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Abstract

A surface element method based on ring sources is
developed to calculate shape factors of isothermal com-
plex axisymmetric surfaces. A number of ring sources
are used to replace the axisymmetric surface and then
the temperatures of the surface are calculated simply by
the temperature influence coefficients for ring sources. By
selecting appropriate temperature points, whose temper-
atures represent the surface temperatures, the conver-
gence process is accelerated. The appropriate tempera-
ture points in turn are located by some trial computing.
Results are presented in tabular and graphical form for
a range of aspect ratio for nine types of isothermal bod-
jes (92 cases): the sphere, oblate and prolate spheroids,
two-tangent spheres, right-circular cylinder, single cone,
double cone, spherical caps (including hemisphere) and
the square toroid. All computations are completed on a
microcomputer (386PC) and the numerical results are in
excellent agreement with existing exact solutions.

Nomenclature

A = surface area of the body

AR = aspect ratio of oblate and prolate spheroids

a = radius of a ring source

D = diameter of the largest cross-section for the
oblate and prolate spheroids, single cone and
double cone, and diameter of cylinder cross-
section .

D,,D; = the two diameters of the two-tangent spheres

e = the eccentricity of the prolate spheroid

Gij = influence coefficient between temperature
point i and ring source j

H = heights of the oblate and prolate spheroids

K(x) = complete elliptic integral of the first kind

k = thermal conductivity of the extensive
medium

L = length of the cylinder

L = characteristic length of the body
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= number of ring sources
n = outward body normal
= Nusselt number [Nuc = hL/k]
= position ratio related to the position of
temperature point
P,_y/2(§) = toroid function
Q = total heat flow rate
= toroid function
;i = source strength of ring j
= Rayleigh number
[GrePr = gB(To — T )L?va]
radial coordinate
the two radii of the two-tangent spheres
shape factor :
dimensionless shape factor [SL/A]
dimensionless shape factor with £ = VA
temperature rise at point ¢
temperature rise at point i due to local
ring source
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temperature rise at point i due to the
other ring sources

uniform body temperature

medium temperature remote from the
body

= aspect ratio of the oblate and prolate
spheroids

axial coordinate

Euler’s constant

dimensionless temperature

modulus of elliptic integrals

toroid diameter ratio

PolyGamma function

&3
i

&
I

& xR 92N

Motivation For The Study

Steady-state heat transfer from isothermal bodies of
complex shape into 2 medium of thermal conductivity

_k is currently of some interest to thermal analysts who

are concerned with developing models of natural convec-

"tion heat transfer from a single body [1-16]. jAs the

Rayleigh number decreases approaching very small val-
ues, say Ra < 1, the Nusselt number approaches the dif-
fusive asymptote which corresponds to pure conduction
from the body into the full space surrounding it [5,18).




This problem is encountered in many industrial applica-
tions including heat transfer from microelectronics com-
ponents. :

The ability to calculate quickly and accurately the
shape factor of bodies having complex geometries is one
of the more difficult conduction problems faced by the
thermal analysts. Frequently numerical solutions based
on the finite difference or finite element methods [4, 5]
which require discretization of the full space surrounding
the body are used to obtain the unknown shape factor.
Both methods are time consuming and expensive. An
alternate method requiring less time to set up, which
is more accurate and far less expensive would be well-
received by the community. .’

In addition, in previous papers on the surface element
method several planar contact surfaces on a half space
have been considered; the contact area temperatures due
to the uniform heat flux can be obtained and hence the
analytical constriction resistances and the shape factors
are available [17, 18]. .

For Dirichlet contacts, a formulation has been pre-
sented for the numerical prediction of the thermal con-
striction resistance due to arbitrary planar contacts lo-
cated on a half-space [15]. '

But the surface element method applied to a contact
of curved surface has not been reported.

In the present paper arbitrary axisymmetric isother-
mal surfaces surrounded by a full space are considered,
and a new approach to the problem is presented.

Problem Statement

An arbitrary axisymmetric body, for example a riéht
circular cylinder, is situated in a full space of thermal
conductivity k (Figure 1).

Figure 1: Right-circular cylinder surface in a full space.

Heat enters the full space through the entire surface
of the body and flows steadily through the conducting
medium to infinity. Over the entire body surface, the
temperature is uniform (Zp). The temperature within
the full space tends towards a uniform temperature (T )
at points far from the isothermal body surface. For con-
venience, this temperature will be taken to be zero.

The problem is formulated in circular cylinder coor-
dinates (r,z). The dimensionless temperature ¢(r,z) =

. (T(r,2) = Too)/(To — Teo) is the solution of the Laplace

equation:
#é 104 ¢ '
witia T =0 OS> ‘°°<’<+‘("1’)

The solution ¢(r, z) must satisfy the symmetry boundary
condition along the axis:
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— =0,

or

as well as the regular condition ¢(r,z) — 0 at remote

points, Vi ¥ 22 = oo.

