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ABSTRACT

A numerical solution employing oblate spheroidal coordi-
nates for the Laplace equation in the region surrounding an
isothermal circular disk is presented. Mixed boundary con-
ditions on the lower disk surface represent a radially vary-
ing insulation layer which moves the solution between its full
space and half space limits. The finite volume method used
for the analysis is compact and displays excellent convergence
characteristics for all cases considered. Using the results of
the numerical work, dimensionless constriction resistance is
calculated as a function of a non-dimensional insulation ra-
dius between the limits 0 and co. Correlation equations are
formulated which explicitly predict dimensionless constriction
resistance for the full range of insulation cases considered. Nu-
merical solution accuracy is very good, as verified at three lim-
iting cases with differences between the constriction resistance
calculated and the exact values not exceeding 0.7%.

NOMENCLATURE
a = disk radius
a; = insulation radius
4; = surface area of insulation
Ay, = wetted surface area (active heat transfer area)
Ci = finite volume diffusion coefficients (i = 1 - 4, 5)
D = fiaite volume source coefficient
i = nodal point index in 7 direction
J = nodal point index in 8 direction
k = thermal conductivity
Nu = Nusselt number
P = heat generation per unit volume
q = heat flux
Q = total heat flow rate
r = radial coordinate
R = thermal constriction resistance
R* = dimensionless constriction resistance (Rka)

shape factor

dimensionless shape factor

temperature (numerical model)

volume

axial coordinate

= ratio of insulation radius to disk radius (a;/a)
= oblate spheroidal coordinate

= oblate spheroidal coordinate

nodal increment, 7 direction

= nodal increment, 4 direction

= dimensionless temperature (T — Too)/(To — Tso )
= correlation coefficient

= correlation coefficient

solution residual (numerical model)
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Subscripts
t,j = at the nodal location indexed by (3, j)
0 at the body surface
o0 at points far from the body

INTRODUCTION

Steady-state conduction from an isothermal circular disk of
radius a which has one face partially or fully insulated into an
isotropic conducting medium of thermal conductivity k is cur-
rently of some interest to thermal analysts who are concerned
with developing models of natural convection heat transfer
from a single horizontal disk. As the Rayleigh number de:
creases and approaches very small values (Ra < 1) the Nusselt
number approaches the diffusive asymptote which corresponds
to pure conduction from the active face of the disk into the
surrounding full space. This problem is encountered in micro-
electronics and in the development of micron-sized tempera-
ture, pressure and flow sensors where the characteristic length
of the sensor is of order 10 microns or less. Solutions for both
the partially insulated case and the fully insulated case with
side extensions are not available presently.




PROBLEM SOLUTION

Problem Statements

The problems of interest here, as displayed in Figure 1,
can be formulated in circular cylinder coordinates (r, z). The
dimensionless temperature ¢(r, 2) = (T(r, 2) = Too) /{To — Teo )s
where T, and T, are the disk and reference temperatures re-
spectively, is the solution of the Laplace equation:
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within the limits:
0<r<oo, -0 <z<®

The solutions ¢(r, z+), (r, z~) must satisfy the symmetry bound-

ary condition along the axis:
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r =0, —00 < z < 00,

as well as the regular condition ¢(r,z) — 0 as v/r? + 22 — oo.
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Fig. 1 Schematics of Physical Problems

Partially Insulated Disk.  For the case of the isothermal
disk with a partially insulated back surface (Figure la), a
Dirichlet condition must be applied on the positive side (upper
surface) of the disk:

0<r<a, ¢=1

z =0,

On the negative side (lower surface) of the disk mixed bound-
ary conditions (Neumann and Dirichlet) must be satisfied to-
gether:

z2 =0, 0<r<a;<a, 59—‘2—_-0
0z
ag;<r<a, ¢=1

where a; is the insulation radius.

Fully Insulated Back Face With Side Extensions. The sec-
ond problem considers a disk with a fully-insulated back face
from which the insulation extends beyond the disk radius
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(a; > a), as in Figure lc. On the upper surface of the disk and
insulation mixed boundary conditions must now be satisfied:

z=0, 0<r<a, p=1
a¢

< < iy —'=0
a<r<a 32

On the lower surface of the disk a homogeneous Neumann
condition is applied:

z =0, 0<r<a,
It is expected that for (a;/a) > 6 the solution will approach

the classical isothermal solution of a circular disk on a half-
space.

