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ABSTRACT

Upper and lower bounds on Nusselt-Rayleigh, Nu �
Ra, correlation equations are developed for natural con-
vection heat (mass) transfer from isothermal (isopoten-
tial) square plates or circular disks which have one-to-
two sides active, facing upward, downward and verti-
cal, with and without adiabatic extensions of negligible
or very large extent. The upper bound corresponds to
a horizontal plate or disk with one side active facing
upward located in a quiescent medium of in�nite ex-
tent; and the lower bound correponds to a horizontal
plate or disk with one side active located in an in�nite
adiabatic plane in contact with a quiescent medium of
semi-in�nite extent. The Nu � Ra results for vertical
or inclined plates or disks with both sides active lie be-
tween the proposed bounds. The bounds, developed for
Pr = Sc = 0:71, are extended to include all values of
Prandtl or Schmidt numbers. The proposed upper and
lower bounds Nu�Ra correlation equations are shown
to be in complete agreement with all previously pub-
lished correlation equations, and the proposed bounds
remove the apparent discrepancies between them.
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NOMENCLATURE

A = surface area of the body; m2

~A = area fraction
~Ai = area fraction of the ith componentp
A = characteristic length of the body

proposed by Yovanovich (1987a); m
AR = aspect ratio of body
C;C0 = laminar and turbulent correlation constants
cp = speci�c heat at constant pressure; J=kg�K
d = disk diameter, m
F (Pr) = Prandtl number function

(Churchill and Churchill,1975),�
0:670=[1+ (0:50=Pr)9=16]4=9

�
g = scalar gravitational acceleration; m=s2

GpA = laminar boundary layer body-gravity

function based on
p
A

GrpA = Grashof number, g�(Ts � T1)(
p
A)3=�2

h = heat transfer coe�cient; W=m2�K
H = plate height; m
k = thermal conductivity; W=m�K
L = charactristic length of the body; m
m = constant exponent
n = constant exponent
~n = outward surface normal vector

NupA = Nusselt number, h
p
A=k

Nu1p
A

= di�usive limit;
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Nu1p
A
= S?p

A

P (�) = local perimeter; m
P;Pmax = perimeter of projected area

onto a horizontal plane,
maximum perimeter; m

Pr = Prandtl number; �=�
R = thermal resistance; K=W
R?p

A
= dimensionless thermal resistance

RapA = Rayleigh number, GrpAPr
RMS = Root-Mean-Square value
Sc = Schmidt number
ShL = Sherwood number based on L
T = temperature; K
Tf = �lm temperature, (Ts + T1)=2; K
W = plate width; m

Subscripts

p
A = based on

p
A, as the

characteristic length
L = based on L,

as the characteristic length
1 = at a remote point from

the body

Superscripts

! = vector quantity
1 = estimated at Ra! 0
~ = dimensionless quantity
� = dimensionless quantity

GreekSymbols

� = thermal di�usivity, k=�cp; m
� = volumetric expansion

coe�cient; K�1

� = angle between gravity vector
and outward normal to surface;
rad

� = kinematic viscosity, �=�; m2=s
� = density; kg=m3

Miscellaneous

bot = abbreviation for bottom surface
down = abbreviation for facing downward
top = abbreviation for top surface
up = abbreviation for facing upward
vert = abbreviation for

vertical orientation

INTRODUCTION

Natural convection heat (and mass) transfer from
isothermal disks or �nite plates of arbitrary shape (plan-
form) in various orientations (inclinations), from verti-
cal to horizontal, with respect to the gravity vector has
been the subject of numerous experimental, theoretical
and numerical studies.
Each study has been limited to one or perhaps two

aspects of the possible cases which may occur. Some
examples of cases which occur in the microelectronic
industry are square heat sources which are cooled from
one side with the heated side facing up or facing down,
or in the vertical orientation.
If the square heat source is placed ush in a �nite

adiabatic surface which has adiabatic edges, and the
heated side faces up, down or is vertical (see Fig. 1),
the heat transfer rates will be quite di�erent. If the
insulated edges are su�ciently large, the heat source
can be modeled as a disk (or �nite plate) located in an
in�nite adiabatic plane (see Fig. 1) which is cooled by a
stagnant uid of semi-in�nite extent. If the isothermal
disk is cooled from both faces, the heat transfer rate will
depend strongly on its inclination (horizontal to vertical
orientation).
There are signi�cant apparent discrepancies between

the reported correlations of the theoretical, experimen-
tal or numerical results. The correlations which are
based on several di�erent characteristic body lengths
are invariably limited to a narrow range of the Rayleigh
number. If the correlations are based on experimental
data or numerical results, they are limited to one value
of the Prandtl number Pr or, at best, to a narrow range
of Pr.
Also, the available numerous correlation equations are

not applicable for many special industrial cases.
There is at present no single model which can predict

the Nusselt number for all cases for all Prandtl numbers
and all Rayleigh numbers in the laminar ow range.

AIMS OF THIS WORK

The aims of this work are to present upper and lower
bounds on laminar natural convection from isothermal
circular disks and �nite plates of arbitrary shape which
are cooled i) from one side only by a uid of semi-in�nite
extent (see Fig. 1), and ii) from two sides by a uid
of in�nite extent. The e�ect of plate inclination with
respect to the gravity vector (see Fig. 1) and the e�ect
of Prandtl and Rayleigh numbers will be incorporated
into the development of the bounds.
The proposed correlation equations of Nusselt num-

2



Figure 1: Schematic of Finite Isothermal Plates Embedded in In�nite Adiabatic Planes: Vertical and Horizontal
Orientations.

