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Numerical Study of Natural Convection from Discrete 
Heat Sources in a Vertical Square Enclosure 

G. Refai Ahmed* and M. M. Yovanovichl. 
University of Waterloo, Waterloo, Ontario, N2L 3Gl Canada 

A numerical finite difference technique based on the Marker and Cell (MAC) method is used to obtain 
solutions of a two-dimensional model of a square enclosure with laminar natural convection heat transfer from 
discrete heat sources. A discrete heat source is located in the center of one vertical side representing a high- 
power integrated circuit (IC). The conservation equations are solved using the primitive variables: velocity, 
pressure, and temperature. Computations are carried out for Pr = 0.72, A = 1 and 0 5 Ra 5 lo6 (Rayleigh 
number is based on the length of the heat source S divided by the aspect ratio A ) .  The ratio E of the heat source 
size to the total height lies in the range 0.25 5 E 5 1.0. Verification of numerical results are obtained at Ra = 
0 (conduction limit) with an analytical conduction solution, and the dependence of N u  and total resistance on 
Ra, E ,  and boundary conditions are studied. Relationships between Nu and Ra based on different scale lengths 
are examined. In addition, a relationship between N u  and Ra, based on SIA, are correlated as N u  = Nu (Ra, 
E )  and extrapolation equations are developed to cover the range of Ra from 0 5 Ra < lo9. 
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Nomenclature 
= aspect ratio of cavity, H/L 
= specific heat at constant pressure, 

kJ/kg. K 

Grashof number, S3Pg(Th - T c ) / 3 A 3  
isoflux Grashof number, S4Pgq/3kA4 
gravitational acceleration, m/sz 
height of the cavity, m 
coefficient of heat transfer, W/m2. K 
local coefficient of heat transfer, W/m2. K 
thermal conductivity, W/m. K 
width of cavity, m 
average Nusselt number, hS/kA 
nondimensional dynamic pressure 
Prandtl number, v/a 
dimensional dynamic pressure, N/m2 
total heat flow rate, W 
heat flux at discrete heat source, W/m2 
Rayleigh number, S3pg(Th - TJavA3 
isoflux Rayleigh number, S4pgq/a~lkA4 
nondimensional constriction resistance 

[(RI",, - RIa"a,)/RIa"a,l x 100% 

nondimensional material resistance 
nondimensional total resistance 
dimensional total resistance, WW 
length of discrete heat source, m 
temperature, K 
time, s 
nondimensional velocity component in 
X direction 
dimensional velocity component in 
x direction, m/s 
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= nondimensional velocity component in 

= dimensional velocity component 

= nondimensional coordinate 
= dimensional coordinate, m 
= nondimensional coordinate 
= nondimensional length, [ A ( H  - S)/2S] 
= nondimensional length, [ A ( H  + S)/2S] 
= nondimensional length, [HAIS] 
= dimensional coordinate, m 
= thermal diffusivity, k/C,p, mz/s 
= coefficient of thermal expansion, 1/K 
= relative discrete heat source size, S/H 
= eigenvalues defined in Eq. (6) 
= kinematic viscosity, mZ/s 
= density, kg/m3 
= nondimensional time 
= nondimensional temperature, T - TJT, - 

or ( T  - T,)kA/qS 
= temperature excess, T - T,, K 
= area-average source temperature excess, 

Y direction 

in y direction, m/s 

-P rp 17 
1.7 - l , ,  

Subscripts 
anal = analytical solution 
C = cold temperature 
H = height of the cavity 
h = hot temperature 
L = width of the cavity 
num = numerical solution 
S = discrete heat source 

Abbreviations 
GE = governing equation 
IFDHS = isoflux discrete heat source 
ITDHS = isothermal discrete heat source 
MAC = Marker and Cell 

Mathematical Expressions 
D = - + u - i - v -  a a a - 

at ax ay Dt 
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Introduction 
VER the past twenty years, a revolution in electronics 0 has taken place. The miniaturization which resulted from 

Large Scale Integration (LSI) of components has led to the 
microminiaturization of Very Large Scale Integration (VLSI). 
As a consequence of packing a very large number of com- 
ponents into one very small chip, the attendant volumetric 
heat generation rate has risen to extremely high levels. “The 
power per unit volume that must be dissipated by modern 
electronic devices is of the same order of magnitude as that 
of a pressurized water nuclear reactor” as noted by Kelleher.’ 

