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ABSTRACT

A simple general model is developed to predict natu-
ral convection heat transfer from isothermal horizontal
and vertical cuboids of arbitrary shape for a wide range
of Rayleigh and Prandtl numbers. The model is based
on the linear superposition of the di�usive limit valid
for a stagnant medium and the laminar bounday layer
limit. The laminar boundary layer limit consists of two
parameters: i) the Prandtl number function which is
valid for all values of the Prandtl number, and ii) the
body-gravity function which accounts for the buoyancy-
induced 
uid 
ow over the entire surface of the body.
Methods are presented for estimating the di�usive limit
and the body-gravity functions for a general cuboid.
Expressions are developed for several special cases of
cuboids. The general cuboid model predictions are com-
pared against air data for several cuboids for a wide
range of Rayleigh numbers. There is very good agree-
ment between the present cuboid model and air data.
The RMS and maximum percent di�erences are found
to be in the ranges: 2:5�6:1 and 3:8�12:1 respectively.

NOMENCLATURE

A = surface area of the body; m2

~A = area fraction
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~Ai = area fraction of the ith componentp
A = characteristic length of the body

proposed by Yovanovich (1987a); m
AR = aspect ratio of body
a; b; c = semiaxes of ellipsoid; a � b � c
C = capacitance: charge per unit potential
C?p

A
= dimensionless capacitance

cp = speci�c heat at constant pressure; J=kg�K
D = cylinder diameter, m
E(�; �) = incomplete elliptic integral of second kind
e = eccentricity
F (Pr) = Prandtl number function

(Churchill and Churchill,1975),�
0:670=[1+ (0:50=Pr)9=16]4=9

�
F (�; �) = incomplete elliptic integral of the �rst kind
g = scalar gravitational acceleration; m=s2

GrpA = Grashof number, g�(Ts � T1)(
p
A)3=�2

h = heat transfer coe�cient; W=m2�K
H = cuboid height; m
K = complete elliptic integral of the �rst kind
k = thermal conductivity; W=m�K
L = cuboid length; m
~n = outward surface normal vector

NupA = Nusselt number, h
p
A=k

Nu1p
A

= di�usive limit; Nu1p
A
= S?p

A

P (�) = local perimeter; m
P;Pmax = perimeter of projected area onto a

horizontal plane, maximum perimeter; m
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Pr = Prandtl number; �=�
Q = total heat 
ow rate; W
Q?p

A
= dimensionless heat 
ow rate

R = thermal resistance; K=W
R?p

A
= dimensionless thermal resistance

RapA = Rayleigh number, GrpAPr
Raw = Rayleigh number, GrwPr
RMS = Root-Mean-Square value
S?p

A
= dimenionless shape factor

Sc = Schmidt number
Shw = Sherwood number based on w
Sh0 = Sherwood number based on w at

Raw = 0
T = temperature; K
Tf = �lm temperature, (Ts + T1)=2; K
u; v = aspect ratios of ellipsoid;

u = c=a; v = b=a
W = cuboid width; m

Subscripts

p
A = based on

p
A, as the

characteristic length
s = at the surface
1 = at a remote point from

the body
max;mid;min = maximum, middle

and minimum

Superscripts

! = vector quantity
1 = estimated at Ra! 0
~ = dimensionless quantity
� = dimensionless quantity

GreekSymbols

� = thermal di�usivity, k=�cp; m
� = volumetric expansion

coe�cient; K�1

� = modulus of incomplete
elliptic integral

� = amplitude of incomplete
elliptic integral

� = angle between gravity vector
and outward normal to surface;
rad

� = kinematic viscosity, �=�; m2=s
� = density; kg=m3

Miscellaneous

bot = abbreviation for bottom surface
cuboid = value for entire cuboid
cube = value for cube
long prism = value for long prism
rect plate = value for rectangular plate
sq plate = value for square plate
top = abbreviation for top surface
vert plate = value for vertical plates
vert sq prism = value for vertical square prism

INTRODUCTION

For more than nine decades laminar natural convec-
tion heat (and mass) transfer from isothermal hori-
zontal cubes, horizontal and vertical square and rect-
angular prisms; �nite plates of square or rectangular
shape (planform) in various orientations (inclinations
from vertical to horizontal with respect to the gravity
vector) has been the subject of numerous experimental,
theoretical and numerical studies.
Each study was limited to one or perhaps two as-

pects of the total possible cases which frequently occur
in today's technology. Examples found in the microelec-
tronic industry are rectangular heat sources of di�erent
aspect ratios which are oriented horizontally or verti-
cally, and they are cooled by natural convection heat
transfer through all faces. Depending on the aspect ra-
tios of the heat sources, the heat transfer rates can di�er
by as much as 60 % for the same total heat transfer area.
There is at present no simple, single model which can

predict accurately Nusselt numbers for i) all aspect ra-
tios, ii) for all Prandtl numbers, and iii) all Rayleigh
numbers below 1011, (laminar 
ow range).
The main objective of this work is to develop a simple