ber versus Rayleigh number will be based on the no-
tion that all laminar natural convection heat (or mass)
transfer from single isothermal bodies can be simply,
but accurately, modeled by the linear superposition of
two asymptotes: i) the di�usive limit corresponding to
molecular heat transfer which is independent of orienta-
tion and weakly dependent on shape if the square root of
the active area is used to nondimensionalize the solution
(Yovanovich, 1987a), and ii) the laminar boundary-layer
asymptote (Yovanovich, 1987b, 1987c) which depends
on body orientation and shape through the body-gravity
function (Lee, Yovanovich and Jafarpur, 1991).
The use of the square root of the total active sur-

face area,
p
A, as the characteristic body length in the

de�nition of the Nusselt and Rayleigh numbers and the
body-gravity function makes them relatively indepen-
dent of body shape. The body gravity function does,
however, depend on the body orientation or inclination.
It will be demonstrated that the laminar ow natural

convection correlation equation:

NupA = Nu1p
A
+ F (Pr) GpA Ra

1=4p
A

(1)

proposed by Yovanovich, (1987b), with the universal
Prandtl number function:

F (Pr) =
0:670�

1 + (0:5=Pr)9=16
�4=9 (2)

recommended by Churchill and Churchill, (1975) which
is applicable for all uids and arbitrary body shapes;

and the body-gravity function:

GpA =

"
1

A

Z Z
A

�
P (�)p
A

sin �

�1=3

dA

#3=4
(3)

recommended by Lee, Yovanovich and Jafarpur, (1991)
for bodies of arbitrary shape and orientation can be used
to develop the upper and lower bounds for all disks and
�nite plates of arbitrary planform. The geometric pa-
rameter P (�) is the local perimeter of the body and sin �
is the local tangential component of the unit gravity vec-
tor, and A is the total active heat transfer area of the
body.
The body-gravity function, GpA, de�ned above can

be applied to axisymmetric and two-dimensional bod-
ies of arbitrary shape and orientation. It can also be
applied to plates of arbitrary planform which are in-
clined with respect to the gravity vector (see Fig. 2).
It cannot be used for horizontal plates with the ac-
tive surface facing up or down because sin � = 0. The
body-gravity function for numerous two- and three-
dimensional body shapes and orientations have been
presented (Lee, Yovanovich and Jafarpur, 1991).
It will be shown that all correlation equations based

on experiment, theory and numerical simulation lie be-
tween the upper and lower bounds to be presented in
this work. It will also be shown that all data for air
cooling of many three-dimensional bodies obtained over
a wide range of RapA lie between the proposed bounds.
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Figure 2: Schematic of Finite Isothermal Plates with Adiabatic Back Surface: Vertical, Horizontal and Inclined
Orientations.

REVIEW OF MODELS AND CORRELATIONS

Heat Transfer Correlations

Fishenden and Saunders (1930) presented the �rst re-
view and summary of the prior experimental results of
natural convection cooling of isothermal square plates
and a circular disk by air. The objectives of the studies
were to examine the e�ects of shape and orientation on
the area-mean Nusselt number. The horizontal square
plates and circular disk were cooled by means of heat
transfer from one side which faced either up or down,
and the results were compared with the cooling results
for the square plates and circular disk in the vertical
orientation.
The results of the Fishenden and Saunders (1930) re-

view are presented in Table 1. The e�ects of orientation
(hot surface facing up or down) are given on columns
4 and 5. The cooling from the plates or disk facing up
is superior to the vertical orientation, and the cooling
from the plates or disk facing down is inferior to the
cooling of the same surfaces in the vertical orientation.
The results of the di�erent studies vary signi�cantly

for many reasons: thickness of the plates and disks, edge
e�ects, radiation and the high surface temperatures rel-
ative to the ambient air temperature, for example. The
ratio of the results appearing in columns 4 and 5 (i.e.
relative cooling performance of the upward-facing ori-
entation to the downward-facing orientation) is given in
column 6. The results of Gri�th and Davis, Langmuir
and Kirpitache� are within �10% of 2; while the Rosin
result is signi�cantly lower.

Fishenden and Saunders (1930) recommended the fol-
lowing relative cooling ratios:

Nuup
Nuvert

= 1:30
Nudown
Nuvert

= 0:65 (4)

The recommendations yield the following empirical
result which relates the relative cooling performance of
square plates or circular disks facing upward or down-
ward:

Nuup
Nudown

= 2 (5)

which is very close to the mean value of the �rst three
entries of column 6.

By means of an optical method Saunders and Fishen-
den (1935) determined the area-mean heat ux at the
top and bottom surfaces of an isothermal aluminum
rectangular plate. They reported that the ratio of the
mean value of the heat ux over the top surface to the
mean value of the heat ux over the bottom surface to
be 1.6, which is lower than the value given in 1930.
Jakob (1949) examined the air data of Gri�ths

and Davis (1922) and reported: Nuup=Nuvert = 1:28,
Nudown=Nuvert = 0:64 and Nudown=Nuup � 0:5 in close
agreement with Fishenden and Saunders (1930).
Fishenden and Saunders (1950) reviewed the ear-

lier results on natural convection from isothermal �nite
plates and circular disks in the vertical, horizontal facing
upward and downward orientations which they summa-
rized as

NuL = CRa
1=4
L NuL = C0Ra0:33L (6)
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Table 1. Results of Fishenden and Saunders (1930) Review

Author(s) Geometry Dimensions, mm
Nuup

Nuvert

Nudown

Nuvert

Nuup

Nudown

Gri�th Square 122� 122 1.27 0.67 1.90
and Davis Plate

Langmuir Circular 18:42 1.10 0.50 2.20
Disk

Kirpitache� Square 61� 61 1.55 0.80 1.94
Plate

Rosin | | 1.12 0.91 1.23

Nusselt Square 45:7� 45:7 1.27 | |
and Hencky Plate

for laminar and turbulent convection heat transfer into
air respectively.
They recommended a correlation equation for gases

and liquids in natural convection for RaL > 105, and
another one for gases in turbulent ow. Their reported
coe�cients C and C0 given in Table 2 are based on the
plate side dimension as the characteristic length.

