature distribution �, which is the solution of Eq.(6),
will be reported in subsequent sections.

Fin Heat Flow Rate and Fin Resistance

The heat 
ow rate through the �n is obtained from
the following general expression:

Q�n =

�Z
u3

Z
u2

�k
p
g

g1

d�

du1
du2 du3

�
u1=a

(9)

which is the conduction through the �n base. Another
useful parameter, �n resistance, de�ned as

R�n =
�b
Q�n

(10)

will be presented in subsequent sections.

In the following sections the general �n equation will
be applied to several coordinate systems to illustrate its
utility. After the conventional solutions are presented, a
few special cases will be considered. These are i) cylin-
drical shell �n, ii) spherical shell �n, iii) a wedge �n,
and the iv) conical �n. Temperature distributions, heat

ow rates and �n resistances will be presented for these
examples.

CARTESIAN COORDINATES

The �rst example is based on the Cartesian coor-
dinates (x; y; z) where, for convenience, we select the
curvilinear coordinates u1; u2; u3 to correspond to u1 =
x; u2 = y; u3 = z. The metric coe�cients are thereforep
g1 = 1;

p
g2 = 1;

p
g3 = 1 and

p
g = 1. The conduc-

tion occurs along the x�axis and convection occurs at
the y = c = 0 and y = d = t surfaces. The thickness
of the �n is taken to be t. The width of the longitudi-
nal �n of rectangular pro�le is w and the ranges of the
coordinates are 0 � x � L, 0 � y � t, 0 � z � w, as
shown in Fig. 2. For this case, the general �n equation
reduces to

d

dx

�
d �

dx

Z z=w

z=0

Z y=t

y=0

dydz

�
� 2h

k
�

�Z z=w

z=0

dz

�
= 0

(11)
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y=t

z=0
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z=w

T∞
y

z

x

h he

Fig. 2 Longitudinal Fin of Rectangular Pro�le

After integration and some simpli�cations, and with
the introduction of the �n parameter m2 = 2h=(kt) we
obtain the well-known �n equation:

d2�

dx2
�m2 � = 0 0 � x � L (12)

whose solution in hyperbolic form is

� = C1 cosh(mx) +C2 sinh(mx) (13)

Applying the two boundary conditions:

�(0) = �b;
d�(L)

dx
= �he

k
�(L) (14)

gives the general solution

�

�b
= cosh(mx) �� sinh(mx) (15)

where the auxiliary function � is de�ned as

� =
mL tanh(mL) + Bie
mL + Bie tanh(mL)

(16)

The �n tip parameter is Bie = heL=k. The auxiliary
function becomes � = tanh(mL) if the �n tip is insu-
lated (Bie = 0), and it becomes � = coth(mL) if there
is no resistance to heat transfer at the �n tip (Bie =1).

For the general case the heat 
ow rate through the �n
base is obtained from

Q�n = k w tm� �b (17)

and the thermal resistance of the longitudinal �n is given
by

R�n =
1

k w tm�
(18)

Insulated Fin Tip

If the �n tip x = L is insulated, Bie = 0, the temper-
ature distribution reduces to

�

�b
= coshmx � tanhmL sinhmx (19)

Perfect Contact at Fin Tip

If the �n tip is in perfect contact with the coolant,
the temperature distribution becomes

�

�b
= coshmx� cothmL sinhmx (20)

CIRCULAR CYLINDER COORDINATES

There are three �n equations for conduction in circu-
lar cylindrical shells. They correspond to conduction (i)
in the radial r-direction, (ii) conduction in the angular
 -direction, and (iii) conduction in the axial z-direction.
In each case cited, convection losses take place through
particular bounding surfaces.

Radial Conduction with Convection from z�
Surfaces

For completeness and to further illustrate the utility
of the general formulation, the radial conduction case
will be considered �rst. Here we select the curvilinear
coordinates to be: u1 = r; u2 = z; u3 =  ; therefore we
have

p
g1 = 1;

p
g2 = 1;

p
g3 = r;

p
g = r The ranges of

the coordinates are: a � r � b, 0 �  � 2�, 0 � z � t
where t is the thickness of the circular annular �n, as
shown in Fig. 3. The two surfaces z = 0 and z = t are
convectively cooled through uniform �lm coe�cients h.
The general �n equation becomes after substitution

of the above parameters and ranges of the coordinates:

d

dr

�
d�

dr

Z t

0

Z 2�

0

rd dz

�
� 2h�

k

Z 2�

0

rd = 0 (21)

