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A new, simple and approximate analytical method based on linearization of the energy
equation is proposed 1o develop solutions for forced convection heat transfer from
isothermal spheres. Furthermore, heat transfer correlations from spheres are proposed
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Pr — o and Pr — 0 and then resubstitute the effective velocity into the solution of the
energy equation. Finally, a “blending method’’ is used to provide a general model for
all Prandil numbers. Comparison of the heat transfer correlations for Nuy, versus Rep
from the present study \with the available correlations in the literature reveals very good
agreement.
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1 Introduction as Pr — 0, Sideman (1966) and Hsu (1963) (see Witte, 1968)
have demonstrated through their analytical solutions that F(Pr)
— Pr'’2. This also agrees with the experimental heat transfer cor-
relations of Witte (1968) and Churchill (1977).

One of the objectives of this study is to develop a simple ap-
proximate analytical method based on linearization of the energy
equation in order to develop an approximate analytical solution
of the forced convection heat transfer from isothermal spheres.
Another objective of the present study is to propose heat transfer
correlations from spheres for the range of Reynolds number,
0 = Rep = 2 X 10*, and all Prandtl numbers. One of the main
goals of the present investigation is to explain why the previous
studies appear to be in disagreement in regard to the exponent of

Nup = C, + Cp Rep Prt (1) Re,, and the constant Cp. . .

This paper is organized as follows: In the following section,

where C,;, Cp, m, and b are constants. The diffusive term, C;, the theoretical analysis is developed with appropriate assump-

has been reported to lie in the range 1 to 3.2. Other investigators  tions; in the third section, results and discussions are presented;

have reported values of zero or 1.2 Pr®3 (Vliet and Leppert, 1961; and conclusions are given in Section 4.

Lochiel and Calderbank, 1964). The constant Cp, depends on the

range of Rep. From the literature, it is seen that for 0.1 = Rep 2 Theoretical Analysis

= 2 % 10%, C, is reported between 0.921 and 0.175, respectively.

The exponents of Rep and Pr varied from 0.47 to 0.62, and 0to

0.42, respectively. The previous correlations, Nup = Nup(Rep,

Pr), are summarized in Table 1.

Most of the previous investigators agreed on the following:

Forced convection heat transfer from isothermal or isoflux ex-
ternal convex surfaces is an important problem for engineers.
There are many engineering systems that are modeled using
forced convection, such as electronic components on printed cir-
cuit boards placed in cabinets, hot-wire anemometers, and heat
exchanger design. Steady laminar forced convection heat transfer
from an isothermal sphere into a substantial amount of air or
water has been investigated experimentally, theoreticaily, and nu-
merically by many researchers for over 90 years. These research-
ers presented their area-averaged heat transfer results in the fol-
lowing general form:

Figure 1 shows an isothermal sphere of temperature Ts and
diameter D, which is immersed in a steady, laminar, incompress-
ible flow of a constant property fluid (0 < Pr < =) at constant
temperature T., and uniform velocity V... The energy equation
inside the boundary layer is

1 In the diffusive limit, ¥{ep - 0, Nup is 2.0. 8T v, 0T [_1_ F;) (r2 3_7_‘)]

2 Exponent of Pr, b, is 5. b=+ T =al S\ Ty 2

ar r oo
However, the previous investigators disagreed on the value of Co  The terms on the left side of Eq. (2) will be approximated by a
and the exponent of Reynolds number. On the other hand, Church-  gingje equivalent term, ie., (3./r)(8T/09), where T, is the av-
ill (1977) proposed another function for Pr, Pr'?/[1 + (0.45/  erage effective velocity, which will be determined later. This idea
Pry¥3]44, instea}d of Pr'/?, which provides two limits: as Pr > a5 been proposed by Oseen in order to linearize the inertia term
©, F(Pr)— P?“ and as Pr — 0, F(Pr) — Pr'/?. From the theo-  for creeping flow, where Oseen assumed the convective term 0
retical view, it has been proven by Lochiel and Calderbank pe v, 7 - v, (for more details see Happel and Brenner, 1973).In
(1964) using an analytical approach that Sh = Sh(Re'?Sc'’®)  ,ddition, the effective velocity has been introduced by Yovano-

for Re > 1. Therefore, the analytical solution agrees with the  yich et al. (1992) and Jafarpur (1992); therefore, Eq. (2) be-
experimental results, as seen in Table 1, for Pr = 1. In addition,  comes