Table 2. Coe�cients C and C
0

recommended
by Fishenden and Saunders (1950)

Geometry C C
0

C/C
0

Vertical Plate 0.56 0.12 4.67
(L = Height)

Horizontal Plate,
Facing Up 0.54 0.14 3.85
(L = Side)

Horizontal Plate,
Facing Down 0.25 | |
(L = Side)

Bosworth (1952) also reviewed the results of the ear-
lier investigations which he summarized in the two cor-
relation equations

NuL = CRa
1=4
L NuL = C0Ra1=3L (7)

for laminar and turbulent natural convection heat trans-
fer into air, respectively.
The coe�cients C and C0 are given in Table 3 for the

plates in the vertical, face up, and face down orienta-
tions. The characteristic length L is the plate height in
the vertical orientation and the plate side in the hori-
zontal orientation.

Table 3. Coe�cients C and C
0

recommended
by Bosworth (1952)

Geometry C C
0

C/C
0

Vertical Plate 0.55 0.13 4.23

Horizontal Plate,
Facing Up 0.71 0.17 4.18

Horizontal Plate,
Facing Down 0.35 0.08 4.38

Examination of the Bosworth results leads to the
ratios: Cup=Cvert = 1:29, Cdown=Cvert = 0:64, and
Cup=Cdown = 2:02 in agreement with Fishenden and
Saunders (1930) and Jakob (1949).
The coe�cients recommended for turbulent condi-

tions lead to the following ratios: C0up=C
0
vert = 1:31,
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C0down=C
0
vert = 0:62, and C0up=C

0
down = 2:11 which are

remarkably similar to the ratios for the laminar ow
condition.
With the exception of the values given for the vertical

plate, the coe�cients of Fishenden and Saunders (1950)
for the horizontal plates facing up and down are signif-
icantly di�erent from those given by Bosworth, Jakob
and those recommended by Fishenden and Saunders
(1930).
McAdams (1954) recommended the form of the corre-

lation equations of Fishenden and Saunders (1950), with
altered correlation coe�cients: Cvert = 0:59, Cup =
0:54 and Cdown = 0:27. The recommended character-
istic length is the side dimension. The coe�cient for
the vertical plate is approximately 7:3% larger than the
one recommended by Bosworth. The coe�cients for the
horizontal surfaces facing up and down respectively are
approximately 23�24% smaller than those of Bosworth;
but the ratio Cup=Cdown = 2 is preserved.
Mikheyev (1968) recommended for gases and liquids

Pr > 0:7 the correlation equation:

NuL = CRanL (8)

with C = 1:18; n = 1=8 for 1 � 10�3 � RaL � 5 � 102,
and C = 0:54; n = 1=4 for 5�102 � RaL � 2�107. The
same correlation equations can be used to estimate heat
transfer from horizontal plates with the characteristic
length set equal to the smaller side dimension of the
plate, and for surfaces facing upward the heat transfer
coe�cient must be increased by 30%, and decreased by
30% if the surface faces downward. Thus, according
to Mikheyev, Nuup=Nuvert = 1:30, Nudown=Nuvert =
0:70, and Nuup=Nudown = 1:86. The basis of Mikheyev's
correlation is not given.
Al-Arabi and El-Riedy (1976) present a review of

natural convection heat transfer from horizontal plates
through 1975. They reported local and area-mean heat
transfer coe�cients over the top surface for air cooling
of six circular plates, eight square plates and �ve rect-
angular plates with aspect ratios from 1.67 to 4. Their
laminar heat transfer results for Pr = 0:70 and all cir-
cular disks, and all square and rectangular plates are
represented to within �14% by

NuL = 0:70Ra
1=4
L 2� 105 � RaL � 4� 107

(9)
with L set to the diameter of the circular disk and the
smaller side dimension of the rectangular plate, or the
side of the square plates.
Equation (9) is close to the correlation equation rec-

ommended by Bosworth (1952) and gives heat-transfer
values approximately 30% higher than the values given

by the correlation equation recommended by Fishenden
and Saunders (1950) and McAdams (1954).
Al-Arabi and El-Riedy also commented on the fact

that the correlation equation of Fishenden and Saun-
ders (1950) and, therefore, of McAdams for horizontal
plates facing upward gives values of the area-mean Nus-
selt number approximately 4% less than from the same
plates in the vertical orientation. This contradicts the
�ndings of Mikheyev which are in good agreement with
the results of Al-Arabi and El-Riedy.
They also reported that the circular plate results are

well represented (within a maximum deviation of 14%)
by the correlation equation developed for the square
plates. They attribute this �nding to the fact that nat-
ural convection heat transfer from an isothermal surface
facing upward under laminar ow is dominated by the
edge e�ect, and, therefore, the square and circular plates
should produce similar results.
Churchill (1983) reviewed the available literature on

natural convection from isothermal and isoux bodies in
a large quiescent medium. For downward facing �nite
plates he recommended

NuL = G [RaL  (Pr)]1=5 (10)

with L = A=P , the parameter G = 0:60 and the Prandtl
number function  (Pr) = (1 + (0:492)9=16)�16=9. The
above correlation for downward facing plates is re-
ported to be applicable in the laminar range 103 �
RaL (Pr) � 1010.
For laminar ow over upward facing plates he pro-

posed

NuL =
0:766 Ra

1=5
L�

1 + (0:322=Pr)11=20
�4=11 (11)

Churchill observed that Eq. (11) was well below (ap-
proximately 40� 50%), but parallel to, the mass trans-
fer data of Goldstein et al. (1973) for the range 1 �
RaL (Pr) � 105. He did not account for the discrep-
ancy between the correlation equation and the data.
The upward and downward facing plate correlations

of Churchill for Pr = 0:71 lead to Nuup=Nudown � 1:33
which is 40� 50% too small.
Gunaji, Pederson, and Leslie (1990) reported a nu-

merical solution for the case of a horizontal, isothermal
circular disk located in an in�nite adiabatic plane in
contact with a uid (Pr = 0:71) of semi-in�nite ex-
tent for Grashof numbers based on the disk radius be-
tween 0:5� 104 and 106 which they reported lie within
the laminar range. They presented a least-squares �t of
the area-average Nusselt number based on disk radius
(L = a) for �ve values of the Grashof number

NuL = 0:61 Gr0:209L Pr = 0:71 (12)
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A comparison of the local Nusselt number with
boundary-layer solutions shows close agreement over the
outer disk regions where the laminar ow solutions are
applicable.