Natural convection cooling of components attached to printed 
circuit boards which are placed vertically in an enclosure is 
currently of great interest to the microelectronics industry. 
Natural convection cooling is desirable because it does not 
require an energy source, such as a forced air fan, and it is 
maintenance free and safe. 

The enclosure, as shown in Fig. 1, consists of two vertical 
boundaries of height H ,  and two horizontal boundaries of 
length L.  One vertical boundary is cooled at T, and the other 
has a discrete heat source (isoflux q or isothermal Th) on an 
otherwise adiabatic surface. The top and bottom horizontal 
boundaries are adiabatic. 

The work of Chu and Churchill’ represents a first contri- 
bution to the study of natural convection in an enclosure with 
concentrated heat sources. In this study a finite difference 
formulation using a two-dimensional mesh (10 x 10) was 
employed to solve the transient equations in order to obtain 
the steady state solution. The solutions presented in Refer- 
ence 2 are for aspect ratios, A = HIL of 0.4 to 5, Grashof 
number (based on the height of the cavity) from 0 to lo5, and 
a Prandtl number of air. The size and location of the heater 
strip were also varied. More recently Turner and Flack3 and 
Flack and Turner4 conducted experiments in air and they 
confirmed the A = HIL and E = SIH trends observed by 
Chu and Churchill,’ but only for Grashof numbers (5 x lo6 
5 Gr, 5 9 x lo6). Keyhani et al. ,5,6 studied multiple discrete 
heat sources mounted vertically on cavity walls, for Rayleigh 
numbers (based on cavity width) 2000 5 Rat  5 lo8. 

From the above studies one finds that: 
1) Different length scales were used in the definitions of 

the Nusselt number and the Rayleigh number (see Table 1). 
The choice of the characteristic length, as shown in the study 
of Chu and Churchill,’ is arbitrary, but affects the results of 
Nusselt numbers or Rayleigh numbers significantly. 

2) It is difficult to extend the numerical results to high Ra; 
but in this study an extrapolated correlation is given for Ra 
> 105. 

r ISOTHERMAL BOUNDARY 

ADIABATIC BOUNDARY 

- DISCRETE HEAT SOURCE 
(ISOFLUX (4)) OR 
(ISOTHERMAL (TA)) 

Fig. 1 Schematic of the enclosure. 

Table 1 Scale lengths of Nu, Ra in previous studies for Ra = 0 

Scale length Scale length 
Ref. of Nu of Ra 

2 S H 
3, 4 H H 
5 ,  6 L L 

In the present study numerical results will be given for 
relative source lengths, E ,  of 1, 0.75, 0.5, and 0.25 over the 
range 0 5 Ra 5 lo6. Two limiting cases of a discrete beat 
source are examined: an isoflux discrete heat source (IFDHS) 
and an isothermal discrete heat source (ITDHS). 

The paper is organized as follows. In the following section, 
the governing equations (GE) are stated with proper as- 
sumptions. In the third section, the nondimensional form of 
the (GE) is discussed. The numerical solution for (GE) is 
presented in the fourth section. The numerical results are 
discussed in the fifth section in the context of the flow regimes. 
The obtained and correlated results are discussed in the sixth 
section. Finally, conclusions are given in the last section. 