three-dimensional cuboid (rectangular parallelopiped)
model to predict laminar natural convection heat trans-
fer from horizontal or vertical isothermal cubes, square
and rectangular prisms which reduce to square and rect-
angular plates as limiting cases (which are very impor-
tant limits in many applications).
The proposed model will be based on the linear super-

position of the di�usive limit and the laminar boundary
layer limit. The di�usive limit is directly related to the
dimensionless shape factor and several novel methods of
estimating the shape factor of cuboids will be presented.
The boundary layer limit consists of the product of the
Prandtl number function, the body-gravity function and
the Rayleigh number to a �xed value of the exponent.
General and speci�c expressions for the body-gravity
function will be presented for the cuboid and several
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related special cases.
The cuboid model(s) will be applicable for all 
uids

(0 < Pr < 1) over a wide range of Rayleigh number
(0 � Ra < 1011).
The second objective is to demonstrate the accuracy

of the proposed model(s) for natural convection cool-
ing into air from several cuboids over a wide range of
Rayleigh number.

REVIEW OF CUBOID MODELS

There is only one paper which deals with a general
solution for predicting mass and heat transfer from a
horizontal cuboid (Worthington et al., 1987). Another
paper (Hassani and Hollands, 1989) presents a gen-
eral model for predicting natural convection from three-
dimensional isothermal bodies of arbitrary shape, and
therefore it can be used to model cuboids.
Worthington et al. (1987) developed two semiempir-

ical correlation equations for mass transfer from hori-
zontal cuboids with side dimensions h;w; l; and with the
gravity vector parallel to the h side and perpendicular to
the (w l) surface. They further introduced two geomet-
ric parameters: V = h=w and H = l=w which are called
horizontal and vertical \shape factors." After a review
of the characteristic body lengths used by other investi-
gators they chose to de�ne the Sherwood and Rayleigh
numbers with respect to the smaller dimension of the
surface perpendicular to the gravity vector: Shw and
Raw.
They included the constant Sh0 in their correlation

equation to \represent the purely di�usive Sherwood
number in still 
uid." They further stated that \It is
useful to include the stagnant medium condition in cor-
relations for three-dimensional objects as its contribu-
tion to the overall transfer rate can become signi�cant
at low Rayleigh numbers and its omission can a�ect the
exponent on the Rayleigh number." The inclusion of
Sh0 to account for the stagnant medium enabled them
to obtain a best �t Rayleigh number exponent very close
to 0:25.
Values of Sh0 for fourteen di�erent cuboid shapes:

0:60 � V � 2:03 and 0:99 � H � 5:79 were calculated
using the method outlined by Clift et al. (1978). The
values were not given in their paper. This method is
an approximation which can lead to signi�cant errors
(Jafarpur, 1992).
Mass transfer experiments for Rayleigh numbers be-

tween 105 and 1011 for Schmidt numbers in the range
2300� 3500 were conducted for fourteen cuboids.
They introduced an empirical parameter f which they

called the interference factor to account for the com-

plex 
uid 
ow over the bottom, sides and top surfaces.
Values of f were calculated for each cuboid by a least
square �t of the proposed correlation equations to the
data. They found that f varied between 0:74 for the
tallest square plan cuboid (V = H = 3) and 0:50 for
the least tall and longest cuboid (V = 1;H = 4). The
average value for the four cubes tested was calculated
to be 0:72. They reported that the cube data and the
proposed correlation equation compared well over the
range: 106 < Raw < 1010 with a maximum deviation of
8 %.
They presented contour plots of the interference factor

f for 1 � H � 6 and 0:48 < V < 0:75. They stated
that the use of the contour plots together with the two
proposed correlation equations should predict natural
convection mass transfer at cuboids in the range of the
geometries investigated to within 10 %.
The proposed correlation equations cannot be used for

thin horizontal cuboids 0 < V < 0:48; very tall cuboids
V > 0:75, and very long horizontal cuboids 6 < H. The
correlation equations are therefore limited to a narrow
range of cuboid shapes.
Based on their mass transfer work Worthington et

al. (1987) proposed the following two correlation equa-
tions for natural convection heat transfer from horizon-
tal isothermal cuboids:

Nuw � Nu0 =

�
f(0:675(1 +H)V 3=4 + 0:321H) + 0:161H

H + V + V H

�

� (RawF(Pr))0:25 (1)

and

Nuw � Nu0 =

�
0:675f(1 +H)V 3=4 + (0:161 + 0:075(RawF(Pr))1=12)H

H + V + V H

�

� (RawF(Pr))0:25 (2)

The �rst equation is restricted to laminar 
ow and the
second is reported to be valid for turbulent 
ow through

the inclusion of Ra
1=12
w in Eq. (2).