After the integrations and the introduction of the �n
parameter m2 = 2h=(kt), it can be written in the con-
ventional form:

d2�

dr2
+
1

r

d�

dr
�m2� = 0; a � r � b (22)

which is the modi�ed Bessel equation of order zero.
Its solution consists of the modi�ed Bessel functions
I0(�);K0(�), and it is written as

� = C1I0(mr) +C2K0(mr) (23)
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Fig. 3 Circular Annular Fin

The two constants of integration are obtained from the
boundary conditions:

�(a) = �b and
d�(b)

dr
= �he

k
�(b) (24)

Application of the boundary conditions gives the follow-
ing relationships between the constants of integration:

C1 =
�b

I0(ma) + � K0(ma)
and C2 = �� C1 (25)

The �n function � is given by

� =
mbI1(mb) + BieI0(mb)

mbK1(mb)� BieK0(mb)
(26)

where the parameter Bie =
heb

k
accounts for the end

cooling, and I1(mb);K1(mb) are modi�ed Bessel func-
tions. The temperature distribution is given by

�(r)

�b
=
I0(mr) + � K0(mr)

I0(ma) + � K0(ma)
; a � r � b (27)

The heat 
ow rate through the �n is obtained by the
application of Fourier's rate equation at the �n base:

Q�n =

Z t

0

Z 2�

0

�krd�
dr
d dz at r = a (28)

Substitution of the temperature distribution and evalu-
ation gives:

Q�n = 2�
p
2ha2kt �b

�
�K1(ma) � I1(ma)
�K0(ma) + I0(ma)

�
(29)

The �n resistance is obtained directly through Eq.(10):

R�n =
�b
Q�n

=
1

2�
p
2ha2kt

�
�K0(ma) + I0(ma)

�K1(ma) � I1(ma)

�
(30)

The results presented above are in agreement with those
given by Kern and Kraus1 and Yovanovich et al4. Two
special cases arise from the general solution: (a) for the
insulated �n tip and (b) for the �n with perfect contact
at the �n tip.

Insulated Fin Tip

For this case Bie = 0 and the general solution yields:

� =
I1(mb)

K1(mb)
(31)

and

�(r)

�b
=

�
I0(mr)K1(mb) +K0(mr)I1(mb)

I0(ma)K1(mb) +K0(ma)I1(mb)

�
(32)

and

R�n =
1

2�
p
2ha2kt

�
K0(ma)I1(mb) + I0(ma)K1(mb)

K1(ma)I1(mb) � I1(ma)K1(mb)

�
(33)

Perfect Contact at the Fin Tip

For this case Bie =1 and the general solution yields:

� = � I0(mb)

K0(mb)
(34)

and

�(r)

�b
=

�
I0(mr)K0(mb)�K0(mr)I0(mb)

I0(ma)K0(mb)�K0(ma)I0(mb)

�
(35)

and

R�n =
1

2�
p
2ha2kt

�
K0(ma)I0(mb) � I0(ma)K0(mb)

K1(ma)I0(mb) + I1(ma)K0(mb)

�
(36)

Radial Conduction and Convection from the  -
Surfaces

The wedge-shaped �n which is modeled in this section
is shown in Fig. 4. It consists of the sector: 0 � r �
b; 0 �  � �; 0 � z � L which is convectively cooled
at the  = 0 and  = � surfaces through uniform heat
transfer coe�cients. The Biot numberBi = hb�=(2k) <
0:1. Substitution of the parameters into the general �n
equation with appropriate limits gives:

d

dr

"
d�

dr

Z L

0

Z �

0

rd dz

#
� 2h

k

Z L

0

dz = 0 (37)
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Fig. 4 Wedge Shaped Fin

which can be put into the conventional form of the �n
equation after completion of the integrations and the

introduction of the �n parameter m2 =
2h

�k
:

d2�

dr2
+
1

r

d�

dr
�m2 1

r
� = 0 (38)

The above equation is a modi�ed Bessel equation whose
solution is

�(r) = C1I0(2m
p
r) + C2K0(2m

p
r) (39)

The boundary conditions are

�(0) is �nite and �(b) = �b (40)

The �rst boundary condition requires that the modi�ed
Bessel function K0(�) should be eliminated from the so-
lution; therefore we must put C2 = 0 in the solution.
The isothermal condition at r = b requires

C1 =
�b

I0(2m
p
b)

(41)

With this value for the second constant of integration
we obtain the temperature distribution:

�(r)

�b
=
I0(2m

p
r)

I0(2m
p
b)
; 0 � r � b (42)

