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ABSTRACT

The prediction of the wear characteristics of a fretting
wibo-system requires an analytical capability to estimate the
friction-induced temperature rise in the contact zone as a
function of the process variables. This can only be achieved,
if the division of frictional heat between the contacting
solids, and the thermal characteristics of the whole system,
e.g., the thermal boundary conditions and the external heat
sources, are taken into consideration. Numerical methods,
2.g.. finite difference and finite element, seem to offer the
anly approach to model and solve the heat transfer problem
in 2 realistic tribo-system. The main obstacle, which
pevents us from applying these methods, is the lack of a
model that correlates the thermal constriction resistance at
the micro-contact area to the parameters of the fretting
process. The objective of the present study is to bridge this
£ and to develop such a model. For the range of process
; variables covered in this paper, it has been concluded that

®e thermal constriction resistance in fretting is greater than
: M in static contact. This effect is more pronounced at
higher levels of Fourier modulus. It has also been observed
,&f the thermal constriction resistance is nearly constant
 dwring the quasi-steady state, and is independent of the
anplinide of oscillation and mode of motion. A correlation

the constriction resistance and the process
Parameters has been established.

INTRODUCTION

wea i to the nature of engineering surfaces, the real contact

As .':t: ‘;cf}' Sma_ll fraction of the apparent area of contact.

J Wiuu L the friction heat generated at the micro-contact

bes risespread out rather than taking a straight path. This
10 the so-called “thermal constriction (or spreading)
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resistance R,". To overcome this microscopic constriction
resistance, a steep lemperature gradient has to be established
in the subsurface layer. The analysis presented in [1}
showed that the temperature distribution in the thermally
disturbed subsurface layer (in the order of 50-100 m thick)
is exponential and may result in a significant rise in the
contact temperature. It has been established that the
temperature at the contact interface and within the subsurface
layer has a decisive influence on the mechanical and
chemical aspects of the fretting wear process [2-6]. Since
the contact temperature can only indirectly be measured,
some theoretical models are needed to extrapolate
measurements. The model developed by Attia et al. [1,7,8]
to estimate the contact temperature rise assumed that all the
frictional heat enters the body that oscillates with respect to
the friction-heat sources located at the micro-contact areas.

To predict the response behaviour of a real fretting tribo-
system (of a complicated geometry, and realistic thermal
boundary conditions), the division of the friction heat, and
the thermal characteristic of the whole system should be
considered. This can only be achieved by using numerical
methods, e.g., finite element and finite difference, similar to
the work done to solve the heat transfer process in sliding
tribo-systems [e.g., 9-12]. In the analyses presented in
{9,10], the thermal constriction resistance R, for constant,
uniform heat flow in static contact was used. Ling and Pu
(9] noted, however, that more detailed analysis of R, is
required. The only missing link in adopting this approach is
lack of qualitative understanding and quantitative modelling
of the thermal constricion phenomenon in fretting.
Therefore, the main objective of the present study is to
develop a general model for the thermal constriction
resistance R, in fretting, which relates R, to the process
variables, namely, the motion parameters, the material
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properties, the mechanical loading. and the characteristic
length of the micro-contact area. Since the micro-contact
areas are thermally connected in paraliel, the analysis of the
heat transfer process at a single micro-contact spot
constitutes the basic cell for predicting the overall thermal
resistance of the interface. The R-model developed in this
paper takes into consideration the thermal interaction
between adjacent micro-contacts, and the finite thermal
capacity of the body. This is achieved by solving the heat
transfer process in an elemental heat flow channel HFC,
which encompasses a single micro-contact and extends some
distance in the solid {131

THERMAL CONSTRICTION RESISTANCE R, IN
FRETTING- HFC MODEL

Statement of the Probiem

Following Tsukada's approach [14], it is assumed that the
contact between two rough surfaces is replaced by a perfectly
smooth, stationary surface in contact with a rough, oscillating
semi-infinite body (1 and 11, respectively, in Fig. 1). Itis
further assumed that the contact asperities have constant
square cross-section (2Lx2L) and are arranged in a square
pattern with a spacing distance S over the free surface of the
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NEAR- AND FAR- REGIONS

FiG. 1

half-space 1. The analysis is also based on the following
assumptions:

i) The relative displacement between the two semi-infinite
bodies is described by a simple harmonic motion:
X = a sin (@t), where 2 and @ are the amplitude and the
circular frequency of reciprocation, respectively.

ii) The coordinate system is attached to the rough,
oscillating body I1.

iii) Except for the micro-contacts, the free surface of the
semi-infinite bodies 1 and II are adiabatic.

iv) The mechanical characteristics of the process, as well as
the thermo-mechanical properties are constant.

As indicated earlier, the volume which encompasses a
single micro-contact and extends to some distance into the
solid is defined as the elemental heat flow channel HFC
[13]. The control surface which separates any two adjacent
channels is adiabatic. The characteristic dimension S of the
HFC is the spacing between two neighbouring
micro-contacts and is obtained from the analysis of the

corresponding mechanical contact problem:

52=A'"fc=£_’-_2=f£ m
Ahfc §? Pm
where,
€ = the constriction ratio
Apic Apee = the micro-contact area and the cross-sectional
area of the HFC, respectively
Pa Pm = the applied contact pressure and the flow

pressure of the softer material.