Governing Equations and Conduction Solutions 
Assumptions used in the present study are: 
1) Fluid is considered as incompressible and Newtonian. 
2) Flow is laminar in two dimensions x and y .  
3) Thermal properties of the fluid are constant except in 

the buoyancy term “Boussinesq approximation.” 
4) Pressure changes inside the cavity are moderate. 
5) Viscous dissipation effects are neglected. 

For two-dimensional, laminar natural-convection inside en- 
closures, the governing equations of mass, momentum, and 
energy, can be wtitten as follows: 

DU 
P g t =  --&- apd + pV’u 

(4) 
DT 

pC - = kV’T Dt 

Analytical Solution for Ra = 0 
A separable series solution to Laplace’s equation V2T = 0 

can be used to solve the conduction problem. for Ra = 0, by 
taking 0 = T - T,. The form of the solution, Eq. (9, satisfies 
the homogeneous condition at x = 0 and the adiabatic con- 
ditions along y = 0 and H 

cc 

O(x, Y )  = a& + a,cos(h,y)sinh(hs) (5) 
n = l  

or 

cc 

O(x, y)  = a,+,; A, = n d H  (6) 
n = n  

The temperature gradient is therefore 

ae 
ax 
- = 5 a,,+: 

The remaining boundary conditions along x = L are 

(7) 

- 0  0 5 y 5 -  H - S  - H + S s y c H  (8) ae _ -  
ax 2 2 

and for the IFDHS or ITDHS. we have 

H + S  5 y 5 -  H - S  ao - - 4  - 
ax k 2 2 

- (9) 
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or Nondimensional Form of the Governing Equations 
The governing equations of mass, momentum, and energy 

Eqs. (1-4), can be written in nondimensional form as follows: H - S  5 y 5 -  H + S  
(10) 2 e = e h  - 2 

The Fourier coefficients a, in Eq. (5) can be easily and ac- 
curately determined, for either the IFDHS or ITDHS, using 
a continuous variational approximation as noted in Lemczyk 
and Gladwell.' The overall enclosure resistance is defined by 

(18) 

(19) 

_ -  
r, = &/Q (11) 

For the IFDHS, the a, in Eq. (5) are explicitly defined, since 

the area-averaging of eS(6, = 1/S J O.&y) and dividing by Q, 

Dv - -- a'' + PrV2V + RaPrO 

_ -  Do - V2@ 

O r  ay 
$A(L, y )  is continuous-along 0 5 y 5 H. Therefore, by using 

we can write O r  

with the nondimensional variables defined as a,L 1 
r , = - + -  

qs Sq5-E' 
t d '  

7 =-  US v = -  us 
U T -  an[sin(nn(l + ~ ) / 2 )  - sin(n.rr(1 - ~)/2)]sinh(n~/A) 

n = l  2 n a4 CYA S2 
(12) 

a, and a, are obtained by solving Eq. (6) at x = L and 0 5 
y 5 H for IFDHS 

9s a, = - kH 

2qH 
kT2 n2cosh(n d A )  

[sin(n.rr(l + ~ ) / 2 )  - sin(n.rr(1 - ~) /2 ) ]  a , = - C  

Equation (12) will be as follows: 

[sin(n.rr(l + .5)/2) - sin(nr(1 - &)/2)I2tanh(nq/A) 
n = l  5 n3 

(13) 

However, for the ITDHS, the a, are not explicitly defined, 
but can be determined using the procedure developed in Ref- 
erence 7. The solution was also checked against a conformal 
mapping solutions and found to agree within 1% for 0.25 5 
E 5 1. In either case, however, the a,, are not explicit as in 
the IFDHS case. By nondimensionalizing Eq. (13), we obtain 

A sinz(mm)tanh(2mdA) 
(14) R, = 1.0 + - 2 

$E' m = l  m3 

where n = 2.m. 
From Eq. (14), one notes that the total resistance of the 

enclosure at Ra = 0 consists of the linear sum of the material 
and constriction resistances (R,,,, R,) where 