.

v, 0T 10 oT
_e?_=a[_2‘_(, or 3)
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order to find a suitable solution. Let us assume that the flow
particles are moving with a constant velocity, v,, around the

Table 1 Correlation coefficients and parameters for heat and mass
transfer from spheres

body. Therefore, the particles will take time, At, to travel a dis-  HsereeTrowr N e
tant r A@. Furthermore, for A8 — 0 and At — 0, one can obtain Kramers (1946) 32 | ese | 12 | 13 0.1 540 - 1,460 *
Kudryashev (1949}t 2.0 0.33 1/2 0.0 0.71
89 Drake-Backer (61)352) 22503 06429 01/5; 0;‘;:;3 3;: 0.1 - 200,000
7 = — Radusich (195 . X :
Ve = 1 ot where D/2=r=§+D/2 4 Griffth (1360) ) 2.0 06 | 12 | 13 0.7 -
Yuge (1960) 2 0.551 | 172 1/3 0.715 10 - 1,800
This concept was also used by Sideman (1966) and Yovanovich | Lo ioso| oo | 0ees | bees | .14 | o | 400- 5000 -
et al. (1992). Therefore, the energy equation will also be reduced Vliet-Leppert (1961) 12P7%2 | 0.63 | 054 | 03 2380 1 -300,000
to the form of the transient heat conduction equation. Thus, by | po (%0 oo o | ve | ws | om | es-um
substituting Eq. (4) into Eq. (3) the energy equation can be writ- m-:;l-uduw 0.0 07 | 12 | 18 >>1 —
ten as follows: Sideman (1966) 00 | 113 | 05 | 05 | Pr—o
ughmar . . 2 1/3 250 -
or* 10 (,0T* Hoghmask (1967) . gg gg 1;2 153 S 2?-130 —
=a|l 55-{r (5 2.0 04 | y2 | s > 250 17 - 450
ot r*or or 20 | 021 | o062 | 13 <250 450-10,000
2.0 0.175 0.62 0.42 > ?50 450-10,000 o
where r = D/2,0 = t = nD/2,, and Y&fﬁb(,l.ﬁln (1968) 20 | o2 | s ‘1)}5:‘ S 2000 50000,
urchil .| X F(Pr .
T* = (T — T.)/(Ts — T). g:nﬁ( l(91.’977)3) ig 00575:75 01/4“"1 (1/3) 0.7-0.73 |  100- 4,000 o
1.0 0.304 0.58 1/3 0.7-0.73 | 4,000 - 100,000
The solution of Eq. (5) from Carslaw and Jaeger (1959) is 13 313; g;: }ﬁ sf';l,‘ffm ,‘of,:"_',:g?m '
Yovanovich (1988)°° 2.0 0.15 0.5 1/3 0.71 10 - 150,000 .
- 2L (1222 EtoE ;
2r Wat / mworm, PR - —
(12; 9'(‘%/331;3'/4» 0.273 Relj"8 ) pri/?
D 1 _ D/2 . 2, . D . eh r
= Z et (———-———————' ) (6) _
2r 2V(a8D)/(25,)
The local Nusselt number Do )
Nup, =2 + 0.714 < 9) ).
Nup(9) = 2P (7 « -
(Ts — Tk
where gs(8) = —k(Ts — Tu)(OT*/0r)| <012 The average effective velocity, v., will.be deﬁne.d for the hmmng ;
Taking the derivative of Eq. (6) and substituting it into Eq.  ¢5¢S of Pr > 1 and Pr < 1, then an interpolation function will ;
(7) gives be obtained to provide a relationship for all Prandtl numbers. mn
The present analysis has been based on the assumption that 5.
1 VD the flow does not separate at any point on the surface of the er
Nup(f) =2+ =——= 6>0 (8) sphere. In fact, flow separation occurs in this type of problem at I