From an anaiytical viewpoint, the heat generated at the
micro-contact area can be regarded as an oscillating heat
source in relation to body 1, and as a stationary heat source
with respect to body II. For a complete analysis of the
thermal constriction problem in fretting, the solutions of both
modes of motion are sought. It should be remembered that
in either case, the heat flux varies sinusoidally with time.

Formulation of the Problem

Superposition of Image Heat Sources.

The solution for the average temperature © over an area
A, atdepth Z within the heat flow channel HFC 1s based on
the method of infinite images developed by Beck {15} and
Yovanovich et al. [16,17] for static contact. The average
temperature rise 6 is the superposition of the contribution of
the friction heat generated at the micro-contact attz_l_ched to
this HFC (denoted as the starting heat source SHS) O and
due to the contributions from all other neighbouring image
heat sources 8;,.. The latter can be approximately evaluated
by grouping the neighbouring image sources into WO




regions; namely, the near- and far- regions. In the near
re}ion, which surrounds the starting heat source and covers
a small portion of the contact interface, only a finite number
of frictional heat sources [N_,-1] is considered. In the far
region, which covers the remainder of the free surface of the
semi-infinite body, the friction heat input of the discrete
image sources is assumed to be evenly spread. The effective
uniform heat flux q, over the far region is described by the
following relation:

qs = €2¢7=€2PPm|V(OI =€2|me8(.0 IOOS(Q)OI(Z)

where, § is the heat flux over the micro-contact area A
and p is the coefficient of friction. The contribution of the
Jar region 5& to the average temperature rise over the area
A, is the difference between the average temperature rise
84« produced by heating the free surface of the
semi-infinite body by the effective heat flux q, and the
average temperature drop éqe,m due to a negative heat flux
(-q,) over the square area of the near region bounded by the
lines: x,y = + [_(\/Nm) /28 ].  Therefore, the average
temperature rise 0 is given by the following relation:

_ Nop-1 _ _
O%zt) <[Bun] < 32 Ond *[10hen-(8)enn]
F

The analysis presented in [1] for N ;= 9 confirmed that this
superposition approach satisfies the boundary conditions of
the HFC model, in which the control surfaces x,y =+ 8 are
adiabatic.

In the folloying _sectit_)n, the solution for the average
temperatures O, 0, qu,w and éqe,m are obtained by
integrating the fundamental solution for an instantaneous
point source of heat acting on a semi-infinite body with
fespect to time and the appropriate space variables.

Average Temperatures

To determine the thermal constriction resistance R, it is
Wocessary to utilize the average temperatures over the
micro-contact area and the HFC cross sectional-area at
different planes z > 0. The average temperature 0 over a
Mquare area A, = 2Ax2), located at (x,.y,.z,) due to an
oscillatory, sinusoidal heat source q located at x,= y =z =

0. and covers an area 26x28 (Fig. 2) is obtained from the
following relation:

Xgth Yu*A

E(ZJ) =[%—] f fe(x,y,z,t) dxdy

A Xa~A Ya-A

@
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FIG. 2 AVERAGE TEMPERATURE RISE OVER A SQUARE
AREA 2).x2) AT (x,y,z,) DUE TO A FRICTION
HEAT SOURCE LOCATED AT 0(0,0,0) AND COVERS
A SQUARE AREA 23 x 23

The expression for the temperature rise B(x,y,z,1) at time
t and at any point P(x,y,z) within the HFC was obtained in
[1]. For the purpose of completeness and clarity, the
derivation of this expression and its presentation in
dimensionless form are summarized in Appendix A:

8(F.ZH —“Bima f, f ( (FG) (FGA)
Af=0
[F@) lcos 2w (t-A)| dAf
Jat

Integration of Eq. 5 with respect to the dimensionless space
coordinates X and y yields the following expression:

&)

81 ~IT yFa (1, 1] f ([Fo] [Foa)) o
Af=0

[F(E)] |cos2n (f—A5| oAf

yat

where, X, y, and z= /L, y/L, and z/L, respectively. The
dimensionless temperature @ is related to the average
temperature 8 (Eq. 4), the material thermal conductivity k,
the contact length L, and the average friction heat input to
the system q,, by the following relation:




8 . 8 k (7)

6: =
9ay Lk (npc)(antL

The other dimensionless parameters in Eq. 6 are defined as:
=3 z?
F(2) = exp|-———
4 AtFo

F(® = (@) + VAT Fo [ierfc(Aj +ierfc( By
+ VAT Fo [-lerfe( C3) - lerfe( D)

F) = (22) + VAl Fo [ferfc (A +lerfe( B
JAt Fo [-lerfc(Cy) - lerfe( D3]

+

A 3 + (X+1) - Asin(2x f) + Asin2x (F-Af)
;=
2y[atFol
5 - 3 - (x,-1) + Asin@x ) + Asin2x ({-Ad)
. 2|[aFd ®
c - 3 + (x,~}) - Asin(2x ) + Asin2n ({-A])
- -
2[atFo
o - 3 - (X;+x) + Asin(@x f) + Asin2n ({-Ad)
) 2+[atFol
4 3 ED g, . 2 G
2[afFd| 2|AtFol
c, - a+(7,—x)' D, - d - (X,+1)
2y|atFol 2[atFol
7 t 5 of : t ? o =2 «
t=21 1= f=l-_, Af=i-t, Fo=—;
12’ L2’ Fo fL?