XA x = -  
S 

P d P c ; s 2  
k2A2 

y = y'? P' = S 

ITDHS 
T - T, 

@ = -  
Th - Tc 

The nondimensional initial and boundary conditions are 
given as 

t = O :  u = v = o  @ = O  

LA ao 
S ax t > O : X = -  u = v = o  O 5 Y 5 Y 1  - = o  

ao 
ax- I 

Y , 5 Y 5 Y 2  - -  

IFDHS 

Y , 5 Y 5 Y 2  o = 1  
ITDHS 

a@ Y 2 5 Y 5 Y ,  - = o  ax 

The scale length S/A is naturally determined from Eq. (15). 
It has physical meaning because it depends on the heat source 
size and geometry of the enclosure. 

The local and overall thermal energy balance at x = L may 
be written as 

Remark 1 
The characteristic length SIA for an enclosure with a dis- 

crete heat source is obtained directly from the analytical so- 
lution of the governing equations when Ra = 0. 

The total heat flow rate at x = L, is given by 

!E 
Q = q.S.l = k.1 -dy = h.S.18, (22) 

H-s ax 
2 
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The area-average Nusselt number is defined as 

Numerical Solution 
A numerical solution of Eqs. (16-19) is sought subject to 

the conditions of no slip on all solid boundaries. Used in this 
study is a new version of a finite difference computer code, 
developed by Refai' based on the Marker and Cell (MAC) 
method, as carried out by Hirt et a1.I" The method uses a 
finite difference formulation with primitive variables as the 
dependent variables. The enclosure is, therefore, divided into 
a finite difference mesh of square cells (AX, AY) surrounded 
by a single layer of fictitious cells where the boundary con- 
ditions are imposed as shown in Fig. 2. The fluid velocity 
components (U, V )  are defined at each cell surface while the 
pressure and temperature (Pd ,  0) are located at the cell cen- 
ters. Further details on this procedure can be found in Refs. 
(9) and (11). 

Four steps were taken to validate the MAC technique used 
for the numerical solutions: 

1) Test the convergence. 
2) Compare the velocity and the temperature profiles for 

3) Compare results with analytical solutions at Ra = 0. 
4) Compare results of Nu with previous numerical and ex- 

perimental studies. 
Items 1 and 2 were carried out in detail by Refai' and Fath 

et al." Tables 2 and 3 show the comparison between the 
analytical and numerical results when Ra = 0. The compar- 
ison between previous and present results will be discussed 
later. 

Flow Regimes 
Figure 3 shows the IFDHS case of nondimensional velocity 

profiles of the Y-component, V ,  at midheight of a vertical 
square enclosure for different Ra*, Pr = 0.72 and E .  At E = 
1, as Ra* increased from lo3 (conduction regime) to lo6 (lam- 
inar regime), the position of the maximum velocity moved 
closer to  the vertical boundaries. Although the trends 
throughout the full flow regime are similar, the velocity pro- 

different Ra with previous studies. 

Table 2 Comparison between numerical and analytical solutions 
(IFDHS) at Ra* = 0 

E R,  R, R, t% Diff .  

1.05 

0.44 

0.1 

* 0.354 0.999 1.353 0'25 0.339 1.0 1.339 
* 0.141 0.999 1.141 OSo 0.136 1.0 1.136 
* 0.039 0.999 1.039 0'75 0.038 1.0 1.038 
* 0.0 0.999 0.999 -o,02 

l.O 0.0 1 .o 1.0 

*Numerical results. 
*Analytical results. 
t% Wf. = [(R,,, - R,a,,,,)/Rt~,,,I x 100% 

Table 3 Comparison between numerical and analytical solutions 
(ITDHS) at Ra = 0 

E R, R, R, % Diff .  