The heat 
ow rate through this �n is obtained by the
application of the Fourier rate equation at the boundary
r = b:

Q�n = kb�L
d�

dr
= 2kL�

p
b�b

I1(2m
p
b)

I0(2m
p
b)

(43)

and the �n resistance is given by

R�n =
1

2kL�m
p
b

I0(2m
p
b)

I1(2m
p
b)

(44)

Axial Conduction and Convection from r� Sur-

faces

For the next example we consider the hollow circular
cylinder of radii (a; b) and length L shown in Fig. 5.
One end z = 0 of the cylindrical shell is maintained
at T = Tb while the other end z = L is convectively
cooled through a �lm coe�cient he. The inner and outer
boundaries r = a and r = b are convectively cooled by
the same 
uid through similar �lm coe�cients h.

r=b

r=a

h

z=0 z=L

T∞
he

T∞

T∞

h

r

ψ
z

θb

Fig. 5 Hollow Circular Cylinder

Here we select the curvilinear coordinates to be: u1 =
z; u2 = r; u3 =  ; therefore we have

p
g1 = 1;

p
g2 =

1;
p
g3 = r;

p
g = r. The ranges of the coordinates are:

a � r � b, 0 �  � 2�, 0 � z � L and t (=b � a) is the
thickness of the shell. The condition Bi = ht=k < 0:1
must be satis�ed.

Substitution into the general �n equation with appro-
priate limits of integration yields

d

dz

Z 2�

0

Z b

a

r
d�

dz
dr d �

�Z 2�

0

h�a

k
d +

Z 2�

0

h�b

k
d 

�
= 0

(45)
After integration one �nds

�(b2 � a2)
d2�

dz2
� h�

k
[2�(a + b)] = 0 (46)

The last equation can be put into the conventional form
of the �n equation through the introduction of the �n
parameter:

m2 =
2h

k(b� a) (47)
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The �n equation becomes:

d2�

dz2
�m2� = 0; 0 � z � L (48)

The form of this equation is identical to the �n equation
given above under the Cartesian coordinates except for
the replacement of x by z. Since the boundary condi-
tions are identical, the solution of the �n equation is also
identical. The results for the temperature distribution
and the �n function � can be used directly provided the
x variable is replaced by the z variable and the appro-
priate form of the �n parameter m is used. The heat

ow rate through the �n is given by

Q = k�(b2 � a2) m � �b (49)

and the �n resistance is given by

R =
1

k�(b2 � a2) m �
(50)

The limiting results for the �n function � for a �n with
insulated �n tip and a �n with perfect contact at the �n
tip are equally true for this cylindrical �n.

θb

ψ=0
ψ=α

r=ar=b

T∞

T∞

T∞
h h

he z=0

z=L

r

z

ψ

Fig. 6 Edge Heated Cylindrical Shell Section

Angular Conduction with Convection from  �
Surfaces

Here we consider the portion of the cylindrical shell
of radii (a; b), length L which is heated along the edge
 = 0 where � = �b and which is convectively cooled
along the edge  = � through the uniform �lm coef-
�cient he (see Fig. 6). The inner (r = a) and outer
(r = b) boundaries are convectively cooled through
equal �lm coe�cients h. The ends of this cylindrical
shell are adiabatic. For this �n the temperature excess is

a function of the  coordinate. Here we select the curvi-
linear coordinates to be: u1 =  ; u2 = r; u3 = z; there-
fore we have

p
g1 = r;

p
g2 = 1;

p
g3 = 1;

p
g = r. The

ranges of the coordinates are: a � r � b, 0 �  � �,
0 � z � L. The �n parameter Bi = h(b� a)=k < 0:1.
Substitution of the above into the general �n equation

gives:

d

d 

"Z L

0

Z b

a

1

r

d�

d 
dr dz

#

�
"Z L

0

h�a

k
dz +

Z L

0

h�b

k
dz

#
= 0 (51)

After completion of the integrations the last result can
be put into the following form:

d2�

d 2
�m2 � = 0; 0 �  � � (52)

where the �n parameter has been de�ned as

m2 =
h(a + b)

k ln( ba )
(53)

We note that this parameter is dimensionless. The so-
lution of the above �n equation is

�( ) = C1 coshm + C2 sinhm (54)

Application of the boundary conditions to the above
solution yields the two equations for the constants of
integration:
at  = 0,

C1 = �b (55)

and at  = �,

�kL ln( b
a
) [C1m sinhm�+ C2m coshm�]

= heL(b � a) [C1 sinhm�+ C2 coshm�] (56)