Vr fa8)1(25,) high Reynolds numbers. However, we will proceed with our m
h . . . . . . analysis and compare it with the available experimental results us
e transient conduction solutan prov1c!es an analytlc solution which already have the separation effect in order to determine of
for the local Nusselt number, which consists of the linear sum of -
the capabilities of the present model.
the local boundary layer term and the constant term correspond- m.
ing to the diffusive limit (Rep — 0). The area-averaged Nusselt 21 7. atPr—«, We will consider the high Prandtl num- P
number, Nup = 1/4 [ fA Nup(8)dA, is given by ber fluids first. Scaling analysis will be applied to the continuity, d
Nomenclature
A = surface area, m® T* = nondimensional temperature v = kinematic viscosity, m%/s n
b = exponent in Eq. (1) = (T =~ T.)/(Ts ~ Tx) p = density, kg/m’ 88
Ci. Cp = constants in Eq. (1) t = time, s Subseri ar
D = sphere diameter, m Sc¢ = Schmidt number = v/D, g ubscripts 10
D,z = binary mass diffusion coeffi- Shp, = Sherwood number = h,,D/Dyg D = displacement —
cient, m%/s V = local velocity at edge of thermal e = effective
h = coefficient of convection heat boundary layer, m/s M = momentum (Z
i transfer, W/m*’K V(8) = local velocity at edge of hydro- § = surface
m = coefficient of convection mass dynamic boundary layer, m/s N ’y
transfer, m/s V. = free-stream velocity, m/s Abbreviations o ) a
k = thermal conductivity, W/m K U, = area-averaged effective velocity, CE = continuity equation id
m = exponent in Eq. (1) m/s EE = energy equation er
n = exponent in Egs. (33)-(38) v.(9) = local effective velocity, m/s GEs = governing equations n
Nup = area-averaged Nusselt number a = thermal diffusivity = k/C,p, m¥s HBL = hydrodynamic boundary layer ).
= Dhik v = constant in Eq. (26) ME = momentum equauoq an
z = Prandtl number = via § = local thickness of HBL, m TBL = thermal boundary layer b
= total heat flow rate, W 67 = local thickness of TBL, m C : _
9 = heat flux, W/m? 85 = displacement thickness of oordinates ) )
R Re, = Reynolds number = DV,./v TBL, m r. 8. ¢ = spherical cqordmates N
€nl¥) = local Reynolds number 6%, = momentum thickness of TBL, m x,y = local coordinates
= DV(9)Iv n = nondimensional quantity = y/é X, Y, Z = Cantesian coordinates -
T = temperature, K -
or
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momentum, and energy €quations to determine the area-averaged Z
effective velocity. Consider that the hydrodynamic boundary
layer, HBL, &, is very thin, ie., D/2 & § ~ D/2 (see Fig.
1) where Re, > 1 and also consider that the flow outside of