1.14 

0.9 

* 0.336 0.999 1.335 0'25 0.32 1.0 1.32 
* 0.125 0.999 1.125 OSO 0.115 1.0 1.115 

0.49 * 0.032 0.999 1.032 
0'75 0.0272 1.0 1.027 

* 0.0 0.999 0.999 -o.02 
l .O  0.0 1.0 1 .o 

*Numerical results. 
*Analytical results. 

0 Cell No. 1 (Air) 
0 
0 
V 

Cell No. 2 (Heat Source) 
Cell No. 3 (Cold Cell) 
Cell No. 4 (Adiabatic Cell) 

Fig. 2 Finite difference grid with flagged boundary cells: typical cell 
arrangement was 1 air cell; 2 to 4 boundary cells. 

I 

A = l  
Pr = 0.72 

-200 I,III,I,I,I 
0.0 0.2 0.4 0.6 0.8 1.0 

X .. 

-30- 
0.0 0.2 0.4 0.6 0.8 1.0 

X 
Fig. 3 Dimensionless velocity profiles at the midheight of the enclo- 
sure (IFDHS): a) E = 1, b) E = 0.25. 

files are slightly skewed towards the cold isothermal bound- 
ary. The nondimensional temperature distributions are shown 
in Fig. 4. For a discrete isoflux heat source, at Ra* = lo3, a 
linear distribution is obtained representing the conduction 
regime. For Ra* = lo6 (laminar regime), the distribution 
shows a slight negative temperature gradient in a portion of 
the enclosure as a result of the fluid motion. This has also 
been observed in previous numerical and experimental 
studies"-13 but for full contact, E = 1, and isothermal source. 

The same trend for the velocity and temperature profiles 
is obtained for E = 0.25 but at lower values of Ra* as shown 
in Figs. 3b and 4b. This indicates that the change from con- 
duction to laminar regime for the smallest E occurs at lower 
Rayleigh numbers compared to E = 1. For E = 0.25 the 
Rayleigh numbers for conduction, transition from conduction, 
and laminar regimes are 3.9, 156, and 3906, respectively; 
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0.6- Pr - 0.72 

e 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

Rd I 156.0 
Rd = 3906.2 1.2 

A - 1  
Pr = 0.72 e 0.8 - 

X 
Fig. 4 Dimensionless temperature profiles at the Midheight of the 
enclosure (IFDHS) a) E = 1, b) E = 0.25. 

however, for E = 1 they are 1000, 4 x lo4, and lo6, respec- 
tively. On the other hand, the ratio between Rayleigh num- 
bers in conduction and transition regimes for E = 0.25 is 40, 
which is the same for E = 1. The same observation for the 
ratio between conduction and laminar regimes is found for E 

= 0.25, and 1; it is lo3. The same observations were found 
for ITDHS. 

Discussion of Results 

Effect of Scale Length 
The choice of scale length is very important because it alters 

the trend of the relationship between Nu and Ra. Figure 5a 
shows the relationship between Nu, and Ra: using the height 
H or width L of the enclosure (square enclosure) as the scale 
length. By this definition, when E decreases Nu, increases 
therefore Nu, + 30 at E -+ 0. On the other hand, Fig. 5b 
shows the relationship between Nu, and Rag for several values 
of the relative source size E when Nu is based on the scale 
length S and Ra: is based on the height of the cavity, as in 
Ref. ( 2 ) .  These relationships cannot go to one asymptote, 
therefore it is difficult to correlate these relationships with 
one equation. In contrast, Fig. 6a shows the relationships 
between Nu and Ra* when they are based on the scale length 
obtained from the analytical solution. At Ra* = 0, it can be 
seen that if E < 1, then Nu < 1, which clearly represents the 
conduction solution behavior. It is easily shown that the scale 
length used in the present study is exactly the length used in 
previous studies' l Z - l F  when the heat source completely covers 
the right vertical face. 