Constriction Resistance, Shape Factor, Diffusive Limit.
A parameter of interest in this study is the thermal constric-
tion resistance defined as:

(TO - Too)
Q

where Q is the total heat transfer rate through the active heat
transfer area A,

R= (2)

Q= //Aw —k(Ty— Tw)gi:i dA (3)

The dimensionless constriction resistance is defined as:
a
9¢
———dA
/1.~
with respect to the disk radius a. The inverse of the di-

mensionless constriction resistance gives us the dimensionless
shape factor:

R* = Rka = (4)

S

a
which comes from the definition:

(5)

Q = SKTo - T) (6)

and the diffusive Nusselt number which is defined as:

Qa

= A k(To — Too) M

Nu
It is apparent from the definitions that S* = Nu = 1/R*.

Nummerical Solutio

Since the analytic solution to the isothermal disk in a full
space with varying insulation on its back surface is not cur-
rently available, a numeric solution is sought. The method of
finite volumes is used to develop a solution to the tempera-
ture field in the region surrounding the disk, allowing thermal
constriction resistance to be calculated.

Coordinate Selection for Numerical Solution. In consid-

ering heat conduction for an arbitrary geometry, the correct
choice of coordinate system can greatly simplify the analytic
solution to the problem. In the case of the circular disk in a
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full space, the use of oblate spheroidal coordinates in the nu-
merlc solution is vital in order to ensure accurate results with
computing resources available. By using the coordinate
‘ransformations:

r = acoshnsinf

asinhncosé

for the uninsulated isothermal disk problem it can be shown
that the solution becomes one-dimensional. Although this de-
gree of simplification is not anticipated for the more complex
model corresponding to a disk which is partially insulated, cer-
tain benefits arise when this coordinate system is employed for
the numeric solution. From the analytic solution to the heat
flux distribution at the surface of an isothermal circular disk
it can be shown that near the edge of the disk substantial
variations in the magnitude of the flux occur. By using a
simple grid of uniformly spaced control volumes, the oblate
spheroidal coordinate system automatically introduces addi-
tional discretization in the regions of interest, adjacent to the
disk in the 7 direction and near the edge of the disk in the
@ direction, without adding an unnecessarily fine grid in any
other part of the solution domain. As well, by using this coor-
dinate system, the disk is reduced to a planar (infinitely thin)
body as required by the analytic solution in the full space.
On a qualitative basis it can be said that a solution to the
circular disk problem which incorporates the oblate spheroidal
coordinate system is from a physical standpoint better able to
predict heat flux and temperature fields in the region sur-
rounding the disk. As can be seen from Figure 2 , the mesh

mf orthogonal elliptic and hyperbolic curves should correspond

2 some general sense to the isotherms and flux lines in the

“solution region; that is, this coordinate system should be in-

herently better able to predict the heat flow from a circular
di-k to a full space than either polar or cartesian coordinates.

Finite Volume Formulation. The finite volume equations
used in this solution are formulated using energy conserva-
tion principles on finite control volumes within the solution
domain. The discretization chosen in this analysis divides the
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Fig. 2 Finite Volume Mesh in Oblate Spheroidal Coordinates
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region in the -
Af to create =

and 8 directions by constant intervals A7 and
mesh of uniform control volumes. as shown in
Figure 2. Nodal locations are spatially characterized by the
notation (/. . where { and J indicate discrcte locations in the
n and # direc-ions respectively. Intcrior control volumes are
labelled starting at ¢ = 2 and j = 2. with the index { = 1 and
J = 1 being reserved for boundary control volumes.

For the axi-symmetric, steady state model considered in
this analysis. :he first law of thermodynamics for an arbitrary
control volume can be written as:

Qingy = Qo +Qijoy — Qujsr + // - PdV =0 (8)

where Q,;_ 1;- “or example, represents the tota] heat flow in the
positive 7 direction across the control surface located alono the
1 coordinate corresponding to the discretized location i—3 and
P represents a source or generation term integrated over the
control volume.