the hydrodynamic boundary Iayer, HBL, is effectively in- ET’Y'GD qf;r
viscid. Thus, the local velocity at the edge of the HBL s equal to I A
ve(D/2 + §) = V(89), where V(6) s the solution to the inviscid  Pr >>1 ang Rep>>1 ] Pr<2<>1>°">df6 >>1
a\ flow problem, as shown in Fig. 1. The continuity equation inside o/ 2>>8>34, | / 0/2>>4

the HBL is < o Y

2 611, 1 6119 cot §

- ot Tt —y, = 10

rv'+(9r+r60 r 0 (10)
Using scaling analysis (the scaling analysis rules are stated by X

. inuit i g L o

i?i:fa:jzizﬁig? the continuity €quation within the HB gives Viscous FLowi INVISCID FLO

INVISCID FLOW VISCOUS FLOW
4v,lp, Urlsepin — Ulpn 2 Vo 2, :
;“+\‘+“+—_~0 Vo, T
D é Do D¢ o0t oo
with vg|4,p,, = V(8), the inviscid fiow solution and Ulpn =0,
we obtain
§ V(o)

v, Iow/z ~2 B (11) Fig. 1 Schematic diagram of the boundary layers over the sphere for

Pr— o« and Pr-o

Applying scaling analysis on the continuity equation inside the
thermal boundary layer, TBL, gives the relationship

87 V(o) s o s 8
.UrléﬁDIZNZLTé'T (12) D Pr 2 Rep(9) (18)

where it is assumed that the ratio VIV(8)is approximately equal  Comparing Eq, (18) against Eq. (15) we find that
to 67/, i.e., the flow has a linear velocity distribution as shown 5 v i
in Fig, 1. T

55 (19)
The momentum equation in an axisymmetric flow along the 6 V() P

White (1991). This equation can be converted to spherical co-  This result will be used later to define 77,

ordinates (note that x = 9, ie., Ox =~ rd9, and y=r—-D/2, The local effective velocity, v (8), for large Prandtl numbers
'.e., 8y = 8r), in steady-state form as follows: fluids will be obtained from momentum flux balances through

the thermal boundary layer. The momentum flux inside the ther-
2 !
v’@_*_v_gév_g: V() 6V(6P)+UQ¥ (13) mal boundarylayerls
or - o8 r o6 or o [
Using scaling analysis on the momentum equation inside the (S_Tj; vV = vo)dy (20)
HBL with Eq. (11) gives the following relationship:
. On the other hand, if we determine the momentum flux by as-
26V2(6)  2v(g) _2V%(8) +, Y@ (14) suming that the flow has a uniform local effective velocity,
Ds6 Dg D6 62

v (9)is constant in the y direction and variable in the x direction,
we have
Therefore, the local hydrodynamic boundary layer thickness is

. br
given by £ f VSOV — vp)dy (21)
. érdo
6 4
D~ m—)— (15) Equating Egs. ( 20) and (21) and solving for the local effective

velocity, we obtain
where Re,(6) = DV (). Applying scaling analysis on the

energy equation, Eq. (2), and keeping in mind that p/2 > 7 fbrﬁ V - vp)dy
and v, ), = V=[(5T/6)-V(0)]we find that o V

262 v(8) = Ve (22)

2 17

J.&.£+M~£ (16) (V ~ vp)dy

Dé é or 06D/2 6% ) 0
The two convective terms on the left-hand side of Eq.(16) have  which can be expressed in terms of the momentum and displace- -
the same magnityde. therefore we equate one of the convective ment thicknesses as follows:
terms to the diffusjop term as follows:

v;(8) V(e)'é—r'éz V(d)- 1 '6L (23)
5TV(€)AT~ aAT (17) € S 6,1) e 6{)
66D/2 6%

For convenience of the subsequent analysis, we introduce the
’c_:forg, the local dimensionijess thermal boundary layer thick- similarity parameter, = y/§, This allows one to express the
2 1S given by

momentum and displacement thicknesses in the following forms:
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Clearly these important hydrodynamic thicknesses depend on
the velocity distribution within the TBL. We may assume that
s is a power-law function of y in order to have a general form
for the velocity profiles at different Reynolds numbers,
i.e., vo/V = (y/67)Y orvy/V = n” where 0 = y = 1. This form
is chosen for the following reasons: It has been proposed by Kays
and Crawford (1980) for the flat plate at high Re where y =
and it also agrees with the analytical solution where the velocity
is linear at vy = 1. We introduce the power-law velocity distri-
bution into Eq. (24) and Eq. (25) and integrate. One can obtain
the relationship between the momentum and displacement thick-
nesses in terms of the power-law exponent:

S 1
65 2y + 1

(26)

Therefore, the local effective velocity from Eq. (23) with Eq.
(26) is

V(8)

O G D

(27)

The area-averaged effective velocity is defined as

- L L
U, Gyt D P’ A fL V(0)4A (28)

Furthermore, the ideal flow solution can be used to represent the
flow in the region outside of the boundary layer; therefore,

Vglsepi = V(9) = 1.5V, sin 8 (29)

After substitution of Eq. (29) into Eq. (28) we find that the area-
averaged effective velocity as Pr — « is given by

. 1.178V.,,

Ty + D G0

22 ¥2atPr—0. Letus consider that the flow is inviscid,
ie., Pr < 1, and Rep > 1. Therefore the HBL, 4, is very small;
however, the TBL, &7, is very large relative to 6. Therefore at the
edge of the TBL we have

| D 37
Ul s4pr2y = —2—[2 + (m) :I sin8  (31)

However, Fig. 1 shows that § <€ D/2. S0, vg| s+ps2y = V = 1.5V,
sin 4.