Mass Transfer Correlations

Wragg and Loomba (1970) examined natural convec-
tion ionic mass transfer at horizontal upward facing cir-
cular disk electrodes (�ve diameters ranging from 0.1
to 2.0 cm) in spatially unrestricted convection. They
presented

ShL = 0:72 (Sc GrL)0:25 3�104 < Sc GrL < 2:5�107
(13)

and

ShL = 0:18 (Sc GrL)0:33 2:5� 107 < Sc GrL < 1012

(14)
with L = d and Sc � 2300. They reported that
their mass transfer correlation equations compared
favourably with the heat transfer correlation equations
of Bosworth (1952); but, they were considerably higher
than those of Fishenden and Saunders (1950).
Goldstein, Sparrow and Jones (1973) reported natu-

ral convection mass transfer correlation equations corre-
sponding to Sc � 2:5 for circular, square and 7:1 rectan-
gular plane surfaces. The dimensionless results by anal-
ogy correspond to natural convection heat transfer from
horizontal isothermal heated surfaces facing upward.
The NuL � RaL data with the characteristic length

L = A=P where A is the plan area and P is the perime-
ter of the surface fall in the range 1 < RaL < 104, and
are correlated well by

NuL = 0:96 Ra
1=6
L RaL < 200 (15)

and

NuL = 0:59 Ra
1=4
L RaL > 200 (16)

Equations (15) and (16) were obtained after setting the
Rayleigh number exponents to the values of 1/6 and
1/4, respectively, in place of the least-squares �t values
of 0.169 and 0.256.
The authors further compared their data with corre-

lations of the form NuL = CRanL obtained from heat
and mass transfer data, as well as with analytical and
numerical results. The correlations were developed for
uids having Prandtl or Schmidt number values 0.7, 2.5,
2300, and 1. The characteristic length L was equal to
the such conventional lengths as diameter for the circu-
lar plate, and side dimension for the square plate, and
smaller side for the rectangular plate. The exponent of

the Rayleigh number ranged from 1/8 to 1/4; and the
correlation coe�cient ranged from 0.54 to 1.90. The
lowest value of C = 0:54 with n = 1=4 was reported by
Fishenden and Saunders (1950) and the highest value of
C = 1:90 with n = 1=6 is from their own work.
They reported that their data for the circular and

square plates lie approximately 20% above the Mikheyev
correlation, and signi�cantly above the Fishenden and
Saunders correlation recommended by McAdams and
many present heat transfer texts.
The analytic results based on integral and perturba-

tion methods give a 1

5
-power on the Rayleigh number

and the correlations fall much lower than the data. The
numerical results obtained for Pr = 0:7; 10 and creeping
ow also fall much below the mass transfer data.
They concluded that their data supported the corre-

lations of Bosworth and Mikheyev.
Lloyd and Moran (1973) obtained a mass transfer

correlation equation for Sc � 2300, for circular disks,
squares, rectangles (2 � length=width � 10), and sev-
eral right-triangles as

NuL = 0:54Ra
1=4
L 2:2�104 � RaL � 8�106

(17)
with L = A=P .
The second Goldstein et al. correlation and the Lloyd

and Moran correlation and the corresponding data are
in acceptable agreement in a small interval of Rayleigh
number; the di�erence is partially due to the di�erence
of the Schmidt number in the respective experiments.
The exponent on the Rayleigh number was found to be
1/4 in both sets of measurements.
Goldstein and Lau (1983) studied laminar natural

convection from a horizontal plate by numerical meth-
ods and by experiment for Rayleigh numbers from 10
to 104. The plate was isothermal on one side (one side
active) while the opposite side was adiabatic; and the
plate was situated in an in�nite uid medium.
The paper presents an excellent, extensive review of

the heat and mass transfer correlations of the form
NuL = CRanL obtained by many researchers who used
either experimental techniques or one of several ana-
lytic techniques to obtain solutions for di�erent cases:
geometry, Prandtl (or Schmidt) number, active surface
facing upward or downward, without and with adiabatic
extensions.
The results of the analytic solutions for circular and

square plates and \in�nite" strips facing upward or
downward gave the same value of the exponent on the
Rayleigh number, i.e n = 1=5; however, the coe�cient
C for upward facing plates ranged from 0:560 to 0:688.
The �nite di�erence solution of Goldstein and Lau for an
\in�nite" strip for 40 < RaL < 8� 103 gave C = 0:621
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when the exponent was set to the value n = 1=5 in
place of the least-square value of 0:203. For the down-
ward facing plates the coe�cient C ranged from 0:44 to
0:543.
The experimental results for upward facing plates for

a wide range of Rayleigh number 7:8 � Ra � 8 � 106

gave correlations with the Rayleigh number exponent
1=8 � n � 1=4 and the corresponding coe�cients
0:38 � C � 0:96. The lowest value of C was reported
by Fishenden and Saunders (1950).
The experimental results for downward facing plates

for a wide range of Rayleigh number 10 � Ra � 1:25�
108 gave correlations with 0:089 � n � 1=5 and 0:31 �
C � 1:27.