Using first order approximations betwcen nodes for the
temperature derivatives which occur within the heat flow terms,
an algebraic equation is established linking the central node
temperature to that of its four surrounding neighbors (the for-
mulation of the finite volume equations in general orthogonal
curvilinear coordinates is presented in detail in reference (1)
). Then, the energy balance can be written as:

CiTicrj+ CoTipr; + CaTijor + CiThjn + CsTi; + D = 0 (9)

In oblate spheroidal coordinates using a fully implicit formula-
tion, the coefficients are determined for interior, non-boundary
control volumes:

o - “Z_i‘%l_)(c S(6,5-1) — cos(6;1,1))
c, = %%{:Tf) (cos(8, ;1) = cos(8, ;41))
Cy = %%) (sinh(ﬂ,q_%,j) — sinh(n;_y ;)
C, = fa(:)% (sinh(niyy,;) — sinh(n;_y ;))
Cs = _icn

o On:l

The following examples describe the notation used in this for-
mulation. The expression 7, +1,; represents the eta-coordinate
of the control volume boundary facing the neighboring ¢ + 1, j
control volume. 6, ; j—1 denotes the control surface adjacent to
the ¢, j — 1 control volume, and (An);-1; and (A8); j4+1 repre-
sent node-to-node distances between the central control vol-
ume and its neighbors in the negative i and positive j di-
rections respectively. Since no sources are included for any
interior control volumes, the coefficient D is set to zero in the
initial development.

The control volume equation developed above is valid for
all interior control volumes except those with control surfaces
which contact 1he physical boundaries of the solution domain.
For these special cases the effects of the thermal boundary
conditions must be added to the energy balance in order to
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close the equation set.

Boundary Conditions. ~ The boundary conditions as es-
tablished by both the the physical boundaries of the problem
and the axi-symmetric nature of the model are applied using
energy conservation techniques at the boundary regions. For
each interior control volume that contacts a boundary an addi-
tional control surface and nodal point are added to the model
at a position corresponding to the intersection of the interior
control volume and the boundary. For these special boundary
control volumes, an energy balance can be performed as in
the previous section to yield the following expression for the
example of a boundary control volume adjacent to the disk
(n = 0) indexed as (i=1,5)

(10)

This formulation relates the temperature at the first interior
control volume, denoted 2, j, with the temperature and source
term associated with the boundary node indexed as 1,j. Su-
perscript labels on the energy balance coefficients follow the
same index convention.

In order to apply the boundary energy balance into the so-
lution domain of interior control volumes for this example, it
is substituted into the control volume energy balance ( Equa-
tion 9), yielding the following:

CiMTy; + CE VT + DT =0

i=1,7

i=2,] D":l‘i 1=2,7 i=2,7
G {_Eg's:ﬁ T~ .C—'s:ﬁ} FCE2 Ty ;+Cy~ T

+ O Ty + CEH T+ DM =0 (1)

$=1,j

1=2,7 1=2,7 C i=2,7 i=2,7
[CS Voo Cf=w'] Tp+C5 ¥ Ts,;+Cs Ty
S

i=1,7

D
E;g;;] =0 (12)
As can be seen above, when this substitution is complete,
dependence on the boundary node temperature is eliminated.

The following descriptions present the physical nature of
each of the boundary conditions used in the model, the index
of the control volumes affected, and the coefficients of energy
balance equation at the boundary control volume. Using the
coefficients indicated, the boundary condition elimination can
be performed as described previously in order to close the
equation set.

i. Due to the model symmetry about the vertical axis, the
surfaces defined by § = 0 and 7 will be treated as zero flux
(adiabatic) boundaries. For an energy balance performed on
a control volume coincident with the boundary § = 0 (inte-
rior control volume indexed (3, = 2)) an adiabatic boundary
condition is specified by:

+ Ci=2'j Ty 41 + [Di:z’j - C§=2'j

ci,j:l = (__Cls.]=1) = 1’ Di,j=1 =0
For control volumes adjacent to the 8 = 7 boundary, indexed
as (i, J), zero flux is applied by setting:

Di.J+1 —

CilH = (__C;,JH) =1,

where J is the label of the last interior control volume in the
j direction in the interior domain.