Solving for the constants of integration one obtains:

C1 = �b and C2 = �� C1 (57)

where the �n function is now de�ned as

� =
m sinhm�+ (Bie= ln(b=a)) coshm�

m coshm�+ (Bie= ln(b=a)) sinhm�
(58)

with Bie = h(b� a)=k. The temperature distribution is
given by

�( )

�b
= coshm �� sinhm ; 0 �  � � (59)
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The �n heat 
ow rate is obtained by integration of the
following equation over the base conduction area:

Q =

"Z L

0

Z b

a

�k1
r

d�

d 
dr dz

#
 =0

(60)

Therefore,

Q�n = kmL � ln(
b

a
) �b (61)

The �n resistance is therefore given by

R�n =
1

kmL � ln( ba )
(62)

The general result reduces to simpler forms if the
�n tip is insulated or if it is in perfect contact with
the coolant. For the insulated tip case, Bie = 0,
� = tanhm� and we have for the temperature distribu-
tion:

�( )

�b
= coshm � tanhm� sinhm ; 0 �  � �

(63)
and for the heat 
ow rate we get

Q�n = k m L tanh(m�) ln(
b

a
)�b (64)

and the �n resistance is given by

R�n =
1

k m L tanh(m�) ln( b
a
)

(65)

For the perfect contact tip condition,Bie =1, and � =
cothm�. The temperature distribution, the �n heat

ow rate and the �n resistance can be obtained directly
from the above three results with tanhm� replaced by
cothm�.

SPHERICAL COORDINATES

There are three �n equations for conduction in spher-
ical shells. They correspond to conduction (i) in the ra-
dial r-direction, (ii) conduction in the polar �-direction,
and (iii) conduction in the  -direction. In each case
there are convection losses through bounding surfaces.

Radial Conduction with Convection from ��
Surfaces

The radial conduction case is considered �rst. The
heat transfer occurs in a system which is bounded by
the surfaces r = a and r = b and the conical surface
� = � as shown in Fig. 7. The surface r = a is

maintained isothermal at temperature �b and the sur-
face r = b is convectively cooled through a uniform �lm
coe�cient he. The conical surface � = � is convectively
cooled through a uniform �lm coe�cient h. The Biot
number is Bi = hb sin�=k < 0:1. The temperature is
one-dimensional, �(r), in this system.

θb

φ=0 φ=α

r=a

r=b

T∞

T∞

h

he

r

ψ

φ

Fig. 7 Conical Section of a Spherical Shell

Here we select the curvilinear coordinates to be: u1 =
r; u2 = �; u3 =  ; therefore we have

p
g1 = 1;

p
g2 =

r;
p
g3 = r sin�;

p
g = r2 sin�. The ranges of the coor-

dinates are: a � r � b, 0 � � � �, 0 �  � 2�.

The general �n equation becomes after substitution
of the above parameters and ranges on the coordinates:

d

dr

�
d�

dr

Z 2�

0

Z �

0

r2 sin�d� d 

�
� h�

k

Z 2�

0

r sin�d = 0

(66)
which after the integrations and the introduction of the

�n parameter m2 =
h sin�

k
can be written in the con-

ventional form

d2�

dr2
+

2

r

d�

dr
�m2 1

r
� = 0; a � r � b (67)

which is the modi�ed Bessel equation of order zero.
Its solution consists of the modi�ed Bessel functions
I1(�);K1(�), and it is written as

� =
1p
r

�
C1I1(2m

p
r) + C2K1(2m

p
r)
�

(68)

The application of the boundary conditions given above
yields the constants of integration:

C1 =
�b
p
a

I1(2m
p
a) + �K1(2m

p
a)

(69)
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and
C2 = �C1 (70)

with the �n function de�ned as

� =

"
m
p
bI2(2m

p
b) +BieI1(2m

p
b)

m
p
bK2(2m

p
b) �BieK1(2m

p
b)

#
(71)

where the end cooling is characterized by the parameter
Bie = heb=k.