Theoretical Heat and Mass Transfer Results

Horizontal Surfaces Facing Upward

Goldstein and Lau (1983) summarized the heat trans-
fer (Pr = 0:72) and the mass transfer (Sc = 2:5) results
obtained by means of integral, perturbation and simi-
larity methods for a single isothermal (isopotential) cir-
cular disk, square plate or semi-in�nite plate with the
active surface facing upward.
The area-mean Nusselt or Sherwood numbers were

found to be correlated by NuL = CRa
1=5
L with the coef-

�cient C ranging between 0:560 to 0:688 for L = A=P .
The lowest and highest values of C were reported for the
two mass transfer studies. The lowest values C = 0:578
and C = 0:603 were given for similarity solutions for the
circular disk and the square plate respectively. The re-
ported values of the coe�cient for the semi-in�nite plate
were in the tight range: 0:620� 0:646. No limits on the
range of RaL were given.
Goldstein and Lau presented the correlation equa-

tion: NuL = 0:621Ra
1=5
L of their numerical heat trans-

fer results from an in�nite strip for Pr = 0:71 and
40 < RaL < 8 � 103 which is in good agreement with
the theoretical results for Pr = 0:72.
Other theoretical results published since 1983 (Geb-

hart, Jaluria, Mahajan and Sammakia, 1988) support
the earlier work; in particular the 1

5
�power on the

Rayleigh number.
Robinson and Liburdy (1987) present a correlation

equation for air cooling of an isothermal circular disk
with extensions facing upward. The area-mean Nusselt
was obtained by means of the method used by Zakeral-
lah and Ackeroyd (1979); it was given as:

NuL = 0:982 Gr
1=5
L (18)

which is valid in the range 104 � GrL � 106 and the

characteristic length in the correlation equation and the
Grashof number are the disk diameter and radius re-
spectively.
The above correlation equation is approximately 14 %

above the one developed by Gunaji et al. (1990).
A recent paper by Lewandowski (1991) reviews the

previously published theoretical and experimental inves-
tigations on heat transfer from isothermal plates of �nite
dimensions. He comments on the discrepancies and ap-
parent disagreements between the results for vertical,
inclined and horizontal plates facing upward. The re-
sults for the vertical plates di�er by �20 %; for inclined
plates the results di�er by �45 %; and for the horizontal
case the discrepancies are �50 %.
He presents a simpli�ed, quasi-analytical, solution for

isothermal vertical, inclined and horizontal (facing up-
ward) �nite rectangular plates with the back side in-
sulated. The proposed solution leads to a system of
four strongly-coupled equations which must be solved
numerically.
Lewandowski compares his complex theoretical model

against air data which he obtained for a rectangular
plate (0:1 m; 0:06 m), and for which he had developed

the following correlation equations: NuL = 0:612 Ra
1=4
L

and NuL = 0:766 Ra
1=5
L for the vertical and horizontal

orientations respectively. He did not provide limits on
the Rayleigh number for either of the two correlation
equations. He further reports that 95 % of the data fall
within �20 % of the theoretical predictions.
He did not compare his theoretical solution against

other data, or other theoretical models or other correla-
tion equations.

Horizontal Surfaces Facing Downward

The results of several theoretical studies for isother-
mal (isopotential) circular disk, square plate and in�nite
strip facing downward were summarized by Golstein and
Lau (1983). Integral methods were used to obtain so-
lutions for heat transfer (Pr = 0:7) and mass transfer
(Sc = 2:5).
The area-mean Nusselt and Sherwood numbers were

correlated by NuL = CRa
1=5
L where the coe�cient C

was found to lie in the range 0:44� 0:527. The highest
value ofC was observed for Sc = 2:5 and the arage value
of the Pr = 0:71 results is C = 0:475.
Goldstein and Lau presented a correlation of their nu-

merical results for an in�nite strip, with Pr = 0:71 and
40 < RaL < 8�103 having the 1

5
�power and C = 0:524.

Summary of Review of Theoretical and Experi-

mental Results

It is apparent that the results of the experimental and
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theoretical investigations of heat and mass transfer from
isothermal (isopotential) circular disks, rectangular and
square plates, and plates of other planforms are numer-
ous and diverse.
The reported correlation equations, generally of the

form NuL = C RamL , di�er in the coe�cient C and
the exponent m because of many factors. Some of the
factors are: type of uid, shape of plate, inclination of
plate, e�ect of adiabatic edges and their extent relative
to the dimensions of the plate, supports and connectors,
characteristic length chosen to de�ne the Nusselt and
Rayleigh numbers, range of Rayleigh number, etc.
All previous studies have ignored the contribution and

importance of the di�usive limit to the area-mean Nus-
selt (Sherwood) number for Rayleigh numbers which lie
in the range 1 � RaL � 106. Therefore their reported
correlation equations implicitly account for this e�ect
primarily through the correlation coe�cient C and to
some degree by the exponent of the Rayleigh number.
The exponent of the Rayleigh number is inuenced to a
large extent by the range of the Rayleigh number which
varies for a �xed shape and size by the choice of the
characteristic length (Yovanovich, 1987a, 1987b).
The use of the characteristic length:

L =
Active Area

Maximum Perimeter
=

A

Pmax
(19)

has been shown in several investigations (Goldstein
et al., 1973; Lloyd and Moran, 1974; Weber et al.,
1984; Sahraoui et al., 1990) to be quite e�ective
in reducing experimental data obtained for heat and
mass from isothermal (isopotential) upward facing �nite
plates of various planforms. This characteristic length
when applied to the di�usive limit has been shown by
Yovanovich (1987a, 1987b) to be inferior to the char-
acteristic length: L =

p
A (A is the active surface

area) which minimizes the e�ect of shape (Chow and
Yovanovich, 1982).
There is general agreement in the air cooling heat

transfer data obtained for isothermal �nite plates with
one side active in the vertical orientation, or facing up-
ward or facing downward that the ratio of the area-mean
Nusselt number is approximately 30 % greater for the
horizontal upward-facing case relative to the vertical ori-
entation due to edge e�ects; and that the ratio of the
area-mean Nusselt number for the horizontal upward-
facing plate is approximately two times greater than the
downward-facing plate due to the di�erent ow condi-
tions.
One exception to this observation is the result re-

ported by Fishenden and Saunders (1950) which does
not agree with their own summary of 1930, as well as

the results presented by Jacob (1949), Bosworth (1952),
Mikheyev (1968) and Al-Arabi and El-Riedy (1976).
The second exception is found in the correlation equa-

tions of Churchill (1983); however, Churchill noted that
his correlation equation was approximately 40 � 50 %
below the mass transfer data of Goldstein et al. (1973).
It will therefore be accepted as an empirical fact

that the body-gravity function for the downward-facing
square plate or circular disk is 50 % as large as the body-
gravity function for the upward-facing square plate or
circular disk.
The second accepted empirical fact is that the body-

gravity function, GpA, for the upward-facing square
plate or circular disk is approximately 30 % greater than
the body-gravity function for the vertical orientation.
The numerical results given by Gunaji et al. (1990)

will be accepted as data applicable for the development
of a lower bound corresponding to an air cooled, upward-
facing, circular isothermal disk with one side active and
embedded in an adiabatic plane in contact with a qui-
escent uid of semi-in�nite extent.