ii. In order to model an infinite depth of field for the steady
state problem, a prescribed zero temperature boundary was
required for v/r2 + z* — 0. From previous work(2) it was de-
termined that sufficient field depth is attained for the steady
state solution by assuming n =8 and setting the prescribed
temperature boundary at this point. It should be noted that
in terms of radial dimensions, this field depth corresponds to
approximately 1500 times the radius of the disk. For the pre-
scribed zero temperature boundary along the interior control
volumes (I, ), the coefficients of the energy balance are set
as:

o zo,  (—CR) =1, DY =¢0=0

When the boundary condition elimination is performed for the
(I,7) control volumes, the effects of the Dirichlet boundary are
transferred to the source coefficient Dhi,

iii. The prescribed isothermal temperature boundary con-
dition applied at n = 0 is treated in a manner similar to the
/7 ¥ 22 — oc boundary. The energy balance is is satisfied
for the Dirichlet condition by setting the coefficients as:

ci=vi=o,  (-C§M)=1, DTV=do=1,

where the interior control volumes affected by the boundary
condition elimination are indexed (i = 2,j)-

iv. Mixed boundary conditions will occur on the lower
surface of the disk at 7 = 0 for the case 0 < a; < a. The
Dirichlet condition for the region a; £ T < a is applied as in
the previous case, while the zero flux boundary condition for
0 < r < a; is applied using:

ofti = (—CM) =1, DTV =0

with notation as in the previous case. For the special cases of
a; = 0 the prescribed temperature case is used for the full lower
surface, while for a; = a the zero flux boundary is uniformly
applied.

v. For the cases considered in which insulation exten-
sions protrude along the plane of the disk (a; > a), zero flux
boundaries are applied to the control volumes adjacent to the
= /2 boundary. For those control volumes which contact
the upper surface of this insulation, indexed by (3, %), the heat
flux across the boundary is set to zero by allowing:

C;’%'*'% = (_Cg%"’%) =1, Dhit: =0
where the superscript notation i,—‘;- + % refers to the control
surface coincident with the 6 =7 /2 boundary. For those con-
trol volumes which contact the lower surface of the insulation
(notation (i, 1 +1)) azero flux boundary is specified by:

id+1-% ii41-4
042 2 — __Csz z _____1’

These homogeneous Neumann boundary conditions are ap-
plied for as many control volumes in the 1 direction as are
necessary to model the full radius of the insulation extension.

o A
D"T"'l-% =0

Thermal Constriction Resistance. Once the solution to
the temperature field in the region surrounding the disk has

been determined, the thermal constriction resistance can also
be calculated. Since the numerical model is posed in oblate
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spheroidal coordinates, a formulation of the dimensionless con-
striction resistance R* is required in these coordinates. The

) following expression for the dimensionless constriction resis-

tance:
1

mn dT
27r/0 —siné 277—

R* = Rka =

(13)
d9

7=0
where m is some real positive value between 1/2 and 1 de-

pending on the insulation radius a;, is modified for the discrete
numerical solution:

1

cos(G,»,H%))

R =

(TO s J) (14)

(A, 1

The summation is performed for the N control volumes which

bound the isothermal sections (both upper and lower) of the
disk.

N
Z: (cos(G, ]_1

Solution Accuracy and Convergence

In order to establish confidence in the numerical solution as
presented, the three insulation cases for which exact solutions
are available were examined. Introducing a non-dimensional
insulation radius ¢, defined as insulation radius a; over disk
radius a, the limiting cases, the isothermal disk in a full and
half space corresponding to ¢ = 0 and ¢ — oo show good
agreement with the classical solutions(3): R* = 1/8 and 1/4,
with percent difference between the numeric and exact values
of 0.04% and 0.68% respectively. In order to further establish

' confidence in the numerical results, a closer study of the solu-

tion to the third case, that of the fully insulated back (e = 1)
was undertaken. Using a grid of 100 by 100 control volumes,
a numeric solution was performed which yielded a dimension-
less constriction resistance within 1% of the exact solution
R* =1/2x (4). The convergence characteristics of this model
are shown below on Figure 3.

1.0 10 -
3
§ 0.0
é’» -1.0 10 ~* ;g-
£ 20 3
g &
&§ -3.0 o™ g
K S
S 3
S
a, —5.0 w* 3
2 -s0

=7.0 | SLILIL AL SELINLINE (A0 0 0 S e 107

0 20 40 60 80 100 120 140 160

No. of Iterations

Fig. 3 Effect of Solution Iteration on Error in Resistance and
Average Solution Residual

In order to quantify the convergence of the temperature
field over the solution domain, an average solution residual is
calculated for each iteration of the solver as presented on the
‘graph. Defined as the average over the entire solution domain
of the absolute values of the residual, it is determined using the
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following formulation for the residual of an arbitrary control
volume (3, j):

6, = C1Tic1; + CoTigrj + CsTjoy + CoTijr + CsTo; + D

In the ideal case, when convergence is achieved, the residual
will reduce to zero for all control volumes in the solution do-
main. It can be seen from the plot that the average change
in the field temperature as measured by the average solution
residual decreases rapidly with increasing iteration. Complete
convergence is assumed when the decrease of the average so-
lution residual is halted by truncation errors caused by the
single precision variables used.