The symbols 3 and X are the dimensionless characteristics
length of the heat source, 8 = 3/L, and the area A, over
which the temperature is averaged, . = ML. The factor f,
in Eq. 6 is the ratio between the area of the starting heat
source A, and the area A,; £,= I/ A2 The factor f, is the
ratio between the contact pressure p, over the area of the
friction heat source and the flow pressure of the softer
material; £, = p./ pn

In the special case when the heat source is stationary, i.e.,
attached to the body, but is still varying sinusoidally with

time, the average temperature at any depth Z can be obtained
from Eq. 6 after substituting for the dimensionless oscillation
amplitude A = 0 in the functions Ag, Bg, Cg and Dy in Eq8.
Equation 6 provides also the solution for the average
temperatures in static contact when the strength of the heat
source is time-independent and has the same average of the
sinusoidal frictional heat. In such a case, the quantity
lcos(2n(t- AD)| is replaced by (2/m) and the oscillation
amplitude A =0. As 8->, the average temperature ® over
an area A, due to an infinite far-region heat source is
determined from the following relation:

B(Z ... L2 VFB 1, 1,

Af=f Lo 62)
f [Fz)] lcos2z (EAD| ypf
Af0 \/X-'

Table 1 shows the dependence of the variables f,, f, and 8
on the type of heat source and the area A, over which the
temperature is averaged. The symbol N stands for the
number of discrete image heat sources in the near region.

TABLE 1. THE PARAMETERS f, , f,, AND 3 FOR
VARIOUS TYPES OF HEAT SOURCES

Heat starting heat near region far region

source — source SHS (nr) (fr)
and and

Averaged image heat

area A, source IHS

micro- fp= 1, f,=1, fpfez,ff 1, fp=82 .

contact d=1 25=VN /e £,=1, §=»

area

cross-sec. | f,=1, f,=¢%, f=c’.f,=¢%, f,=c?,

area of &= 1 25=(IWN e | £=1,8=

HFC ]

Thermal Constriction Resistance.

The constriction resistance R, arises due to the fact that the
micro-contact area is smailer than the cross section of the
HFC. Frictional heat flow lines Q must, therefore, spread
out into the HFC rather than taking the least resistance,
straight path. The temperare difference between the
average temperature on the micro-contact area ®, and the
mean temperature © ; over the cross sectional area Ay, of
the HEC at any plane Z is due to the total thermal resistance
R,, which includes the resistance Ry, of the material of the
HFC itself as well as the constriction resistance R, due f0
the micro-contact area [13]:




1
a nc ) (Amic
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With the assumption that these two resistances are additives,
Yovanovich et al. demonstrated {19,20] that the temperature
drop due to the constriction resistance only is the difference
between the average temperature of the contact area ©_ and
the mean temperature & _ -, of the entire contact plane (i.e.,
the HFC cross-section at z=0), when the heat source is
stationary and time-independent. This conclusion will be
tested in the present study, for the case in which the heat
source varies sinusoidally, both in the time and space
domains.

Due to the cyclic nature of the thermal load, both the
instantaneous and average values of the thermal constriction
resistance are determined. The instantaneous microscopic
thermal constriction resistance R, can be defined in terms
of the instantaneous heat flux g, over the micro-contact
area (2Lx2L):

ot (c-Om)yg _ (8o 8msy 1
& Qost (4L®)  2nkL |cos (2n {)]|
The dimensionless instantaneous constriction resistance

parameter y is related to the thermal constriction resistance
R, by the following relation [13}:

(12)

From Eqgs. 11 and 12, the following expression for the
constriction resistance parameter  is obtained:

¢ [_2_} lac'gm,i-ol
T

|cos (2x t)|
an-l Egs. 6 and 13, one can conclude that the functional
relationship between the constriction resistance parameter and
Fourier modulus can be described as:

a3)

¥- {ﬂ-‘a, ierfc[f—’z\/'-'%}’?]} (14)

0

» . . . - _
mh“_e‘ £z 7.7 a1 1S a function of the coordinates X and y, and
f: Uime parameters ¥ and Al. Therefore, it is predicted that

" small values of Fourier modulus Fo, the ierfc(...) term
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dominates and. therefore, the rate of change in the thermal
constriction resistance decreases with the increase in Fo. As
Fourier modulus increases further, the ierfe(...) function
approaches zero and W becomes a function of VFo only.

Numerical Solution- Function Behaviour and

Singularity.

The integration expressed by Eq. 6, was performed
numerically, since no closed-form analytical solution exists.
At the lower limit of integration At = 0, the integrand [
exhibits a singularity. This singularity was removed by
splitting the integral into a singular part [(0 < At £ ) which
is to be treated separately, and a non-singular part 1 (o < At
<1 to which one of the conventional numerical integration
methods is applied:

Af=f Al=g . Af=f .
[ 1) gat= [ 1(.)dak [ s () @A (9
Af=0 Al-0 Af=o

To treat the functions F(X) and F(¥) in the integrand I, as
counstants, i.e., independent of X and y, the initial time step
o is chosen to be sufficiently small to cause the arguments
arg of the integral complementary error function ierfc(arg)
to be equal to zero, or to be 2 5. In such a case, ierfc(arg
= 0) = 1/Vr, and ierfc(arg>5) can be assumed to be zero,
with an error < 2x10™'!. For the working range 250 < FO
<10°, the value of o is chosen to be equal to 0.5x10°%
Therefore, for 0 < At < o, the integration of the first term in
Eq. 6 can be written as:

8,(Z.1 =%,/Fo f, £, [Cs5] lcos(@n )]
(16)
fao >2 e
j‘ exp(_ z ] d At
Af=0 4AtFo m

where, [C;5] = Fy(X) Fo(y). In what follows, the results of
the integration expressed by Eq. 16 is summarized for
various types of heat sources. The notation used to express
the initial average temperature is ©,, ;4 The parameters of
the subscript indicate the following: o = this expression is
related the temperature rise during the initial time step & <
t < 0, a = the area that is being averaged (c and m for the
contact area and the cross-sectional area of the HFC,
respectively), s = the type of heat source (shs, ihs, ar or fr),
and d = the depth of the area being average (Z =0 or z > 0).

i- Starting heat source SHS; X,=y,=0 and 3= 1:

a) average temperature ©_ , over the micro-contact
area; .=1 and z=0:

In this case, Fy(X) = Fy(y) = [2 -2 ¥ (Fo/m) ¥ (AD) ], and
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8 .0 zs0 = By 1008 (@5 D)
. . a7
_1-_‘4-8 \—Eg\/Ah-“Fo At} daf
Al n x
4]

= ([\jn]/[QNFo]) f, £ The values of f, and f, are
For the special case when zZ = 0, the

Its in the following expression:

where, B,
given in Table 1.
integration of Eq. 17 resu

- B, |oos (2x D)

{w;_a ‘feq&’:'eaen\
T 3x

b) average temperature (So’m's,,dz o over the cross-
sectional area of the HFC; =1/ and z20:

In this case, the functions F(x) = F(?) =2, and
’ exp! ——C—”‘
-4 B, |cos (2x )| 2At) gaf A9
At
0

solution of Eq.

0 5,5308,7-0
(18)

eo.m,ans,BO

Through successive integration by parts, the
19 is obtained:

80, m s, 750 = 8By |c0s (27 b1yCn

NERRS

el

where the asymptotic series Sy is defined by the following
equation:

s . XN 135 . @nY)
" &)
(Cil 9]

@y
)

where, C, = 7/[2 Fo}. Examination of the series Sy indicated

that the number of terms N used in the computation should
be <7, to ensure its convergence for all values of C,213. The

truncation error R, involved in omitting other terms N >7

18:

1.35.... (2n+1) Rz "
—————————M) exp( 20) <2x10 22

Cala]" ?

1Ryl <

In the special case when 7=0, the value of ©,n nez=0 is

described by the following relation:

- 88, [cos (2x D] Vo @3

eO.m.dis,E-O

ii- Image heat sources in the near region tHS;

X,20,0ry,#0,and 8= 1 _
In this case, the functions Fx) = F(y) = 0. The average
over the micro-contact area and the
the HFC for all values of z> 0 are
= 0.

temperature
cross-sectional area of
therefore: ®o c,ihsz 2 0 = ®o.m.ihs,i 20

jiil- Near region heat source; X,= ¥,=0, 3= N je:

The average temperature O, onr3=0 OVEr the micro-contact

area, where A=1l, and Z = 0, is similar to the solution
17 and 18. Overthe

obtained for the SHS and given by Egs.

cross-secti_gnal area of the HFC, where A=1/c and Z 2 0, the
functions F(X) = F(y) = 2/, and therefore, the solutions for
the average temperature O, mnrz20 is similar to those given
by Egs. 19 and 20, using the appropriate value of f,, as per
Table 1, and after replacing B, by B‘/sz.

X= ¥,=0, anq 3=
o over the micro-contact
oum, 1,220 OVET the cross-

iv- Far reglon heat source;
The average temperature O, 0. ir7=
area, or the average temperature rise ©
sectional area of the HFC at Z = 0, are also similar to the
solution obtained for the SHS and given by Egs. 18 and 20,
after substituting for the factor f, =1 in the coefficient By

To ensure that the non-singular part I, of the integrand in |
Eq. 6 is accurately represented by a quadrature formula of
n=2, the behaviour of the integrand was examined over & ’
number of cycles n < 5. Figure 3 shows the steep drop in |
the integrand I, within © =0.5x108< t < 0.0025. This 3
peculiar behaviour may lead to a significant errof in
estimating the average temperatures and the constriction |
resistance, unless the number of divisions for numeri
integration is sufficiently large. In validating the formulatiof
and numerical treatment presented in this paper, Eq. 6 W83 §
used to calculate the static thermal constriction parameter Yo
and was compared with Yovanovich's correlation (19

w, = ¢, (1-¢ )2, where ¢ <0.3 a»’

68




{ 1200 1 1200 -
: & A=8 =1
| | 3 100 s, Fo-
| 1000 + g =5, Fo=1000
- l go 800 Xa=ya=Za= 0
. T 800 E
] =
P g
=
| 2 6001 =
bz ) >
@
@
2 400
> 0 0.005 0.01
200 Dimensionless time t
¢ 01 02 03 04 05 06 07 08 09 1
Dimensionless time’t‘

FIG.3 BEHAVIOUR OF THE INTEGRAND i IN EQ. 6
DURING THE FIRST CYCLE (Fo=10°, A= A = 3 =
1,X,= ya=z=0,1= 5)

For a square contact area, the coefficients ¢, and ¢, in Eq. 24
are 0.958 and 1.35, respectively. It has been found that the
relative error between Eq. 24 [19] and Eq. 6 in the present
analysis is <1.5%, when the number of divisions N, for
numerical integration are: Ny, 21500 for 0.5x10%< t <
0.001 , Ny, 2 800, for 0.001 < t < 0.01, Ny, 2 500 for
001<f < 1, and Ny 210 for f > 1. These number of
divisions were used in generating the results presented in the
next section.