FULL SPACE AND HALF-SPACE DIFFUSIVE AND

BOUNDARY-LAYER LIMITS

The development of correlation equations begins with
de�nitions of full- and half-spaces for the di�usive limit
and the laminar boundary-layer asymptote. The cir-
cular disk and square plate of equal surface areas (ei-
ther one or two sides active) are interchangeably used
to establish bounds on the di�usive limit Nu1p

A
and the

body-gravity function GpA corresponding to the lami-
nar boundary-layer asymptote.

Di�usive Limit RapA ! 0

The solutions for steady-state conduction from an
isothermal circular disk (one or two sides active) in full-
space are used to establish two values of the di�usive
limit Nu1p

A
. The solution for two sides active will pro-

vide a lower bound value, and the solution for a circular
disk with one side isothermal and the other side adia-
batic, but the disk is located in full-space, will provide
an upper bound value.
The thermal resistance of an isothermal circular disk

of area 2�a2 in full-space is R = 1=(8ka) (Yovanovich,
1987a); and the resistance of an isothermal disk of area
�a2 in contact with a half-space is therefore R = 1=(4ka)
where k is the thermal conductivity of the full- or half-
space. The dimensionless thermal resistance de�ned as
R?p

A
= k

p
AR has the values

p
2�=8 and

p
�=4 for the

full-space and half-space models respectively.
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It has been demonstrated (Yovanovich, 1987a) that
the results for the circular disk are within 1% of the nu-
merical results obtained for plates of square, hexagon,
semi-circular, triangular, etc. planforms provided their
total surface areas are equal and they have similar as-
pect ratios (Chow and Yovanovich, 1982). If the aspect
ratios are nominally di�erent, the results are di�erent
by approximately 2� 3 %.
If one side of the circular disk is isothermal and the

other side is adiabatic; but the disk is located in full-
space, the active area is �a2 and the resistance has been
found to be R = 1=(2�ka), (Lemczyk, 1991), which
has been veri�ed numerically (Yovanovich and Teert-
stra, 1991, and Teertstra, 1992). This case gives for the
dimensionless resistance R?p

A
= 1=

p
2�.

The three models described above provide two bounds
on the resistance which yield two bounds on the di�u-
sive limits. The relationship between the dimension-
less resistance and the di�usive limit Nusselt number
is Nu1p

A
= 1=R?p

A
, (Yovanovich, 1987a), leading to the

upper and lower bounds

Upper Bound: Nu1p
A
= 2

p
� = 3:545 (20)

Lower Bound: Nu1p
A
=

4p
�
= 2:257 (21)

Although the above bounds for the di�fusive limit have
been developed for the circular disk, they should give
very close estimates for plates of arbitrary shape pro-
vided their aspect ratios are close to unity.

Body-Gravity Functions for Boundary-Layer

Asymptote

Lower Bound on Body-Gravity Function GpA

A lower bound of the body-gravity function can be
developed for the case of a horizontal, isothermal, cir-
cular disk which is located in an in�nite adiabatic plane
in contact with a semi-in�nite uid (case of a horizontal
disk, one side active in contact with a half-space; see
Fig. 2). The numerical results of Gunaji et al. (1990)
are used to develop this lower bound.
The numerical results for Pr = 0:71 are �rst con-

verted to NupA and RapA. Following the proce-
dure established by Yovanovich, 1987b, one subtracts
Nu1p

A
= 2:257 from the reported values of NupA for

the corresponding Rayleigh numbers to obtain a set of
values of F (Pr)GpA. The arithmetic average of the last

four points (Gr > 104) gives a value of 0:382. Putting
Pr = 0:71 in F (Pr) of Eq. (2) gives a value of 0:513
for the Prandtl number function which is used to ex-
tract from the above result GpA = 0:742 for the �rst

estimate of a lower bound of the body-gravity function
for the case described above.

Upper Bound on Body-Gravity Function GpA

An upper bound of the body-gravity function will be
established for vertical isothermal rectangular plates of
height H and width W which have one or two sides
active. For either case, since the unit gravity vector is
parallel to the surface (see Fig. 2), sin � in Eq. (3) is
independent of position on the surface. If two sides are
active, then A = 2HW and P (sin �) = 2W ; therefore
P sin �=

p
A =

p
2W=H. If one side only is active, omit

the factor 2. The body-gravity function is therefore:

GpA =

�
2
W

H

�1=8

(22)

We see from the above result that a plate with two
sides active has a body-gravity function which is 21=8

times greater for all aspect ratios 0 < H=W < 1. For
square plates H=W = 1, G

p
A = 1 for one side active

and GpA = 1:091 for two sides active. For air cooling,
F (Pr) = 0:513, therefore F (Pr) GpA = 0:513 or 0:561
for one or two sides active respectively. The correspond-
ing values for a vertical circular disk are GpA = 1:021
and GpA = 1:113 for one or two sides active respec-
tively (Lee, Yovanovich and Jafarpur, 1991). The dif-
ference between the square plate and the circular disk
is approximately 2 %.