The Prandtl number function in Eqs. (1) and (2) is
de�ned as

F(Pr) =
"
1 +

�
0:5

Pr

�4=16)
#�16=9

(3)
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which is based on the recommendation of Churchill
and Churchill, (1975). The proposed correlation equa-
tions were tested against the heat transfer data of a
cube cooled by air (Stretton, 1985) in the low range of
Rayleigh number: 103 to 107; and their own heat trans-
fer experiments on air that covered the \transition re-
gion," 106 � Raw � 3 � 107. Good agreement between
the model and data was reported for 103 < Raw < 1011.
This cuboid model is limited to a narrow range of the

geometric parameters: (V;H). It requires information
on the empirical parameter f which is available only in
graphical form for a narrow range of V and H. This
cuboid model cannot predict heat transfer from hori-
zontal and vertical rectangular plates H ! 0 which are
essential for the modelling of the base-plates and �ns of
heat sinks. This cuboid model is based on the smaller
dimension of the horizontal rectangular surface. This is
an arbitrary choice which, therefore, limits the useful-
ness of the model and it will fail when w ! 0 as the
cuboid approaches a vertical rectangular plate.
The model of Hassani and Hollands (1989) is based

on the blending of three components: i) the di�usive
limit, ii) the laminar boundary layer asymptote, and iii)
a term which is asserted to account for turbulence from
the topmost parts of the complex bodies. The di�usive
limit is the one recommended by Yovanovich (1987a).
The proposed method is based on two characteristic

lengths; there are two blending parameters which are
semiempirical; and several steps are required to execute
the method.
The method has been veri�ed by comparison of the

model predictions against air data obtained from several
complex body shapes (Chamberlain, 1983; and Hassani,
1987) some of which are cuboids.
The agreement between the model predictions and the

data over several decades of the Rayleigh number are
reported to be very good with RMS and maximum per-
cent di�erences less than 6 % and 13 % respectively.
The largest di�erences were observed with thin oblate
spheroids; thin horizontal circular and square disks; and
the horizontal cube. The aspect ratio of the oblate sh-
peroid and the circular and square disks was 0:1.
The Hassani-Hollands method will fail when the ver-

tical dimension is zero; therefore the method is not rec-
ommended for horizontal rectangular plates.
The Worthington et al. (1987) model and the Has-

sani and Hollands method (1989) are not simple; they do
not handle horizontal rectangular plates; and they are
somewhat di�cult to use and to implement into heatsink
models.

GENERAL THREE-DIMENSIONAL NATURAL CONVEC-

TION MODEL

The general expression for natural convection heat
transfer from isothermal three-dimensional bodies was
proposed by Yovanovich (1987a, 1987b, 1988) in the
form:

NupA = Nu1p
A
+ F (Pr) GpA Ra

1=4p
A

(4)

which is the linear superposition of the di�usive limit
Nu1p

A
corresponding to RapA = 0 and the laminar

boundary-layer asymptote F (Pr) GpA Ra
1=4p
A
which is

valid in the range 104 < RapA < 1011. The laminar
boundary-layer asymptote consists of the product of the
Prandtl number function F (Pr), the body-gravity func-
tion GpA, and the Rayleigh number Ra

p
A. The charac-

teristic length is the square-root of the total active sur-
face area

p
A which was �rst proposed by Yovanovich

(1987a, 198b, 1988) for natural and forced convection
heat transfer from bodies of arbitrary shape. This char-
acteristic length has been used by Yovanovich to nondi-
mensionalize thermal constriction results of numerous
geometries. Recently Hassani and Hollands (1989a,
1989b) have adopted this characteristic length for the
Nusselt number and the Nusselt number corresponding
to the di�usive limit in their work on natural convection
heat transfer from three-dimensional bodies. They used
another complex length scale for the Rayleigh number.
The laminar Prandtl number function of Churchill

and Churchill (1975)

F (Pr) =
0:670�

1 + (0:5=Pr)9=16
�4=9 (5)

is recommended as the universal function valid for all ge-
ometries. The body-gravity function of Lee-Yovanovich-
Jafarpur (1991)

GpA =

"
1

A

Z Z
A

�
P (�)p
A

sin �

�1=3

dA

#3=4
(6)

is recommended for axisymmetric and two-dimensional
geometries.
The proposed three-dimensional model, Eq. (3),

has been validated experimentally for a range of body
shapes such as i) axisymmetric spheroids (oblate and
prolate), sphere, ii) two-dimensional elliptic and circu-
lar cylinders, iii) thin circular and square plates in the
vertical and horizontal orientation, and iv) other body
shapes (cube, cones with apex facing upward and down-
ward).
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The body-gravity function, Eq. (5), cannot be used
in its present form for bodies which are thin and have
horizontal surfaces facing upward or downward because
sin � is zero and therefore GpA = 0 for these important
cases.
Semiempirical methods will be used to obtain body-

gravity functions for horizontal surfaces facing upward
or downward.
New general expressions will be developed in the fol-

lowing sections for the di�usive limit and the body-
gravity function for cuboids which are complex three-
dimensional bodies which possess corners, edges and
horizontal and vertical surfaces.