RESULTS AND DISCUSSION

The effects of the following process variables on the
thermal constriction parameter \y are examined: Fourier
modulus: 250 < Fo < 10°, the amplitude ratio 0.5 < A < 10,
‘ and the constriction ratio € £ 0.25. These ranges cover the
typical fretting conditions encountered in most practical
applications: frequency: 2.5 < £ £ 100 Hz, slip amplitude: 5

525100 pm, and thermal diffusivity: 5 < o < 80 mm? s

Lharacteristic Features of _the Constriction

Parameter w, during the Quasi-Steady State Cycle:

For all combinations of process variables that have been
fested in this work, the quasi-steady state cycle was reached
after S 10 10 cycles only. The analysis carried out by Attia
ad Camacho [1] showed that the steady cyclic variation in
%e temperature field was reached after 2x10° cycles, when
A=10,c=02, Fo = 103, and the ratio y of the contour
area (far region heat source) to the micro-contact area = 100.
::" supports the observations made in [15,16] that although

steady state condition exists for the temperature field in
e presence of an infinite number of micro-contacts, the
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difference between the average contact temperature (:)c and
the average temperature ®, of the HFC cross-section at
some plane z converges rapidly to the steady state.

Figure 4 shows the change in the constriction parameter
during the quasi-steady state cycle t, for different values of
Fourier modulus, 250 < Fo £ 10°. The ends of the oscillation
stroke, 1=0.25 and 0.75, present singularity points since the
relative velocity between the contacting solids and
consequently the frictional heat generation reach zero.
Therefore, the constriction resistance and the parameter
approach infinity. Fortunately, this singularity in the system
behaviour has no practical significance, since the exercise of
heat partitioning is meaningless when the instantaneous level
of frictional heat is zero in the first place. Figure 4 indicates
also that for Fo> 103, the variation in the parameter y with
time is insignificant. Apart from the singularity points at t
= (0.25 and 0.75) + 0.05, the constriction parameter \ varies
only within + 4.5 % of its average value, in the worst case
when Fo = 250. For all practical purposes, the constriction
parameter is assumed to be time-independent, and only its
average value V is to be considered. The results presented in
[1] showed that while there is a significant time lag for the
maximum temperature rise at different points within the
HFC, Z < 10, the phase difference between the average
temperature @, of the micro-contact area and the mean
temperature ©_ of the contact plane, i.e., the cross sectional
area of the HFC at z = 0, is < 3°. This in agreement with
the results shown in Fig. 4, which shows that phase
difference Ad between the frictional-heat source and the
thermal constriction parameter \ is nearly zero.
_Figure 5 shows that the temperature difference A® = (O -
©®p720) between the average temperatures of the micro-
contact area and the mean temperature of the cross-sectional
area of the HFC at z > 0 varies linearly with depth z. This
indicates that the two components of the total resistance R,;
namely the constriction resistance R, and the resistance of

0
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FIG. 5 DISTRIBUTION OF _THE TEMPERATURE
DIFFERENCE (A® = ©,-0,) ALONG THE DEPTH z

the material of the HFC itself R, are indeed additive. This
conclusion is in agreement with the theory of constriction
resistance in static contact {15-17]. The graph indicates also
that the extrapolation of the difference in the average
temperatures  (©,Oyz., ) to the contact plane, z=0,
coincides with the direct calculation of (©-Op, 5=0)-
Therefore, in determining the average constriction resistance
parameter \, only the quantity (©,-0 ;) needs to be
calculated.

Effect of Process Parameters on the Average

Constriction Parameter Wy

Fo, and the Constriction

BSEC UL AL

Effect of Fourier Modulus

Ratio ¢

Figure 6 shows the dependence of the average constriction
parameter Wy on the constriction ratio, 0.05 < € £ 0.25, and
fourier modulus, 250 < Fo £ 1x10°. The figure includes also
the relationship between y, and ¢ for static contact, i.e.,
when the heat source is stationary and time-independent (Eq.
24 [19]). The following observations can be made. First,
the increase in the constriction ratio € results in a nearly
linear reduction in the constriction resistance. This negative
effect is expected, since at the limit ‘when £—>1, the
constriction (or spreading-out) phenomenon will no longer
exist, and the constriction resistance approaches zero.
Second, the increase in Fourier modulus, Fo=a/(fL2), leads
to an increase in the constriction parameter y. It is also
worth noting that the rate of change Oy/0Fo is more
significant at lower levels of Fourier modulus, Fo £ 104, as
suggested by Eq. 14. On some physical grounds, one can
argue that at high frequencies of oscillation (small Fourier
modulus), the front of the thermal wave is very close to the
contact area causing the effective constriction ratio to be
close to unity, and constriction parameter W to approach 0.
As the penetration depth increases (proportional to JFo), the
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skin effect becomes less pronounced and the effective
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FIG. 6 EFFECT OF FOURIER MODULUS Fo, AND

THE CONSTRICTION RATIO ¢ ON THE
AVERAGE CONSTRICTION PARAMETER y IN
FRETTING AND IN STATIC CONTACT

constriction ratio becomes smaller. This leads to the increase
in the constriction parameter. With a further increase in
Fourier modulus, the front of the thermal wave reaches the
adiabatic control surfaces containing the HFC, leading to a
reduction in the rate of change in the thermal constriction
resistance. This reasoning, which explains the trend of the
results given in Fig. 6, is consistent with the results reported
by Yovanovich et al. [20-22] for the transient constriction
resistance for a single and multiple contacts on a half-space.