Body-Gravity Function for Horizontal Disk or Square
Plates: Two Sides Active

The body-gravity function for thin horizontal circular
disks and square plates with both sides active in a uid
of in�nite extent can be developed from the expression
(Lee, Yovanovich and Jafarpur, 1991)

GpA =
h
G
4=3
top

~A
7=6
top +G

4=3
bot

~A
7=6
bot

i3=4
(23)

which is based on the assumption that the uid ows
over the bottom surface from the center to the edge,
then it ows over the top surface from the edge to the
center. The bottom and top surfaces are said to be in
the series ow arrangement.
Putting the area fractions: ~Atop = ~Abot = 1=2 and us-

ing the empirical fact that Gbot =
1

2
Gtop into the pre-

ceding equation gives

Ghorp
A
=

�
1

2

�7=8
"
1 +

�
1

2

�4=3
#3=4

Gtop = 0:7006 Gtop

(24)
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If we use the theoretical values of the body-gravity
function derived for the vertical square plate and the
vertical circular disk (one or two sides active) we esti-
mate that 0:701 � Ghorp

A
� 0:780 based on the extreme

limits set by the vertical square with one side active and
the vertical circular disk with two sides active; or we
have the tight range 0:771 � Ghorp

A
� 0:780 established

by the vertical square and the vertical circular disk val-
ues respectively for two sides active.
The empirical correlation equations of Goldstein et

al. (1973), Lloyd and Moran (1974), Al-Arabi and
El-Riedy (1976) which are valid for circular disks and
�nite plates of various planforms facing upward with
one side active in contact with a uid of in�nite extent
have been reduced to the form of Eq. (1) and by the
method proposed by Yovanovich (1987b) with Eq. (2)
and Nu1p

A
= 2

p
� the following semi-empirical values

of the body-gravity function are derived respectively:
1:094; 1:018 � 5%; 1:121 � 14 %.
The empirical results are consistent and fall in a range

covered by the empirical uncertainty reported by Al-
Arabi and El-Riedy. The empirical and theoretical re-
sults are in acceptable agreement considering the many
parameters which can inuence the experimental re-
sults.
The numerical results of Gunaji et al. (1990) which

are valid for an upward-facing circular disk embedded
in an in�nite adiabatic plane in contact with a uid
(Pr = 0:70) of semi-in�nite extent were reduced by
means of Eqs. (1) and (2) with Nu1p

A
= 2:257. The

empirical value of the body-gravity function based on
the �ve reported numerical values is 0:744 and it rises
slightly to the value 0:752 if the �rst numerical value is
excluded.
As expected this empirical value of the body-gravity

function is lower than the theoretical-empirical value
given above, because the case investigated by Gunaji
et al. (1990) is a lower bound for upward-facing circular
disks and square plates or other planforms having as-
pect ratios close to unity.

UPPER AND LOWER BOUND CORRELATION EQUA-

TIONS FOR AIR COOLING

The results of the previous sections will now be used
to develop upper and lower bound correlation equations
which are dependent on the di�usive limit and the body-
gravity functions, Eq. (1).
The upper and lower bounds will be established for

air (Pr = 0:71) cooling, �rst, then the results will be

generalized for all values of Pr.

Upper Bound Correlation Equation

The recommended upper bound correlation equation
for air cooling is

NupA = 3:545+ 0:571 Ra
1=4p
A

(25)

which is established for an upward-facing, isothermal,
circular disk in full-space with its lower face adiabatic.
It consists of the upper bound value of the di�usive limit
and GpA = 1:113 which is well within the empirical
values and experimental uncertainty reported by several
investigators.

Lower Bound Correlation Equation

The recommended lower bound correlation equation
for air cooling is

NupA = 2:257+ 0:382 Ra
1=4p
A

(26)

which is developed from the numerical results for an
upward-facing, isothermal, circular disk imbedded in an
in�nite adiabatic plane. It consists of the lower bound
value of the di�usive limit and GpA = 0:745 which is
approximately two-thirds of the upper bound value con-
sistent with empirical observations.
All natural convection heat transfer air data for

inclined disks and inclined �nite plates of arbitrary
shape and aspect ratio should fall between the proposed
bounds.
These correlation equations are also proposed as

bounds for natural convection heat transfer into air from
isothermal three-dimensional complex convex bodies in
various orientations. This will be demonstrated in a fol-
lowing section.

GENERAL UPPER AND LOWER BOUND CORRELA-

TION EQUATIONS FOR ALL PRANDTL

The above upper and lower bound correlation equa-
tions for isothermal disks and �nite plates of arbitrary
shape and aspect ratio can be generalized to be valid
for all uids. Introducing the Prandtl number function,
Eq. (2) into the above equations leads to the following
general correlation equations.

Upper Bound For 0 � Pr <1

NupA = 2
p
� + 21=8 F (Pr) Ra

1=4p
A

(27)
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and

Lower Bound For 0 � Pr <1

NupA =
4p
�
+

1

�1=4
F (Pr) Ra

1=4p
A

(28)

COMPARISON OF BOUNDS WITH AIR DATA FROM

HORIZONTAL AND VERTICAL BODIES

The assertion that all data for natural convection heat
transfer from isothermal three-dimensional bodies must
lie between the bounds established in this investigation
will now be demonstrated.
The air data of Hassani, 1987 obtained from many

isothermal three-dimensional bodies having very di�er-
ent aspect ratios and orientations will be used in the
comparison. The data were obtained over seven decades
of the Rayleigh number: 10 < RapA < 108.
The comparison between the proposed upper and

lower bound correlation equations are shown in Figures
3 through 6 for a range of body shapes.
In Fig. 3 the data for horizontal thin: i) circular disk,

ii) square disk, iii) oblate spheroid and iv) a vertical \ap-
plecore" are shown to lie between the upper and lower
bound correlation equations.
The aspect ratio (height-to-breadth) is 0:10 for the

�rst three bodies. The fourth body consists of two
spherical caps connected by a small diameter solid circu-
lar cylinder. Its e�ective aspect ratio is is approximately
0:1.
The di�usive limit for these bodies lies in the narrow

range: 3:34 < Nu1p
A
< 3:54.