The temperature distribution is given by

�

�b
=

r
a

r

�
I1(2m

p
r) + �K1(2m

p
r)

I1(2m
p
a) + �K1(2m

p
a)

�
(72)

The heat 
ow rate through the �n is obtained by the
application of the Fourier rate equation at the �n base
r = a:

Q�n =

"Z 2�

0

Z �=2

0

�kr2 sin�d�
dr
d�d 

#
r=a

(73)

which becomes

Q�n = 2�km
p
a �b

�
�K2(2m

p
a)� I2(2m

p
a)

�K1(2m
p
a) + I1(2m

p
a)

�
(74)

The �n resistance is found to be

R�n =
1

2�km
p
a

�
�K1(2m

p
a) + I1(2m

p
a)

�K1(2m
p
a)� I2(2m

p
a)

�
(75)

The special cases which arise from the limits: Bie = 0
and Bie =1 are obtained from the �n function � which
takes on the following two values respectively:

� =
I2(2m

p
b)

K2(2m
p
b)

(76)

and

� = � I1(2m
p
b)

K1(2m
p
b)

(77)

These values are to be substitute into the expressions
for �(r), Q�n and R�n.

Conduction Along  �Coordinate with Convec-

tion from r�Surfaces

The spherical �n of interest is de�ned by the ranges:
a � r � b; � � � � �=2; 0 �  � � as shown in Fig.
8. The edges � = � and � = �=2 are adiabatic. The
edge  = 0 is maintained at temperature �(0) = �b
while the other edge is convectively cooled through a

uniform �lm coe�cient he. The remaining two bound-
aries r = a and r = b are convectively cooled through
uniform �lm coe�cients h. Since the Biot number is
Bi = h(b� a)=(2k) < 0:1, the temperature distribution
is one-dimensional, � = �( ).

r

ψ

φ

θb

φ=α

r=b
ψ=π

r=a
ψ=0

T∞

T∞

T∞he

h

h

π
2

φ=

Fig. 8 Spherical Shell Fin

The orthogonal curvilinear coordinates are selected
such that u1 =  ; u2 = r; u3 = �. Therefore we havep
g1 = r sin�;

p
g2 = 1;

p
g3 = r;

p
g = r2 sin�. Sub-

stitution into the general �n equation with appropriate
limits gives:

d

d 

"
d�

d 

Z b

a

Z �

�

1

sin�
d�dr

#

�
"
h�

k

Z �

�

r2 sin�d�

#
r=a;b

= 0 (78)

After completion of the integrations and the introduc-
tion of the �n parameter:

m2 =
h(a2 + b2)(cos�� cos �)

k(b � a) ln
�
tan(�=2)

tan(�=2)

� (79)

the general �n equation reduces to

d2�

d 2
�m2� = 0 (80)

whose solution in hyperbolic form is

� = C1 coshm +C2 sinhm (81)

Solving for the constants of integration gives

C1 = �b and C2 = ��C1 (82)
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with the �n function de�ned as

� =
m sinhm� +Bie� coshm�

m coshm� + Bie� sinhm�
(83)

where

Bie =
he
k

(b+ a)

2
and � =

(� � �)

ln

�
tan(�=2)

tan(�=2)

� (84)

The temperature distribution, the heat 
ow rate and
the �n resistance can be obtained from the general equa-
tions. They are

�( )

�b
= coshm �� sinhm (85)

and

Q�n =

"Z �

�

Z b

a

�k 1

sin�

d�

d 
drd�

#
 =0

= km(b� a)��b ln

"
tan(�

2
)

tan(�
2
)

#
(86)

and from the de�nition of �n resistance we get

R�n =
1

km(b � a)� ln

"
tan(�

2
)

tan(�
2
)

# (87)

The two special cases which arise from the general end
condition are: (i) Bie = 0 for which the �n function
becomes � = tanhm� and (ii) Bie = 1 for which the
�n function becomes � = cothm�. The temperature
distribution, the heat 
ow rate and the �n resistance ex-
pressions reduce to simpler forms for these special cases.

SUMMARY

A general equation in orthogonal curvilinear coordi-
nates for heat transfer through �ns was developed, and
the general �n equation for perfect contact at the �n
base and end cooling was given. The general expression
for heat transfer rate through the �n was obtained, and
the �n resistance was de�ned.
It was shown through several examples how the gen-

eral equation reduces to the special cases considered in
most heat transfer texts.
The temperature distribution, heat transfer rate and

corresponding �n resistance were given for three coordi-
nate systems: Cartesian, circular cylinder and spherical.
Solutions for (i) insulated �n end and (ii) perfect con-

tact at the �n end were also presented. It was shown

that the well-known solutions (longitudinal �n of rectan-
gular pro�le, circular annular �n of rectangular pro�le)
are special cases of the given general solution.
The general equations can be used to obtain results

for many other special orthogonal coordinate systems
such oblate and prolate spheroidal coordinates: bi-
cylinder coordinates, elliptic cylinder coordinates and
parabolic cylinder coordinates for example.
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