BODY-GRAVITY FUNCTION FOR COMPLEX BODY

SHAPES

Buoyancy-induced 
ow over complex body shapes can
be modelled by i) decomposing the total body surface
into component surfaces corresponding to the 
uid 
ow,
and ii) using the general formula, Eq. (6), for each
component surface to �nd the corresponding compos-
ite body-gravity function GpA.
The overall body-gravity function for the total body

surface is then determined by combining the component
surfaces Ai and their respective body-gravity functions
GpAi into a composite value. Equation (6) can be used
for all surfaces except horizontal surfaces (sin � = 0)
facing upward or downward. At present semiempirical
methods must be used to model buoyancy-induced 
ow
over horizontal surfaces (Jafarpur 1992).
There are two important 
ow arrangments for which

the composite or overall body-gravity function can be
determined with relative ease. These are complex bod-
ies such as a circular cylinder with hemispherical ends
which is placed in a large extent of air in either the
horizontal (axis perpendicular to the gravity vector) or
vertical (axis parallel to the gravity vector) orientations.
In the �rst orientation the two ends and the horizon-

tal surface are cooled by di�erent 
ows of air and the
component surfaces are said to be in the parallel 
ow

arrangement. In the second orientation the component
surfaces are cooled by the same 
uid 
ow which starts
at the lower stagnation point, 
ows over the lower hemi-
spherical end, then over the vertical cylindrical surface,
and �nally over the top hemispherical end. In this case
the component surfaces are said to be in the series 
ow
arrangement.
The above method of decomposing a complex body

shape into parallel or series 
ow arrangements can be
applied to many interesting natural convection prob-
lems. Some orientations such as inclined short cylinders

with 
at ends or hemispherical ends, or inclined cuboids
are more di�cult to model.
If the buoyancy-induced 
ow over a complex body

shape can be decomposed into N component surfaces
with area-fractions ~Ai, and the corresponding body-
gravity functions GpAi can be determined, then the
composite body-gravity function for the entire body sur-
face can be evaluated by means of the following paral-
lel 
ow arrangement formula (Lee-Yovanovich-Jafarpur,
1991):

GpA =
NX
i=1

GpAi
~A
7=8
i (7)

On the other-hand if the total body surface can be
decomposed according to the series 
ow arrangement as
described above, the composite body-gravity function
can be evaluated by means of the following series 
ow
arrangement formula (Lee-Yovanovich-Jafarpur, 1991):

GpA =

"
NX
i=1

G
4=3p
Ai

~A
7=6
i

#3=4
(8)

For two-dimensional surfaces, such as vertical disks or
plates of arbitrary shape with variable perimeter P (z)
the body-gravity function can be easily obtained from
the following simple formula which was derived from
Eq. (6) after setting sin � = 1:

GpA =
2

A7=8

Z Pmax=2

0

[S(z)]3=4 dz (9)

where S(z) denotes the 
ow distance from the leading
edge to the trailing edge of the di�erential surface dz
and Pmax is the maximum perimeter of the surface.
These formulas along with the semiempirical results

obtained by Yovanovich and Jafarpur (1993) for hori-
zontal surfaces facing upward or downward will be used
to determine the composite body-gravity function for
cuboids.

DIFFUSIVE LIMIT

The Nusselt number for the di�usive limit is obtained
from the dimensionless shape factor S?p

A
which is the

solution to the classical Dirichlet problem:

r2�(~r) = 0 (10)

at all external points ~r > ~rb, and the dimensionless po-
tential �(~r) must satisfy the two Dirichlet boundary con-
ditions:
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i) at all points on the body ~r = ~rb,

�(~r) = 1 (11)

ii) at all remote points in space ~r!1,

�(~r)! 0 (12)

The dimensionless shape factor is obtained from the
following area-mean expression with the characteristic
length set to L =

p
A:

S?p
A
=

p
A

A

Z Z
A

�r� � ~n dA (13)

where ~n is the outward directed normal at all points on
the body. The di�usive limitNu1p

A
� Q

p
A=(k A (T0�

T1)) is equivalent to S?pA. It has be shown (Yovanovich,

1987a) that there is equivalence between the following
dimensionless physical parameters:

Q?p
A
= Nu1p

A
= S?p

A
= C?p

A
= 1=R?p

A
(14)

where Q is the total heat 
ow rate from the isother-
mal body, C is the capacitance of an isopotential body,
and R is the thermal resistance due to pure conduction
through the constant property medium surrounding the
isothermal body.