Remark 2 
For full contact heat source, E = 1, the scale length of the 

present study is SIA = L which is consistent with the previous 
~ t u d i e s . ~ J ~ - ' ~  

Heat Transfer Results 
The results for a vertical enclosure using ITDHS or IFDHS 

are shown in Fig. 6a for different E .  It is found for Ra* greater 

10 /. 
I 
3 
Z 

4 1 

1 I O  102  lo3 lo4 io5 i o 6  10' 

RGH 

Fig. 5 N u R a  relationships for different scale lengths. 

3 
Z 

A =  1 
A E = 0.75 Pr = 0.72 

E = 0.25 
2 -  

1 

" 103 lo4  io5 i o 6  i o 7  1 10 l o L  
R G  

1 i o  lo2  io3 i o 4  i o5  io6 i o 7  
Ra 

Fig. 6 Nu-Ra relationships depend on the scale length from the an- 
alytical solution. 

than approximately 300 that Nu decreases with increasing E ,  

and the slope of log Nu vs log Ra* is 0.26 at E = 1 and 0.2 
at E = 0.25, for IFDHS. ITDHS follows the same trend as 
IFDHS but the slope of Ra is 0.3 at E = 1 and 0.28 at E = 
0.25. Figure 6b shows good agreement between the present 
results and the experimental results of Eckert and C a r l s ~ n ' ~  
at E = 1. The present results are closer to the experimental 
resultsI5 than the numerical results of ElderI6 also shown in 
Fig. 6b. The results of Chu and Churchil12 show the same 
trend as the present results, if the scale length is changed to 
the recommended scale length. 

Thermal Conductance and Thermal Resistance 
To discuss both thermal resistance and thermal conduct- 

ance, a question may be posed: Is it necessary to study this 
problem using new concepts? It is known that Nu is propor- 
tional to Ra; when Ra -+ m, Nu will also go to infinity. Using 
the classical approach, it would have been difficult, if not 
impossible, to predict Nu beyond the range that is shown in 
Fig. 6. By separating the effect of conduction from the Nusselt 
number, the change of thermal conductance can be obtained 
as defined by 

Nu(Ra = 0 )  + ANu = Nu(Ra)  (24) 

where 

Nu(Ra = 0)  = IIR, and R, = R,, + R, 

Utilizing the new approach, Fig. 7 shows that, for all E ,  

ANu increases with increasing Rayleigh. All curves of ANu 
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i n  
. Y  

a z' 10-1 10-2 [F/:'O.72 

10-1 
= 10-2 a 8 E = 0 . 5  

E = 0.25 

t A =  1 I 
Pr = 0.72 

IFDHS 

t * E =  1.0 I 

1 I O  lo2  lo3 lo4 lo5 io6 10' 
Ra 

Fig. 8 R,-Rn relationships. 

approach a common asymptote tor both IFDHS and ITDHS, 
but the asymptotes of the two boundary conditions are slightly 
different. By estimating the slope of each asymptote, one can 
extend the relationship between ANu and Ra to include the 
higher end of Rayleigh (Ra -+ 30). 

Remark 3 
The scale length SIA also satisfies the following conditions: 
1) It is defined by common parameters that do not change 

2) It is consistent with the physics of the problem. 
3) It brings together natural convection results for various 

sizes of the heat source; therefore, it will be easy to obtain 
design correlations. 

This concept is later used to extrapolate the correlation of 
Nusselt number as a function of Rayleigh. From Fig. 7 one 
observes that ANu is a function of E ,  Ra, and the boundary 
conditions of the discrete heat source. However, at high Ra, 
ANu is not a function of E .  Nu (Ra = 0) will be very small 
compared to ANu, therefore, Nu = ANu. On the other hand, 
Fig. 8 shows the relationship between the overall thermal 
resistance, R, and the Rayleigh number. One finds, when the 
Rayleigh number is smaller than approximately 300, R, is 
independent of Ra, but it varies inversely with E .  In contrast, 
at Rayleigh numbers greater than 300, R, strongly depends 
on Rayleigh number and it decreases with increasing Rayleigh 
number. 