Comparison of the constriction parameter results \y obtained
in this study with the static constriction resistance parameter
v, (Eq. 24) indicates that y > y, for 250 <Fo < 10°, and €
< 025. In fact, the surface representing the wy{e,Fo}
relationship intersects with the y,{e} plane at Fo=250.
Some tests were conducted for Fo < 250, and the results
showed that in this range the behaviour is reversed: Y<\
For example, when € = 0.15, y= 0.769, while y = 0.661,
0.729, 0.762, and 0.768, for Fo= 50, 100, 200, and 250,
respectively.

Effect of the mode of motion

As indicated earlier, the contacting solids can be regarded
as moving (oscillatory in this case) and stationary bodies i
relation to the frictional heat source. These two modes of
motion are denoted as mode I and 11, respectively. The ratio
between the constriction resistance parameter in mode II 10
that in mode I, Rg= Wi/ Wy 1S presented in Fig. 7, for
0.05<¢<0.25, and 250<Fo<5=10°. Figure.7 shows that the
Ry <1.03 and is very small for Fo > 5x 10> (less than 1.001).
Therefore, one can conclude that the mode of motion has
insignificant effect on the constriction resistance R, (<3%)
and that the increase in R, (as compared with the case of
static contact, Fig. 6) is due to the sinusoidal variation of the
frictional heat with time, rather than the harmonic motion:
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FIG.7 EFFECT OF FOURIER MODULUS Fo, AND
THE CONSTRICTION RATIO € ON THE RATIO Ry

Effect of the Amplitude of Motion A

The etfect of increasing the amplitude of motion from A=
05 to A = 10 on the y{e,Fo} relationship has been
examined. Considering the case in which A = 10 as a
reference case, the relative deviation in the average
constriction resistance parameter as Ais changed to A = 0.5
is presented in Fig. 8. The figure shows that a twenty- -fold
change in the amplitude of motion results in < 3% change in
predicted value of the constriction parameter .

THE CORRELATION BETWEEN THE AVERAGE
CONSTRICTION PARAMETER yAND THE PROCESS
VARIABLES

Since the mode and the amplitude of motion have
insignificant effect on the average constriction parameter,
only the effects of Fourier modulus and the constriction ratio
need to be considered. A non-linear least square iterative
?mccdurc was used to curve fit the surface y{c,Fo} shown
m Fig. 6. The S-shaped surface suggested a mathematical
relation of the following form:

¥ = A+Bsinh[Clog (Fo)] + Dee @9

g* constants were found to be: A'= 0.948, B'= 0.0017,
=0.489, and D'= -1.256. If the constant C' is taken to be

0.5, then Eq. 25 can further be simplified to the following
®mathematical form:
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FIG.8 THE RELATIVE ERROR IN ESTIMATING _THE
CONSTRICTION PARAMETER y FOR 05<A<10
WITH RESPECT TO THE REFERENCE CASE A=10

+De (26)

$ = A+BF-6+
Fo

The constants in Eq. 26 were found to be: A= 0.953, B=
0.00074, C= 0.0955, and D= -1.256. Eq. 26 suggests that
while the constriction resistance depends on JFo, there are
two interacting and opposite mechanisms the govem this
relation. As mentioned earlier, this is physically related to
the effect of Fo on the extent of the thermally disturbed zone
in relation to the whether or not the front of the thermal
wave reaches the adiabatic control surfaces of the HFC.
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Fig.9 A MAP FOR THE RELATIVE ERROR IN
DETERMINING THE CONSTRICTION
PARAMETER vy, USING EQ. 26
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Figure 9 shows the relative error in estimating w{e.Fo}
using Eq. 26. The maximum relative error is found to be <
1.25%. For Fo>10*, the relative error is <0.3%. This range
is, therefore, omitted from the graph. For any given
operating conditions, the maps given in Figs. 7 to 9 provide
an estimate of the approximation associated with Eq. 26.

CONCLUSIONS

The following conclusions can be drawn from the present
study:

1- A general model has been developed to determine the
thermal constriction resistance R of the stationary and
oscillating bodies in contact during fretting. The model
is capable of predicting R, in the transient and quasi-
steady states.

5. For the working range covered in this study: 250 <Fo <
105, €< 0.25, and 0.5 < A < 10, the thermal constriction
resistance in fretting R, is greater than that in static
contact R, This effect is more pronounced at higher
levels of Fourier modulus Fo (at € = 0.25, the ratio
R/R = 1 and 1.36 at Fo = 250 and 10°, respectively).

3- For the working range considered in this study, the
thermal constriction resistance R is nearly constant
(variation around the mean value is < + 5% ) during the
quasi-steady state. The constriction resistance R, is also
nearly independent of the amplitude of oscillation and
mode of motion (with variation < 3 %).

4- The correlation between the constriction parameter y and
the process parameters Fo and ¢ has been established.
Error maps to estimate the effect of neglecting the effects
of the amplitude of oscillation and mode of motion are
provided.

ACKNOWLEDGMENT

The authors wishes to acknowledge the partial financial
support of the Natural Sciences and Engineering Research
Council of Canada NSERC. The authors also thank Dr. F.
Camacho, of Ontario Hydro Technologies for his assistance
and guidance in performing the curve fitting of the results.