The parameter of interest in this study is the thermal
shape factor S defined by

r=0, -0 < 2 < 400

Q=kS (To-Tx) (2)

where Q is the total heat transfer rate from the total
surface A of the body:

Q= [[ -k~ T30 dA

,From the above definitions we have for the shape fac-
_tor“_per unit area of the body:

s 1 8¢
a=a /&1
The dimensionless shape factor is defined as
s. 3¢
st=3t=7f[m 4 @

where n is the outward-directed normal to tﬁe surface of

the body. .
In this paper it will be shown that the dimensionless

. shape factor defined above is a weak function of the body

shape [7] with respect to the characteristic body length
L = /A. The diffusive Nusselt number defined as Nu=
QL/(Ak[To — Tw]) and the shape factor S% are related;
and, from the above definitions, we have St = Nuc.

In order to determine the shape factor, we need to
obtain the total heat flow rate Q. SR

Description of The Method - ‘

In a full space the temperature rise at an arbitrary
point (r, z) due to a thermal point source of strength d@
is [17, 18}:

1 dQ
o) =gk

where r is the distance from the thermal point source d@
to the arbitrary point (r,2).
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By superposition the temperature rise at the arbitrary
point due to a surface source is

T(r,z) = ZTIJE/ [ 224 (4

where A is an arbitrary surface source, for example, a
right-circular cylinder surface, and ¢dA = dQ.

For isothermal contact problems, as described in [15},
the contact surface is subdivided into N subregxons and
Eq. (4) can be written as

_1"(1', z) =

E// L da; ®)

J—l
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where A; is subregion j.

If the contact surface is planar, the mtegra.l in Eq. .

(5) can be integrated and numerical procedures for the
problem have been presented [15].

But, in the case of complex axisymmetric surfaces, the
integral in Eq. (5) is difficult or impossible to integrate,
even though the heat flux ¢ is constant for each subregion.

So we assume that the source strength of each subre-
gion is concentrated at its central ring, i.e. each subregion
source is replaced by a ring source of the same strength.
In Figure 3, for example, the cylinder surface is subdi-
vided into 8 subregions and they are replaced by 8 ring
sources on the surface: two on the top surface, another
two on the bottom surface and the other four on the lat-
eral surface. Thus the integral in Eq. (5) becomes the

ring source integral and the equation derived for the ring

source can be used directly {17].

For a uniform circular ring source with origin of co-
ordinates at its center, with reference to Figure 2, the
equation below can be used to calculate the temperature
rise at an arbitrary field point (r, z) [17):

Q2 1 .
e +a)2+221{( ) (6)

where I{(x) is the complete elliptic integral of first kind
of modulus x, a is the radius of the ring and

T(r,z) =

7_ 4ra
T (r+a)? + 22

In Figure 3 for the temperature rise at point ¢ due to
ring source j, Eq. (6) can be convemently expressed in
the following manner:

T;; =Gi; Q; )]

12 K(xy)

= arkw [(ri + a;)* + 2%

Q; is the source strength of ring j and

where

dria;
(r. + a;)? + 2%
where r; is the distance from the temperature point ¢ to
the z-axis, a; is the radius of ring j, z; is the distance
from point : to the plane of ring j.

field point
T(riy =)

[3) r

Figure 2: Uniform circular ring source.

si=s2
pi1/simp2/s2=P

Figure 3: Cylinder surface with ring sources.

.

By means of Eq. (7), Eq. (5) becomes

N
T.=3 G;Qi ®

j=1
where T: represents the total temperature rise at point i.
Now, on each subregion select a point near the local
ring source as the temperature point whose temperature
represents that of the corresponding subregion. Therefore
in Figure 3, there are 8 nng sources and 8 temperature

R points.

The successive application of Eq. (8) to each selected
temperature point then results in the system of algebraic
equations:

[G;){Qi} = {T:} M
wheret—123 -«N; §=1,2,3,---N.

For the xsothermal surface, T; is pr&cnbed the solu-
tion of Eqs. (9) yields the distribution of the ring source
strengths {Q;}.

The total heat flow rate Q is equal to the sum of the
N ring source strengths {Q} :




Because T; = Tp = Constant and T, = 0 then the By means of trial computing, one can find the appro-
shape factor is obtained: priate value of P, at which T: approaches its asymptotic

. value very quickly.

(10) As shown qualitatively in Figuze 6, when P =04, i.e.
the temperature point is close to the local ring source, T;
converges slowly from above because the rate of decrease

of T is dominant, with reference to Eq. (13) and Figure

-9 _9
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and nondimensionalized with £ = \/Z :

S

. S 1 . 5. -
Sva= VA~ kTo VA .2:10" (1) When P = 0.2, i.e. the temperature point is at a
’ relatively large distance from the local ring source, T;
converges slowly from below because the rate of increase
" Convergence Study of T}, is dominant instead. )
, -t If P = 0.333, T; converges very quickly. At the be-

Physically, as N goes to infinity the ring sources as
a whole will approach a continuous surface source, and
hence the temperatures at the selected points will ap-
proach the exact values of the considered surface. But ‘ \
generally they converge very slowly, if the temperature n
points are allocated arbitrarily. However, by selecting
appropriate temperature points, it is possible to acceler-
ate the convergence process. .