Ellipsoid Shape Factor

There are a small number of exact solutions avail-
able for certain body shapes such as isothermal el-
lipsoids, oblate and prolate spheroids, sphere, ellipti-
cal and circular disks. Yovanovich (1987a) has shown
that the general solution for an isothermal ellipsoid
with semiaxes a � b � c reduces to all of the special
cases given above. The dimensionless thermal resistance
(Yovanovich, 1987a) is

R?p
A
= k

p
AR (15)

=
1p
8�

�
1

tan2 '
+

v

sin'

�
F ('; �)

tan2 '
+ E('; �)

�� 1

2

�

F

 
';

p
1� v2

sin'

!
(16)

with variables u; v; '; � de�ned with respect to the
semiaxes:

u =
c

a
; v =

b

a
; 1 � v � u

and

' = cos�1 u; �2 =
v2 � u2

v2(1� u2)

and F ('; �) and E('; �) are incomplete elliptic integrals
of the �rst and second kind respectively (Abramowitz
and Stegun, 1970). Analytic solutions for bodies which
have edges and corners are not available. Therefore ap-
proximate values of the shape factors for cuboids (e.g.,
cube, long and short square parallelepipeds, rectangu-
lar and square plates must be computed numerical or
estimated from known analytic solutions.
Yovanovich (1987a) has shown that shape factors of

bodies which are nominally similar, ie. they have i)
identical surface areas and ii) similar aspect ratios, will
have very nearly the same dimensionless shape fac-
tor provided the characteristic length is based on the
square-root of the total active surface area. Several spe-
cial cases useful for this work are given below.

Prolate Spheroid Shape Factor

The dimensionless shape factor of prolate spheroids
a � b = c is given by

S?p
A
=

r
�

2
4e

�h
u2 +

u

e
sin�1 e

i 1
2 1

2
ln

�
1 + e

1� e

���1
(17)

where u = c=b and e =
p
1� u2, which is called the

eccentricity. The aspect ratio is AR = 1=u.
If AR � 5, the prolate spheroid shape factor can be

approximated accurately by the asymptote

S?p
A
=

4
p
L=D

ln (2L=D)
(18)

with an error � 0:68%.

Right Circular Cylinder Shape Factor

The dimensionless shape factor for solid right circular
cylinders of length L and diameter D can be obtained
from Smythe's (1956, 1962) correlation of his approxi-
mate analytical solution of the capacitance C:

S?p
A
=

3:1915+ 2:7726(L=D)0:76p
1 + 2(L=D)

0 � L=D � 8

(19)
with a reported maximum error of 0:2%.

Elliptic Disk Shape Factor

The analytical solution for isothermal elliptical disks
with major axes: L = 2a and D = 2b with L=D � 1
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can be obtained from the general ellipsoid solution given
above. With a � b; c = 0 the general ellipsoid solution
reduces to the elliptic disk solution (Yovanovich 1987a):

R?p
A
=

1

S?p
A

=
1p
8�

r
b

a
K
�p

1� (b=a)2
�

(20)

The complete elliptic integralK(�) can be approximated
with a maximum error less than 1 % by the following
two simple algebraic expressions (Yovanovich 1987a):

K
�p

1� (b=a)2
�
=

2��
1 +

p
b=a
�2 0:20 <

b

a
� 1

(21)
and

K
�p

1� (b=a)2
�
= ln

�
4a

b

�
0 <

b

a
< 0:20

(22)
These approximations of K(�) will be used shortly to
develop approximations of shape factors for square and
rectangular plates for which analytic solutions are un-
available.
The numerical values of the shape factors for the pro-

late spheroids, solid right circular cylinders and elliptic
disks are compared against each other for a range of the
aspect ratio 1 � L=D � 8 in Table 1. Clearly the values
are nearly the same for large aspect ratio and the di�er-
ences are relatively small for aspect ratio L=D = 1 where
the prolate spheroid becomes a sphere and the elliptic
disk becomes a circular disk. The maximum di�erence
of approximately 11 % is found between the values of
the sphere and the circular disk. The three-dimensional
bodies (sphere and right circular cylinder of unit aspect
ratio) di�er by less than 3 %.

Table 1. E�ect of Body Aspect Ratio: Pro-

late Spheroids, Circular Cylinders and Elliptical

Disks

AR Prolate Right Elliptical
L/D Spheroids Cylinders Disks
1 3.545 3.443 3.192
2 3.566 3.527 3.288
3 3.628 3.622 3.434
4 3.706 3.714 3.579
5 3.790 3.803 3.716
6 3.875 3.887 3.845
7 3.959 3.965 3.952
8 4.040 4.040 4.080

Square Cuboid Shape Factors

Table 2 shows that the numerical values of dimension-
less shape factor for the square cuboids, H = W ;L=H �
1, lie approximately 5 % below the values for the right
circular cylinder and the prolate spheroids provided the
bodies have identical surface areas and have similar as-
pect ratios. Therefore, the solutions for the right cir-
cular cylinder and the prolate spheroid may be used to
estimate the shape factors for the square cuboids. The
asymptote for the prolate may be used to estimate the
dimensionless shape factor for all square cuboids with
L=W � 8.