Therefore, the local velocity at arbitrary § will be considered
flniform across the TBL. As a resuit of that v2(8) = V as shown
in Fig. 1 (Vs the local maximum velocity at the edge of the TBL
and v3(9) is the local effective velocity at Pr < 1). The area-
mean effective velocity is

o2 =:i—ff VdA = 1.178V., (32)
A

2.3 7, for all Pr. At this point the effective velocity has
been found for the two limiting cases where Pr > 1 and Pr < 1.
In order to develop an expression for 7, valid for any Prandtl
humber, the Churchill and Usagi ( 1972) blending technique will

used. The effective velocity can be determined in different
ways such as:

(T)"=@D"+ (V)" n=1 (33)

Journal of Heat Transfer

or

v =05z (34)
or

1 1 1

p + =
@) @H" @)"
The first two forms are not applicable at Pr < 1 because T, = =.
However, the last form is consistent at both limits; at Pr < 1, 7,
-7 and at Pr > 1, ¥, = 77. The area-averaged effective velocity
can now be expressed in the following form:

n=1 (35)

oy

Ve

Substituting 70 and U7 into Eq. (36) gives the effective velocity
valid for all Prandtl numbers in terms of the power-law parameter
v and the blending parameter n,

A 1.178/[(2y + 1) Pr'”?]

V. T A+ 1/(2y + 1) propyim 0<Pr<= (7

v, =

(36)

where 0 = y = 1. The constant n will be determined in the
following section.

3 Results and Discussion

In order to determine the equation of Nu,, one must substitute
Eq. (37) into Eq. (9). The area-averaged Nusselt number, Nu,,
becomes

0.775 Pr!/?
NUD =2+ RelD/2 ni3 /(20
V2y + 1 1+ 1.0 .
2y + 1)’ Pr

(38)

By examining the two asymptotic values of the area-averaged
Nusselt number for Pr < 1 and Pr > 1, from Eq. (38), we obtain

forPr <1, Nup =2 + 0.775 Re}/? Pr'/? (39)
and

0.775
2y + 1

independent of the value of the blending parameter n. The con-
stant Cp as defined in Eq. (1) is 0.775/v2y + 1 in Eq. (38).
It is equal to 0.447 at y = 1.0, 0.633 at v = %, and 0.683 at
v = 1. In addition, it has been found that n = 3 gives the best
fit by matching Eq. (38) with the available air data correlation
equations in the literature ( Yuge, 1960; Churchill, 1977; Yova-
novich, 1988). Therefore, Eq. (38) can be written in the follow-
ing forms for ¥ = 1 and %, respectively:

forPr>1, Nup=2+ Relf? pr!®? (40)

Prl/}
Nu, = 2 + 0447 Y oo =1 41
Up 0 Rep . 0.037 76 (y ) (41)
Pr
Prll3
Nup = 2 + 0.683 Rel? =1 (42)

[ (0_471>]u6 (y
1+ f{—
Pr

Figure 2(a) shows the comparison between the present results
(Eqgs. (41) and (42)) and the correlations of Frossling (1938),
Drake and Backer (1952), and Yuge (1960) for air (Pr = 0.71).
It can be seen that at the low range of Rep, 107! = Rep =< 10,
the values of the Nusselt number correlations are in very good
agreement with Eq. (41). However, at the high range of Rep, 10
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24 L. Present Study, Eq. (41;
| Present Study, Eq. (42
10 ?,2QQ000 Drake—Backer 1952
$2qooap Frossling (1938
Lossse Yuge {1960)

Pr = 0.71 (a)

.
z oo Present Study, Eq. }41)

N 2 ] Present Study, Eq. (42)

5 10 % Geeso Rowe et al. (1965)