Clearly all four bodies have similar trends with in-
creasing Rayleigh number. Their heat transfer charac-
teristics are very similar: their Nusselt numbers lie mid-
way between the proposed bounds at the lowest value of
RapA, and as RapA increases the values of NupA ap-

proach the lower bound as RapA ! 108. The observed
NupA�RapA trends are anticipated in the light of the
results of the review of previous experimental, numeri-
cal and analytical work which are frequently restricted
to narrow ranges of RapA.
Therefore, development of correlation equations of

data found in any one or two decades of RapA for any
one of the body shapes would require di�erent coe�-
cients and exponents on RapA.
In Fig. 4 the data from tall vertical: i) circular disk,

ii) square disk, iii) prolate spheroid, iv) bisphere, and v)
circular cylinder with hemispherical ends are also seen
to lie between the proposed upper and lower bound cor-
relation equations.

The aspect ratios (height-to-breadth) for these bodies
are 2 or greater. The �rst two body shapes are the thin
circular disk and thin square disk oriented such that the
thickness is perpendicular to the gravity vector. This
makes the body appear to have a very large aspect ratio.
The di�usive limit for these bodies lies in the small

range: 3:34 < Nu1p
A
< 3:57.

As in the previous comparison, all �ve bodies be-
have in a similar manner with respect to the Rayleigh
number. Their heat transfer characteristics are simi-
lar; i.e., their Nusselt numbers lie between the proposed
bounds at the lowest value of RapA, and as RapA in-
creases the values of NupA approach the upper bound

as RapA ! 108.
As discussed above the development of correlation

equations of the data found in any one or two decades
of RapA for any one of the body shapes would require
di�erent coe�cients and exponents on RapA. The de-
veloped correlation equations would obviously di�er sig-
ni�cantly from those developed from the data shown in
Fig. 4.
All data shown in Figs. 3 and 4 are presented again in

Fig. 5 along with the proposed upper and lower bound
correlation equations to show more clearly the NupA�
RapA trends of the two sets of data. At the lowest
values of RapA the two sets of data lie between the
bounds and they are in close agreement, independent
of the body shape and its orientation. This is due to
the fact that the di�usive limit of the general equation
governs natural convection heat transfer at the lowest
values of the Rayleigh number.
We also observe that at the highest values of RapA

the two sets of data separate and approach the upper
and lower bounds respectively.
Other data from isothermal spheres and cubes in vari-

ous orientations (Hassani, 1987 and Chamberlain, 1985)
have also been compared with the proposed bounds.
The observations made in Figs. 3 and 4 are fully con-
�rmed. The NupA�RapA trends for spheres and cubes
are identical to those observed in Fig. 4, and therefore
they will not be presented here.
All data including spheres, cubes in several orienta-

tions, and a short vertical circular cylinder with at ends
are presented in Fig. 6. All data (approximately 1200
data points) lie between the proposed upper and lower
bounds. Most of the data lie several percent below the
upper bound curve and follow it closely over six decades
of RapA.
All previously published correlation equations after

conversion to NupA � RapA data sets are found to
also lie between the proposed bounds. The published
correlation equations are usually limited to one or two
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Figure 3: Comparison of Upper and Lower Bounds with Air Data of Hassani, 1987 for Thin Horizontal Bodies.

Figure 4: Comparison of Upper and Lower Bounds with Air Data of Hassani, 1987 for Vertical Bodies.
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Figure 5: Comparison of Upper and Lower Bounds with Air Data for Hassani, 1987 for Horizontal and Vertical
Bodies.

Figure 6: Comparison of Upper and Lower Bounds with Air Data of Hassani, 1987 for Spheres, Cubes and Circular
Cylinders
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decades of RapA, and they have very di�erent correla-
tion coe�cients and the Rayleigh number exponents are
also di�erent as discussed in the review section of this
investigation.

SUMMARY AND CONCLUDING REMARKS

The proposed upper and lower bound correlation
equations are developed from the general natural con-
vection model (Yovanovich, 1987a, 1987b) which con-
sists of the linear superposition of the di�usive and
laminar boundary-layer limits. The characteristic body
length is based on the square root of the total active
heat transfer surface (Yovanovich, 1987a, 1987b).
The important geometric-ow parameter, the body-

gravity function, was extended using empirical facts ob-
tained from an extensive review of previously reported
experimental, numerical and analytical results, to in-
clude natural convection from horizontal isothermal sur-
faces facing upward or downward.
The lower bound equation was developed from nu-

merical data obtained for a horizontal, upward facing,
isothermal circular disk imbedded in an in�nite adia-
batic plane. This corresponds to a circular disk with
one side active which is cooled by a stagnant uid of
semi-in�nite extent.
The upper bound equation was developed from

analytical-numerical results for the shape factor for an
isothermal, circular disk with the back surface insulated
and the disk is placed in full-space. The body-gravity
function was developed from the empirical observations
of the natural convection cooling of disks and �nite
plates of arbitrary shape facing upward or placed in the
vertical orientation.
All natural convection air data obtained from numer-

ous body shapes having di�erent aspect ratios and dif-
ferent orientations were observed to lie between the pro-
posed bounds. The data are also found to follow two
distinct trends depending on whether the body shapes
are i) thin horizontal (low aspect ratio) or ii) they are
tall vertical (high aspect ratio).
The proposed upper and lower bound correlation

equations are valid over a wide range of the Rayleigh
number and for all Prandtl numbers.
The proposed bounds resolve the apparent discrepan-

cies between the previously published results and cor-
relation equations which are restricted to one or two
decades of the Rayleigh number because they do not in-
clude the di�usive limit which contributes signi�cantly
to the overall heat transfer rate, especially at lower val-
ues of the Rayleigh number.
The published correlation equations are also limited

to one or two speci�c values of the Prandtl number
whereas the proposed bounds include the e�ect of ar-
bitrary Prandtl number.
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