REFERENCES

1- Attia, M.H,, and Camacho, F., "Temperature Field in
the Vicinity of a Contact Asperity during Fretting",
Proceedings of the ASME Symposium on Contact
Problems and Surface Interactions in Manufacturing and
Tribological Systems, edited by M.H. Attia and R.
Komanduri. ASME Winter Annual Meeting, New
Orleans, Louisiana, December 1993.

5.  Waterhouse, R.B., "Fretting at High Temperature”,
Tribology International, vol. 14, 1981, pp. 203-209.

3-  Bill, R.C., "The Role of Oxidation in the Fretting Wear
Process", Proc. Int. Conf. on Wear of Materials, San
Francisco, CA., 1981, American Society of Mechanical
Engineers, N.Y., pp- 238-250.

4- Hurricks, P.L., and Ashford, K.S., "The Effect of
Temperature on the Fretting Wear of Mild Steel", J.
Inst. Mech. Engrg.. London, 184(3L), 1969-1970.

5- Kayaba, T., and Iwabuchi, A., "The Fretting wear of
0.45% Carbon steel and Austenitic Stainless steel from
20°C up to 650°C in air", Proc. Int. Conf. on Wear of
Materials, San Francisco, Ca., 1981, American Society
of Mechanical Engineers, N.Y., pp. 229-237.

6- Attia, M.H,, "Friction-Induced Thermoelastic Effects
due to Fretting Action”, presented at and submitted for
publication in the Proceedings of the ESIS Intenational
Conference on Fretting Fatigue, Sheffield, UK., April
1993.

7.  Atia, M.H., and D'Silva, N.S,, "Effect of Mode of
Motion and Process Parameters on the Prediction of
Temperature Rise in Freting Wear", Wear, Vol. 106,
1985, pp.203-224.

8- Attia, M.H,, "Friction-Induced Temperature Rise in
Fretiing- Elemental Heat Flow channel Model", Proc.
International congress on tribology, ed. by K. Holmberg
and [. Nieminen, Helsinki, Finland, 1989, vol. 3, pp. 22-
29.

9- Ling, FF, and Pu. S.L., "Probable Interface
Temperatures of Solids in sliding Contact", Wear, vol.
7, 1964, pp.23-34.

10- Day, A.J., "An Analysis of Speed, Temperature, and
Performance Characteristics of Automotive Drum
Brakes", Trans. ASME, J. Tribology, vol. 110, Apnl
1988, pp. 298-305.

11- Berty, G.A., and Barber, J.R., "The Division of
Frictional Heat- A Guide to the Nature of Sliding
Contact”, Trans. ASME, J. Tribology, vol. 106, July
1984, pp. 405-415.

12- Floquet, A., and Play, D., "Contact Temperature in Dry
Bearings. Three Dimensional Theory and Verification”,
Trans. ASME, J. Lubrication Technology, April, 1981,
vol. 103, pp.243-252.

13- Yovanovich, M.M., "Thermal Contact Resistance:
Theory and Applications”, Lecture Notes, Mechanical
Engineering Department, University of Waterloo,
Canada, 1976.

14- Tsukada, T. and Anno, Y. "Analysis of the
Deformation of Contacting Rough Surfaces”, Bull-
JSME, vol. 15, No. 86, 1972, pp. 996-1003

15- Beck, J.V., "Effect of Multiple Sources in the Contact
Conductance Theory”, ASME Trans., I of Heat
Transfer, vol. 101, Feb. 1979, pp. 132-136.

16- Negus, K.J., Yovanovich, M.M., and DeVaal, JW-
"Development of Thermal Constriction Resistance fof
Anisotropic Rough Surfaces by the Methods of Infinite
Images”, National Heat Transfer Conf., Denver, Co.
August 1985, ASME, N.Y.




20-

21-

22-

Negus, K.J,, and Yovanovich, M.M., “Application of the
Method of Optimized Images to Steady Three-

Dimensional Conduction Problems”, ASME Paper No.

84-WA/HT-110, ASME Winter Annual Meeting, New
Orieans, Louisiana, December 9-13, 1984.

Carslaw, H.S. and Jaeger, J.C., "Conduction of Heat in
Solids", Oxford University Press. 2nd Edition, 1978.
Yovanovich, M.M., "General Expression for Circular
Constriction Resistance for Arbitrary Flux Distribution”,
AIAA 13th Aecrospace Science Meeting, American
Institute of Aeronautics and Astronautics, Pasadena, CA.
Jan. 20-22, 1975, Paper No. 75-188.

Turyk, PJ., and Yovanovich, M.M., "Transient
Constriction Resistance for Elemental Flux Channels
Heated by Uniform Flux Sources”, ASME Winter
Annual Meeting, Paper #84-HT-52, 1984.

Schneider, G.E., Strong, A.B., and Yovanovich, M.M.,
"Transient Thermal Response of Two Bodies
Communicating through a Small Circular Contact Area",
Int. J. Heat Mass Transfer, vol. 20, 1977, pp. 301-308.
Yovanovich, M.M., Negus, K.J., and Thompson, J.C.,
Transient Temperature Rise of Arbitrary Contacts with
Uniform Flux by Surface Element Methods", AIAA
22nd Aerospace Sciences Meeting, American Institute
of Aeronautics and Astronautics, Reno, Nevada, Jan,,
1984, Paper No. AIAA-84-0397.