-} ¢+ aogoo Hughmark (19672

£  +] asnas Raithby-Eckert (1968) -

2 . 00000 Clift et al. (1978) ’A

- . P

5 0.

n [y

Z ‘1 Pr = 0.71 (b)

P2 R, Present Study, Eq. 241;
___ Present Study, Eq.
1021 Q0000 Churchili (1977)
s} Gpgoo Yovanovich (1988)

10 10 ¢ 10° to* 10°
Reynolds Number, Rep

Fig. 2 Comparison between the present analytical model and the
previous studies for air

= Re,, = 10*, the experimental correlations of Frossling (1938),
Drake and Backer (1952), and Yuge (1960) approach Eq. (42),
where the velocity profile has the power ;.

In addition, Fig. 2(b) shows the same comparison between
Rowe et al. (1965), Hughmark (1967), Raithby and Eckert
(1968), and Clift et al. (1978) with the present study. The cor-
relations of Raithby and Eckert (1968) and Clift et al. (1978)
behave similarly to the correlations of Drake and Backer (1952)
and Yuge (1960). On the other hand, the results of Rowe et al.
(1965) are higher than the present study. Furthermore, Yovano-
vich and Vanoverbeke (1988) examined carefully the work of
Rowe et al. (1965) and they concluded that Rowe et al. (1968)
had not removed the effect of free convection from their data. In
addition, the correlations of Hughmark ( 1967) were higher than
the present study. However, from Table 1, it is seen that Hugh-
mark (1967) presented two correlations for Pr < 250. These two
correlations cover the range of Re, from 26 to 450 and 450 to
10*, respectively. However, his correlation for the high range of
Rep predicted lower values of Nup, at Re, < 700, if it is compared
with his low range correlation. In addition, Eq. (42) is compared
with the general equation of Pasternak and Gauvin (1960),
which was developed for several body shapes and it was found
that the maximum difference is 15 percent, which occurs at Rep
= 5000. In addition, the turbulent intensity in the measurements
of Pasternak and Gauvin (1960) was around 9-10 percent. Also,
Eq. (42) is compared with the correlation of Kramers (1946) and
it is found that the maximum difference of 2 percent occurs at
Re, = 540.

Figure 2(c) shows the comparison between the present study
and the models of Churchill (1977) and Yovanovich (1988) for
air. Tt is observed that the Yovanovich (1988) and Churchill
(1977) models are in very good agreement with Eq. (41) up to
Re, = 100. After that the Yovanovich (1988) model approaches
Eq. (42) and finally crosses it at Rep = 10*. However, the Church-
ill model (1977) lies between Egs. (41) and (42). We observe
that the Churchill model behavior is similar to the present model

842/ Vol. 116, NOVEMBER 1994

:22000 Yuge (1960}
jagozo Clift et al. (1978)

10 *< 20200 Yovanovich (1988)
ies=xx Present Study. Eq. (44)

Nugsell Number, Nuyg

o™ t 10 10 10°* 10* 10°
Revnolds Number, Rep

Fig. 3 Comparison between the present general analytical model and
the previous studies for air

if y = % On the other hand, if y — 0, Eq. (42) will be higher
than the Yovanovich model up to Rep, = 10, i.e., Yovanovich
was able to model different velocity profiles in one equation.

3.1 General Model. Figure 2 shows that the correlations of
Yuge (1960), Drake and Backer ( 1952), Clift et al. (1978, and
Yovanovich (1988) are in very good agreement with Eq. (41)
up to Rep = 100 and after that their correlations approach Eq.
(42) and finally, cross it at Rep = 10*. This leads us to conclude
that the previous studies fitted their data in various ranges of Rep,
which could have different velocity profiles because Eq. (41)
was developed for a linear velocity profile and Eq. (42) was
developed for the power-low velocity profile, vy = L. Therefore,
if we correlate y as a function of Rep based on the trend of the
previous studies between Eq. (41) and Eq. (42), a general model
can be developed for the forced convection heat transfer from
spheres. It is found that a simple form for y as f(Rep) based on
the previous work is given by:

v=10/Re}® (ify>1lputy=1) (43)

From Eq. (38) with n = 3 we obtain the general equation:

Pr!/[V2y + 1]

1.0 1/6
[1 * ((2«, 1) Pr)]

Rep < 10° and 0 < Pr < o with Eq. (43).