Table 2. E�ect of Body Aspect Ratio: Pro-

late Spheroids, Circular Cylinders and Square

Cuboids

AR Prolate Right Square
L/D Spheroids Cylinders Cuboids
1 3.545 3.443 3.373
2 3.566 3.527 3.406
3 3.628 3.622 3.465
4 3.706 3.714 3.532
5 3.790 3.803 3.598

Rectangular and Square Plate Shape Factors

The very close agreement between the analytic values
of the shape factors of elliptic disks and the numerical
values of the shape factors for rectangular plates which
are similar (equal surface areas and equal aspect ratios)
permits one to use the approximate expressions given
above for elliptic disks to develop the following approxi-
mations for rectangular plates of length L and width W
and square plates L = W :

S?p
A
= 0:8

�
1 +

p
L=W

�2
p
L=W

1 � L

W
� 5 (23)

and

S?p
A
=

p
8�L=W

ln (4L=W )
5 <

L

W
<1 (24)

General Cuboid Approximate Shape Factor

Ellipsoid Method

The dimensionless shape factor for the general cuboid,
[H;W;L], is more di�cult to estimate accurately be-
cause numerical values are presently unavailable for
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comparison with the general ellipsoid solution. Because
of the close agreement of the dimensionless shape fac-
tors for the rectangular and square plates with the ex-
act values of the dimensionless shape factors for elliptic
disks and circular disk; and the acceptable agreement of
the dimensionless shape factors for the square cuboids
against the exact values for the dimensionless shape fac-
tor for the prolate spheroids, and the very accurate val-
ues for the right circular cylinder, it is proposed that
the general ellipsoid solution can be used to estimate
the dimensionless shape factors for arbitrary cuboids.
The approximate dimensionless shape factor for a

general cuboid [H;W;L] is estimated by

S?p
A
fCuboid[H;W;L]g= 0:975S?p

A
fEllipsoid[a; b; c]g

(25)
where 2a; 2b; and 2c are set equal to the largest, mid-
dle and smallest values of [H;W;L] respectively. When
2c = 0, the cuboid becomes a rectangular plate, then
the factor 0:975 should be omitted from the above re-
lationship to provide better agreement with the known
rectangular plate numerical results. This method of es-
timating the dimensionless shape factor is expected to
be accurate to at least 3 %. It is, however, somewhat
computationally intensive because three incomplete el-
liptic integrals must be computed accurately. Therefore
alternate methods will be proposed below.

Circular Cylinder: Inscribing and Circumscribing
Method

To minimize the computational e�ort the following
less accurate method is proposed for estimating dimen-
sionless shape factors for arbitrary cuboids.
Let the largest, middle and smallest values of the

cuboid [H;W;L] be denoted: Lmax, Lmid and Lmin re-
spectively.
Assume that the cuboid is inscribed by a circular

cylinder whose length is equal to Lmax and whose di-
ameter is equal to Lmin. Use Eq. (19) to obtain the
�rst estimate of the cuboid shape factor. Next circum-
scribe a circular cylinder about the cuboid such that
the cylinder length is equal to Lmax as before; but now
the diameter of the circumscribing cylinder will be equal
to
p
L2
mid + L2

min. Obtain a second estimate of the di-
mensionless shape factor by means of Eq. (19). Take
the geometric mean of the two estimates as an approx-
imation of the of the dimensionless shape factor of the
given cuboid. This approach provides a quick, reason-
ably accurate, estimate.

Circular Cylinder: Aspect Ratio Method

Another approach is to obtain the geometric mean
value of the length-to-diameter ratios from the two cal-
culations above which gives two aspect ratios which are
de�ned as the maximum and minimum aspect ratios of
the cuboid:

ARmax =
Lmaxq

2Lmin

p
L2
min + L2

mid

(26)

and

ARmin =
Lminq

2Lmid

p
L2
mid + L2

max

(27)

The factor 2 was introduced into the above expressions
to improve the accuracy of the estimates of Eq. (19) for
the special case of a cube, H = W = L = 1:
This approach is also quick and it should give results

with acceptable accuracy; the maximum errors should
be less than approximately 3 %. For example, consider
the cuboid H = 1;W = 2; L = 3. The minimum and
maximum aspect ratios are 0:263 and 1:418 respectively,
and the corresponding dimensionless shape factors cal-
culated with Eq. (19) are 3:397 and 3:476 respectively.
The di�erence is only 2:3 % and the average value is
3:436.
If we take the geometric mean of the minimum and

maximum aspect ratios we obtain AR = 0:611 which
with Eq. (19) gives S?p

A
= 3:420 as another estimate of

the cuboid shape factor. The two estimates di�er by less
than approximately 0:5 %, and therefore the expected
value is very close to 3:43.
This approach is a fast and relatively accurate method

of estimating S?p
A
because the shape factor has a rela-

tively weak dependence on the shape and aspect ratio
of the body as noted above.

BODY GRAVITY FUNCTION FOR VERTICAL AND

HORIZONTAL CUBOIDS

Vertical and horizontal cuboids are characterized by
the fact that they possess vertical and horizontal sur-
faces with respect to the gravity vector, Fig. 1. The
buoyancy-induced 
uid 
ow patterns over these surfaces
are complex and therefore extemely di�cult to model
accurately.