Remark 4 
The relationship between Nu and Ra or Ra* will approach 

a common asymptote line after separation of the effect of 
conduction from the overall Nusselt number. 

within the rectangular enclosure. 

Correlations of NuRa Numerical Results 
The complex dependence of Nu on Ra and E apparently 

rules out obtaining a single equation that could correlate all 
results. Flack and Turner' obtained a separate correlation for 
each E but it is difficult to use them as a design equation. The 
correlation for multidiscrete heat sources was obtained by 
Keyhani et al.,s but it is limited to their study only (i.e., A 
= 4.5). In the present study, correlations are obtained that 
include the effects of the boundary conditions and the relative 
size of the discrete heat source. The method suggested by 
Churchill and Usagi17 was found to be remarkably successful 
in correlating rates of transfer for processes which vary uni- 
formly between two asymptotes. A least-squares method was 
used to correlate the data for each asymptote as shown in 
Eqs. (25) and (27). In contrast, to develop Eqs. (26) and (28) 
for high Rayleigh numbers, we used Fig. 7 to estimate the 
slope of the relationship between ANu and Rayleigh. This 
relationship is a straight line on a log-log plot; then the effect 
of conduction at Ra = 0 was added to these correlations. The 
correlations are listed below. 

1) IFDHS, 0 5 Ra* 5 10V 

For lo-' 5 Ra* 

2) ITDHS, 0 5 Ra 5 WE" 

For lo-' 5 Ra 

(28) Nu = Eli + 0.0558Ra035 
The average difference between the numerical results and 

the correlations (25) and (27) is 4.3%. The maximum differ- 
ence of 8.7% occurs at the intersection of the two asymptotes. 
The comparison between the present high Rayleigh number 
correlations, Eqs. (26) and (29), and the experimental results 
of MacGregor and Emery" for E = 1 and IFDHS is very 
good. The maximum absolute difference is 6.2% at Ra* = 
loX. Table 4 shows this comparison in the range of Rayleigh 
number (106 5 Ra* 5 loy). Also the comparison between 
Eq. (28) and the correlation of the experimental study of 
Eckert and Carlson,ls Eq. (30), is excellent; the maximum 
difference is 3% as shown in Table 5. The experimental results 
of MacGregor and Emery" are correlated by the following 
equation: 

Nu = 0.046(Ru*)"' (29) 

Table 4 Comparison between the present study and MacGregor 
and Emergy" at A = 1 and E = 1 

Ra* Eq. (26) Eq. (29) by [13] % Diff. 

106 4.8 4.6 4.3 
107 9.5 9.9 - 3.9 
108 20.1 21.4 - 6.2 
10' 43.7 46 - 5.1 

Table 5 Comparison between the present study and Eckert and 
C a r l ~ o n ~ ~  at A = I and E = 1 

Ra Eq. (28) Eq. (30) by [15] % Diff. 

105 4.14 4.15 - 0.3 
106 8.02 8.25 -3.1 
107 16.7 16.5 1.3 
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The isothermal data of Eckert and Car1sonL5 for E = 1 and 
1 5 A 5 20 are correlated by 

Nu = 0.131Ra”3A-01 (30) 

From the good agreement between the previous experimental 
studies and Eqs. (26) and (28), one can expect good results 
for E less than one. 

Conclusions 
These are the initial results from an ongoing research pro- 

gram into natural convection heat transfer from discrete heat 
sources in an enclosure. 

The effect of a discrete heat source on natural convection 
heat transfer inside a square enclosure has been studied for 
different boundary conditions: ITDHS or IFDHS. 

By studying this problem as a conduction problem when 
Ra = 0, the scale length SIA was obtained. It is also important 
to consider the effect of the thermal resistance and change of 
thermal conductance ANu. Correlations of Nu at high Ra 
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