The right-hand side of Eq. (44) can be written as follows:
Nu® + Cp Re}*F(Pr where Nu is 2 and Cp is 0.775 and
F(Pr, y)is Pri®/[v2y + 11/[1 + (1.0/(2y + 1)3 Pr)Jve.

Figure 3 shows the comparison between the general model,
Eq. (44), and the previous studies of Yuge (1960), Clift et al.
(1978), and Yovanovich (1988) for air. In addition, very good
agreement between the previous studies and Eq. (44) up to Rep
= 2 X 10*is shown in Fig. 3. After that the Yuge (1960), Clift
etal. (1978), and Yovanovich (1988) correlations cross the pres-

Nup = 2 + 0.775 Re}? (44)

o
T

F _____ Present Study, Eq. (44)
+ GO0 Sideman (1966) 8’:‘ = 0.01) AAA
[TTIT Hus (1864) (Pr = 0.01)
3 Witte (1968) (Pr = 0.01) .
Yovanovich (1988) (Pr = 0.71)

o Yuge (1960) (Pr = 0.71)

sololoiok Frosaling (1938) (Pr = 2.7)

uARpE Vliet—Leppert (19613 (Pr = 380)
asaaa Clift et al. (1978) (Pr = 1000)

T Y = L E— Y

1 10 10° 10° 10* 10°
Reynolds Number, Rep

(Nup=Nu’p)/(F(Pr)JRep)

-1

—
(=

Fig. 4 Comparison between the present general analytical model and
the previous studies for different Prandti numbers
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ent model, Eq. (44). The maximum differences between Yuge
(1960}, Clift et al. (1978), and Yovanovich ( 1988) correlations
and Eq. (44), which occur at Rep, = 10°, are 9.7, 13.9. and 10.8
percent, respectively.

Figure 4 shows the relationship between [(Nu, — Nup)/
(F(Pr) Re}*)] (which is Cp) and Rep. Also, Fig. 4 presents the
comparison between the present model and the previous studies
for various Prandtl numbers. One observes that the maximum
difference between the previous studies and the present model in
the range 1 < Rep < 10° is approximately 11 percent, which
generally occurs at Rep, = 10°. On the other hand, there is almost
a 33 percent difference between the present model and that of
Sideman (1966). The main reason for this is that Sideman ap-
proximated the convective term of the energy equation by assum-
ing (Vo/r)/(0T/88). Therefore, Sideman’s model overpredicted
the Nusselt number because the velocity in this model is very
high. Figure 4 also shows that there is 50 percent difference be-
tween the present model and the experimental correlation (for
sodium) of Witte (1968). Finally, it can be concluded from Fig.
4 that the constant Cp, for the sphere is approximately 0.775. In
addition, F(Pr, ) is quite acceptable over the range of 0 < Re,
< 10°.

4 Summary and Conclusions

An approximate analytical solution is developed for the area
mean Nusselt number for forced convection from isothermal
spheres valid for the range of Reynolds number, 0 = Re, = 10*
and ail Prandtl numbers. In addition, the present solution is found
to be in very good agreement with many previous studies such
as Frossling (1938), Kramers (1946), Yuge (1960), Raithby
and Eckert (1968), Churchill (1977), and Yovanovich (1988).
Furthermore, in the present study, it is concluded that the main
reason for the differences in the exponent of Re, and the constant
Cp in the previous studies is due to their fitting data in various
ranges of Re;, which have different velocity profiles. This was
observed very clearly from the trends of the previous studies,
which are between the bounds of Eqs. (41) and (42), where the
velocity profile in Eq. (41) is assumed linear and in Eq. (42) it
is a power law with y = 1. Finally, this study has led to a design
correlation, Eq. (44), which is very accurate for the range of
Reynolds number 0 =< Re, < 10° and all Prandtl numbers 0 <
Pr < o,
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