To appreciate the development of the body-gravity
functions for vertical and horizontal cuboids, the discus-
sion will be restricted to a thin laminar hydrodynamic
boundary layer RapA > 104 with a much thinner ther-
mal boundary layer Pr >> 1 embedded within it.
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Figure 1: Schematic of Several Horizontal and Vertical Cuboids

For example consider two cases: 1) vertical square
prisms and 2) long horizontal square prisms (see Fig. 1).
In the �rst case the 
uid 
ow commences at the lower
stagnation point (located at the centroid) of the bottom
surface; the 
uid 
ows over the bottom surface in some
complex 
ow pattern; it traverses the lower perimeter;
then it 
ows along the sides and ends to the perimeter
of the top horizontal surface. If the 
uid velocity is suf-
�ciently small, the 
uid will traverse the top perimeter
and 
ow over the top surface from the perimeter towards
the top centroid where the 
uid leaves the top surface
in a plume.
In this case the buoyancy-induced 
ow is said to be

in the series 
ow arrangement; the total body surface is
decomposed into i) the bottom surface, ii) the side and
end surfaces together, and iii) the top surface.
The body-gravity functions for the respective surfaces

are obtained by means of Eqs. (6) and (8) for the series

ow arrangement described above. Since the horizontal
surfaces cannot be handled by Eq. (5); they are mod-
elled by means of the semiempirical models developed
by Yovanovich and Jafarpur, 1993.
Alternate 
ow patterns and arrangement of surfaces

are discussed in great detail in the study of Jafarpur,
1992.
One objective of this study is to present a simple

model which captures the essential physics of buoyancy-
induced 
ow over the surfaces of horizontal cuboids and
provides relatively accurate results over a wide range of
Rayleigh and Prandtl numbers.

General Body-Gravity Function For Cuboids

The semiempirical results for rectangular surfaces

of area A = LW facing upward or downward are
(Yovanovich and Jafarpur, 1993):

Gtopp
A
= 21=8

�
L

W

�1=8

and

Gbotp
A
=

1

2
Gtopp

A

L

W
� 1 (28)

They are combined with the formula applicable for
vertical side and end surfaces:

Gsidendsp
A

=

�
Pp
A

�1=4

(29)

where the cuboid perimeter perpendicular to the gravity
vector is P = 2(L +W ), and the total area of the sides
plus ends is A = 2(HW +HL). Assuming series 
uid

ow over the bottom, side plus ends combined, and the
top surfaces according to Eq. (8) gives

Gcuboidp
A

= 21=8

"
0:625 L4=3W +H(L+W )4=3

(HW +HL+ LW )7=6

#3=4
(30)

The �rst term in the numerator of the above expression
corresponds to the contribution of the top and bottom
surfaces and the second term corresponds to the contri-
bution of the sides and ends to the overall body gravity
function.
The denominator is associated with the total surface

area of the cuboid.

Body-Gravity Functions For Several Special

Cases

9



Several special cases arise from the above general ex-
pression, Eq. (30). These will be discussed next.

Horizontal Rectangular Plates: H = 0; L � W

Grect platep
A

= 0:7665

�
L

W

�1=8
L

W
� 1 (31)

Horizontal Square Plate; Both Sides Active:
H = 0;W = L

Gsq platep
A

= 0:7665 (32)

Vertical Rectangular Plates; Both Sides Active: L = 0

Gvert platep
A

= 21=8
�
W

H

�1=8

0 <
W

H
<1 (33)

If the vertical plate has one side active only, omit the
factor 21=8.

Long Horizontal Square Prisms; Active Ends:
H = W << L

Glong prismp
A

= 0:856

�
L

H

�1=8
L

H
> 10 (34)

Vertical Square Prisms With Active Ends:
L =W; 0 � H=W <1

The general expression, Eq. (30), reduces to

Gvert sq prismp
A

= 21=4
(0:250 +H=W )3=4

(0:500 +H=W )7=8
(35)

The constant in the numerator has been rounded to the
value 0:250 for convenience; this gives for the zero thick-
ness prism, H=W = 0, a value of the body gravity func-
tion approximately 0:6 % greater than the value given
above.

Horizontal Cube: H = W = L = 1

Gcubep
A

= 0:984 (36)

The validity and accuracy of the general expression,
Eq. (30), and some of the speci�c expressions for the
body-gravity functions for horizontal cuboids will be
veri�ed against air data in the following section over
a wide range of the Rayleigh number.

COMPARISON OF CUBOID MODEL WITH AIR DATA

The proposed cuboid model(s) is compared against
extensive air data (Pr = 0:71) (Chamberlain, 1983;
Clemes, 1990; Hassani, 1987; Karagiozis, 1991; and
Saunders, 1936) for several special cases of cuboids over
a wide range of Rayleigh numbers: 103 < RapA < 1011.
The close agreement between the cuboid model and the
air data are clearly seen in graphical form in Figs. 2
through 7.
The cuboids with the estimated di�usive limits and

body-gravity functions are given in Table 3. Although
the three-dimensional bodies tested varied signi�cantly
in shape, aspect ratio and orientation, the calculated
di�usive limits were found to lie in the range: 3:28 �
Nu1p