Figure 3 also shows the percent error in resistance as plot-
ted against the number of solution iterations. Using this curve
it can be demonstrated that the dimensionless constriction re-
sistance values converge quickly and successfully in the num-
ber of iterations performed.

In order to consider the dependence of solution accuracy
on control volume size, the same case (¢ = 1) was considered
while control volume size in both the 7 and 8 directions was
varied. The results are given on Figure 4, where it can be seen
that as discretization levels are increased in both coordinate
directions, the percent error in resistance is decreased. Unlike
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Fig. 4 Effect of Control Volume Size on Error in Resistance

the cases ¢ = 0 and € — oo, which are reduced to a one-
dimensional solution by the use of oblate spheroidal coordi-
nates, this model shows a definite dependence on discretiza-
tion in both coordinate directions. Increasing discretization
to 150 control volumes in the 7 direction and 250 control
volumes in the 4 direction yields a dimensionless resistance
R* =0.16007, within 0.6% of the exact solution.

Based on these results it will be assumed that values of
the thermal constriction resistance can be determined for any
value of € to within a fraction of a percent of their actual val-
ues if identical grid spacing and convergence criteria to the
€ = 1 case are used.

Results

Having established a level of confidence in the accuracy
of the numerical solution, the problem of varying insulation




levels may now be addressed. Using a 150 x 250 control vol-
ume model, the thermal constriction resistance was calculated
numerically for a range of ¢ between 0 and 50. These results
are shown on Figure 5 for a limited range of insulation values
(€ < 4). From this figure we observe that the increase in the
dimensionless constriction resistance is gradual between ¢ = 0
and € & 0.7; beyond this value the change becomes much more
rapid. This large variation in R* continues to ¢ & 2, where
the change becomes more gradual again and the resistance ap-
proaches the half space value of 0.25.
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Fig. 5 Dimensionless Constriction Resistance versus Ratio of
Insulation Radius to Disk Radius

Correlation Equations. Due to the complex nature of the
dependence of the dimensionless constriction resistance B* on
the insulation to disk radius ratio e as shown in Figure 5, it
was decided that two separate correlation equations should be
formed, corresponding to the insulation cases 0 < ¢ <1 and
1 <€ € < 0. The normalized solution data for the first interval
0 < € < 1is depicted on Figure 6. The independent variable ¢
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Fig. 6 Normalized Solution Data for Correlation Equation
0<e<1

is transformed to the square root of the ratio of the insulated
to wetted surface areas and the dependent variable RB* is nor-
malized by division by the exact solution for e = 1, R* = 1/2x.
A Gaussian error function was chosen for the correlation based
on the shape and end characteristics of the resulting normal-
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ized curve. Using the general form:

R*
1
= erf (C\/l —+/4i/A, ’

R,
T
where /4 and 1 are the lower and upper bounds of the nor-
malized data, a value of ¢ can be calculated to minimize cor-
relation error for all data points. Calculating this optimized
value and simplifying the equation gives:

27R* =1+ (’r Z 4) erf (1.5804\/1 — €22 - 62)“) (16)

which is valid in the region:

(15)

4

0<e<1

In order to normalize the solution data for the second
case, it was recognized that the dimensionless constriction re-
sistance asymptotically approaches the half-space solution as
€ — 00. The independent variable € was therefore transformed
using the inverse of the square root of the ratio of insulated to
wetted surface areas. The dependent variable R* is treated in
a similar fashion, using an inverse of the normalization from
the previous case. The resulting data points are shown on
Figure 7. Once again, the Gaussian error function was chosen
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Fig. 7 Normalized Solution Data for Correlation Equation
1<e< o

for the correlation based on the nature of the curve but for
this case it was recognized that the data approaches a linear
function of the independent variable as ¢ — oo. Using the

general form:
2 S (6= (varm)”
-1

[Feeiarm)
(17

where 1 is the upper bound of the normalized data and the
linear function (2/7 + £(A4;/A,)~1/?) is the lower bound. As
before, the values of { and ¢ are optimized and after simplifi-
cation, the correlation can be expressed as:

1 o, 2 -
S = 1+[(o,14433e +2)- 1} erf (2.32017V1 = e7) (18)

e=1 -1




which is valid in the region:
1<e<

These correlation equations will predict exact solutions at
the three limiting cases, ¢ = 0,1, and — oo. For values in
the range 0 < e < 0.6 the correlation (Equation 16) and the
numerical results differ by approximately one percent. For the
remaining cases 0.6 < € < 1, the difference between the cor-
relation and numerical solution drops to within 0.3%. Equa-
tion 18 accurately predicts values within 0.8% of the numerical
results over the whole range 1 < € < 50.