Nomenclature

amplitude of reciprocation (vm)

contour area (mz)

cross-sectional area of the HFC (mz)

micro-contact area (m?)

specific heat (J kg K™)

frequency (s™)

thermal conductivity of the material (W m' K'Y
half the length of the side of an asperity of a square
cross section (pm)
number of divisions
integration

number of neighbouring heat sources in the near region
applied pressure (N m'2)

contact pressure over the area of the frictional heat
source (N m?)

flow pressure of the softer material (N m'z)
sinusoidal heat flux over the micro-contact area (W m?)
effective uniform heat flux over the far region (Wm'z)
thermal constriction resistance (K W)

S_Pacin g between twoneighbouring micro-contacts (um)
time (s)

velocity (ms')

per cycle, for numerical

XYz cartesian coordinates

Greek Symbols

aQ

thermal diffusivity (m2s™")

> @

> QUOUTF

¢

(O]

half the length of the side of the heat source under
consideration (pm)

temperature rise (K)

half the length of the side of area over which the
temperature is averaged (um)

coefficient of friction

mass density (kg m™)

initial time interval (Eq. 16)

period of reciprocation (s)

phase difference between the thermal constriction
resistance and the frictional heat generation

circular frequency of reciprocation shH

Dimensionless parameters _

A amplitude parameter, A= a/L

£, the ratio between the area of the starting heat
source and the area over which the temperature is
averaged, f, = 12

t the ratio between the contact pressure and flow
pressure of the softer material, f,= p./ py

Fo Fourier modulus, Fo= art/L? = ov/f L?

Ry the ratio between the thermal constriction
parameters in the oscillating and stationary modes

_ of motion, Rg= W/ _

L1 Al dimensionless time parameters, t = avL? , T =t
and Af = (t-t')t

X,y,Z dimensionless position co-ordinates, X, y, z = x/L,
y/L, z/L

¥ the relative size of the contour area,y = \/[_Am/Amic]

8 characteristic length of the heat source, 3 = 8/L

€ dimensionless constriction ratio (Eq. 1)

® dimensionless temperature parameter, © =0 c p/

_ 4Appy,

® average temperature rise

A characteristic length of the area over which the
temperature is averaged, heat source, A = A/L

W, ¥ instantaneous and average value of the thermal
constriction parameter, during the quasi-steady state
cycle

Subscripts

av average

fr far region heat source

L1 oscillatory and stationary modes of motion,
respectively.

ihs image heat source

inst instantaneous

m mean value

nr near region heat source

s point heat source, or stationary contact

shs starting heat source

Symbols
functional relationship

..}

indicates




Appendix A

Temperature Risein a Semi-infinite Body Due to an
Oscillatory, sinusoidal Square Heat Source

At time t, the temperature rise O at any point P(x.y,2) in a
semi-infinite body due to an instantaneous point heat source
q(=0) located on the surface at point QXY D) is [18]:

__249

o(Xy.Zt) =
(yzt) coP (47 o 5%

exp(—_f— A1
40 ()

where, = (xx)b + (y-y ) +2*, and o is the thermal
diffusivity of the material. The temperature rise O(x,y.Z.D
due to the heat distributed over a square area 28 x 23
located at (0.0,0), and omitted carlier at time t is obtained
by integrating Eq. Al with respect to the space coordinates
x, and Y¢

t=t
cpp =0
x,-#b y,”a

oYzl =

[ abew (’———F el } o B
Xg=-8 Yguob 4a(t-0
dt
(4a(t-1))
where:
2
(A3)

t
Frgat = X [ 095 * y-yd? 1
=0

q(t") is the frictional heat: qt) = 1 P \v(t‘)\ , and v(t) is
the relative velocity of the oscillatory motion:

(Ad)

wh = M i) = a(2sh cosf@xf) A

Integration of Eq. A2 results in the following expression:

OEFZD) YT V5 1, j " F@)) (FE)
sl (AS)

Jat

dt
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in terms of the dimensionless temperature parameter o

=]
=

0K

——

Q= =
a(upm(ahl

—

A6
oL (A6)

and the following functions F(X), F(y), and F@z):

Az) = exp(— z )
4 At Fo

Ax) = (erf(A;)mﬂ(B;))

Ay) = (er_f_(c,«)wrf(oﬁ)

” -

A = X- Asin(@x f) + Asin2= i-ah+8 (A7)
- 2y At Fol o
x+Asin(2nt - Asin2n(f-At) + &

cy=__,_fl_ D =

2 /AT Fo Y o [afFo

The dimensionless variables in Eq. A5 are defined as:
the amplitude parameter A=allL
the position co-ordinates X. ¥, Z = %L, y/L. Z/L
the characteristic length of the heat source & = O/L
Fourier moduius Fo = at/L? = a/f L?
the dimensionless time parameters; = quLl 1= VT,

and A=@ECYT

The time T is duration of the oscillation cycle, and the
factor f, in Eq. A5 is the ratio between the applied-contact
pressure and the flow pressure of the softer glateﬁal, £, = P/
Pm ThE dependence of the variables f, and 5 (in Eq. A5)on
the type of heat source is given in Table Al

TABLE A1 \_{ALUES OF THE VARIABLES fp AND
5 FOR VARIOUS HEAT SOURCES
starting image near far
heat heat region region
source source
f, | ! \ 1 & &
311 1 Ngl2e |