A
� 4:10. The di�erence between the smallest val-

ues corresponding to the [1; 1; :1] and [:1; 1; 1] cuboids
(thin square disks) and the largest value corresponding
to the long square prism [1; 1; 10:13] di�er by approxi-
mately 25 %.
The calculated body-gravity functions were found to

lie in the range: 0:841 � GpA � 1:20. The smallest
value corresponds to the horizontal thin cuboid [:1; 1; 1]
as expected, and the largest value corresponds to the
long horizontal square cuboid [1; 1; 10:13]. The di�er-
ence between the largest and smallest values is approx-
imately 43 %.
The RMS and maximum percent di�erences between

the cuboid model predictions and the measured values of
NupA are presented in Table 3. The RMS % di�erences
lie in the range: 2:5 � 6:1, and the maximum percent
di�erences lie in the range: 3:8� 12:1.
The agreement in general is seen to be very good to

excellent. The maximum di�erences between the data
and the model occur at the lowest Rayleigh number val-
ues for the cuboid [1; 1; :1] shown in Fig. 4 and the last
6�9 data points of the cuboid [1; 1; 10:13] at the highest
Rayleigh numbers shown in Fig. 7.
The excellent agreement between the data of cuboids:

[1; 1:43; :064] and [1; :666; :024] and the proposed cuboid
model seen in Figs. 5 and 6 refutes the relatively large
di�erence observed in Fig. 4.
The agreement between the present cuboid model and

the air data of Saunders (1936) shown in Fig. 6 is very
good, especially at the lower end of the Rayleigh number
range. The Saunders cuboid is a vertical rectangular
plate. The RMS and maximum percent di�erences are
not given in Table 3 because the data were obtained by
digitization of points presented in graphical form.
Jafarpur (1992) has demonstrated that the proposed

cuboid model can be modi�ed to provide an upper
bound on the body-gravity function by assuming that

10



Figure 2: Comparison of Present Cuboid Model with Air Data for Cube (H = W = L = 1).

Figure 3: Comparison of Present Cuboid Model with Air Data for Horizontal Square Disk (H = 0.1, W = L = 1).
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Figure 4: Comparison of Present Cuboid Model with Air Data for Vertical Square Disk (H = W = 1.0, L = 0.1).

Figure 5: Comparison of Present Cuboid Model with Air Data for Vertical Rectangular Plate (H = 1, W = 1.43, L
= 0.064).
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Figure 6: Comparison of Present Cuboid Model with Air Data for Long Horizontal Square Prism (H = W = 1.0, L
= 10.13).

Figure 7: Comparison of Present Cuboid Model with Air Data for Vertical Rectangular Plate (H = 1, W = 3.03, L
= 3.3 � 10�5).
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the bottom, sides and ends, and the top surfaces are
in the parallel 
ow arrangement to re
ect the modi�ed

uid 
ow patterns over these surfaces. This approach
provides an upper bound for the cuboid model. The
data at the highest Rayleigh number range appear to
approach the upper bound predictions.

Chang et al. (1988) reported nine air data points for
the horizontal cuboid [1; 1; 12:4] in the narrow Rayleigh
number range between 107 to 108. From the pro-
posed cuboid model one calculates: Nu1p

A
= 4:37 and

GpA = 1:188. The data lie within 7:5 % of the model
predictions.

Table 3. Cuboids, Di�usive Limits, Body-

Gravity Functions, RMS and Maximum Percent

Di�erences for Bodies Used in Comparison

Cuboid Di�usive Body RMS MAX
Limit Gravity % %

Function Di�. Di�.
[H;W;L] Nu1p

A
GpA

[1; 1; 1] 3.39 0.984 3.8 6.5
[:1; 1; 1] 3.34 0.841 5.9 11.8
[1; 1; :1] 3.34 1.064 6.1 12.1

[1; 1:43; :064] 3.33 1.11 2.5 3.8
[1; 3:03;' 0] 3.44 1.25 { {
[1; 1; 10:13] 4.10 1.20 4.7 11.9

CONCLUSIONS

A general cuboid model has been proposed for nat-
ural convection heat transfer from horizontal and ver-
tical isothermal cuboids of arbitrary shape and orien-
tation for a wide range of Rayleigh and Prandtl num-
bers. Methods for estimating the dimensionless di�u-
sive limit and the body-gravity function are presented.
Several expressions for the di�usive limit and the body-
gravity function respectively are presented for some spe-
cial cases.
The proposed model which is based on the linear

superposition of the di�usive limit and the boundary
layer asymptote is compared against experimental data
obtained from natural convection heat transfer from
isothermal cuboids into a su�ciently large volume of
stagnant air over a wide range of Rayleigh number.
The tested cuboids ranged from horizontal and verti-

cal thin square disks, vertical thin rectangular plates, a
horizontal cube, and two long horizontal square prisms.
The agreement between the proposed cuboid model

and the data is very good for the range of bodies tested

over the Rayleigh number range: 103 � RapA � 1011.
RMS and maximum percent di�erences are reported.
The proposed cuboid model is relatively simple, easy

to use and quite accurate, and can be modi�ed easily to
model heatsinks.
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