Contour Plots of Isotherms and Heat Flux Vector Plots.

In an effort to describe the effects leading to the complex vari-
ation of dimensionless constriction resistance over the range
of insulation values considered, contour plots of the tempera-
ture profiles and a vector plot of the heat flux distribution in
the region immediately surrounding the disk were prepared, as
shown in Figures 9-13 and Figure 14 respectively. All figures
depict the region considered in non-dimensional polar coordi-
nates within the limits:

0<rfa<2 -1<z2/a<1

Temperature profiles for five cases, ¢ = 0.2, 0.8, 1.0, 1.2, and
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Fig. 9 Temperature Profile from Numerical Solution ¢ = 0.2
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Fig. 10 Temperature Profile from Numerical Solution € = 0.8
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2.0, and a heat flux vector plot for the case € = 1.0 are pre-
sented in order to show the behavior of temperature and heat
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flux in the region surrounding the disk for values near the fully
insulated back limit as well as for those values approaching the
full and half space solutions.

The heat flux vector plot presented in F igure 14 is a graph-
ical representation of the following expressions, as formulated
in oblate spheroidal coordinates:
- —ka, dT

L —kdp dT
alcosh®n —sin? @)1z dp’ ¥ = a(cosh®n — sin®§)172 dg

where @, and &, are unit vectors in the 7 and 8 directions
respectively. These equations are solved for interior control
volumes using the temperature values at surrounding nodes;
no vectors are included to represent boundary fluxes. Each
vector displayed in Figure 14 starts at a nodal point and each
has length corresponding to its magnitude. The exception to
this convention occurs in the region near the outer edge of the
disk, where vector length has been limited within the boxed
sections. Accurate representation of vector magnitudes for
these regions is given in the zoomed views.
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Fig. 14 Heat Flux Vector Plot from Numerical Solution
e=1.0

From both the contour and vector plots it can be shown
that relatively small changes in the dimensionless insulation
radius near ¢ = 1 have large effects in both the temperature
and flux distributions in the region directly below the disk.
The isotherms of the insulation case € = 0.8 resemble those
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of € = 0.2 while the plots for ¢ = 1.2 and € = 2.0 show both
similarities to each other and differences from the partially in-
sulated cases. It becomes clear that the extremely large fluxes
that occur at the outer edge of the disk as shown in Figure 14
dominate the total heat flow from the body, and small changes
in the boundary conditions in this region will have a dramatic
effect on the surrounding temperature field.

SUMMARY AND CONCLUSIONS

A numerical model for analysis of heat conduction from an
isothermal circular disk in a full space with mixed boundary
conditions on its lower surface has been developed using the
method of finite volumes in an oblate spheroidal coordinate
system. The accuracy of the numeric results is good, as ver-
ified by comparison to the exact solutions at the full space
(€ = 0), half space (¢ — o), and fully insulated back (e=1)
limits, where differences of 0.04%, 0.6%, and 0.68% are calcu-
lated, respectively. Based on these results and using the same
spatial discretization and convergence criteria as these mod-
els, it is assumed that the solutions to other cases 0 < ¢ < oo
will have comparable accuracy.

The analysis also revealed that for cases where insulation
extensions are not infinite, good results may still be obtained
using the exact half space solution to approximate the ther-
mal constriction resistance of the system. For ¢ > 6, this
assumption predicts the numerical solution to the dimension-
less constriction resistance R* to within 4% of its exact value,
while for € > 10 , the error is reduced to less than 2.5%.

The results of the numerical model are used in order to
formulate two correlation equations for the prediction of the
dimensionless constriction resistance R* from the insulation
radius ratio e. These equations yield exact values at their lim-
its and, for most other cases, accurately predict the numeric
solutions to within 1%.
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