In order to give a clear explanation, consider the in-
verse problem first. With reference to Figure 3, assume
the ring source strengths have been known, then the tem-
peratures at the selected points can be calculated by Eq.
(8). Now we rewrite Eq. (8) in the following form:

exoct T1

™
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T=GiQi+ E Gi; Q; (12) o 20 40 ) 80 100° 120 140
. . j=1,5#i N

or simply
T.=T,+T, : (13) )

where T} is the temperature rise only due to the local rin i . iats T . i
source and T, is that due to the other ring sources. As 15 Figure 4: Variations of Ty, T,, and T, with NV.
increases the variations of Ty, T, and T; are illustrated
qualitatively in Figure 4.
With reference to Figure 3, we define the position
ratio P as below: '
=B

S

where s; is the width of subregion ¢ and p; is the dis-
tance from the temperature point i to the edge of the
corresponding subregion. In Figure 3 s; is equal to sl
and p; is equal to pl for the subregions on the top or

the bottom surface, while they are equal to s2 and p2
respectively for those on the lateral surface. In our case
we make P = pl/sl = p2/s2. ‘
For different values of P, the variations of T and T},
are shown in Figure 5. .
In Fi 4 and Figure 5 it can be seen that as N
increa.ses?u’.‘:"':,° increases while T); decreases; in addition, ° 20 40 « N 8 100 120 140
for different values of P, T}, does not vary much but Ty
varies significantly. Therefore; by changing the location
of the temperature points, i.e. by changing the values of . L. ’ ]
P, we can l;djust th}: magnitude of Ty and thereby adjust Figure 5 Variations of Ty and T, with N and P.
. T;: and its convergence characteristic.
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Figure 6: Variations of T; with N for different P.

ginning (N < 60), T; decreases. But beyond some point
(N > 60), T; increases instead. At this value of P, the
rate of decrease of T;; and the rate of increase of T}, with
N are approximately equal to each other. Therefore, we
can determine the appropriate value of P in the following
manner:

While repeating the computation, for a selected value
of P, increase N step by step and observe the sign of
AT; = T{(Niy1) — Ti{(N,), where N, is the number of
the ring sources for kth computation and Nyyy > Ny, for
example Niyy — Ni = 10 with reference to Figure 6. If
the value P is appropriate, the sign of AT; will change
at a certain value of N, for example N = 60 in Figure 6
for P = 0.333. It indicates that at this value of P, the
rate of decrease of T;; and the rate of increase of T}, with
N are approximately equal to each other, and hence T;
converges quickly.

If the value of P is not appropriate, the sign of AT;
will remain the same while our repeating computation
and the absolute value of AT; will be relatively large. In
this situation, change the value of P according to the sign
and the absolute value of AT; and repeat the computation
until the appropriate value of P is found.

Now return to the original problem. In the isothermal

problem, {T;} is fixed and we solve Eqgs. (9) for {Q;}. The. .

effect of the location of the temperature point( the value
of P) on @Q; is similar to the effect of the value of P on
the T;. We find the appropriate.value of P as described
above, and therefore, the dimensionless shape factor, Eq.
(11), can be computed accurately.

The following Figure 7 and Figure 8 are drawn from
our results given later. They show the convergence char-
acteristic of the present results. Figure 7 is the conver-
gence curve of the dimensionless shape factor ST for
sphere, it approaches the exact value very quickly as N
growing large. In the case, we take P = 0.3332. At
beginning, the value of S~ increases, but beyond the
point(N = 70), the value decreases instead.

Figure 8 is the convergence curve for a solid cone with
P=0.3. It can be seen that the value of S}/ for cone also
approaches the assumed asymptotic value quickly, when
N growing large.
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Fiéure 8: Variations of shape factor of cone with N, for
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Some Results and Their Comparison
with Exact Values

“In the following, five sets of results obtained by the
present method for the sphere, oblate and prolate spheroids,
two-tangent spheres and the right-circular cylinder show
very good agreement with exact solutions or other exist-

ing solutions.

For convenience the analytic dimensionless shape fac-
tor S*/; for the following geometries: oblate and prola.te
spheroids, the two-tangent spheres, the bisphere, the cir-
cular toroid and the right-circular cylinder are given be-
low with reference to Figure 9 and Figure 11. -

Oblate Spheroids : . ‘

w5 -1
’ 2 1 i‘ _
e e 2 (2] )

Prolate Spheroids

sl 2o Ju (29}




where u = ¢/b and e = 1 —u?, which is called the
eccentricity. The aspect ratio is AR = u for the oblate
spheroids and AR = 1/u for the prolate spheroids.

If the aspect ratio of the prolate spheroid is greater
than 8, the solution approaches the asymptote: .

o _ AVAR
VA~ In(24R)
Two-Tangent Spheres b
S = 2/mrir2
VA (r14r2)Vri? + 122 .

. rl r2
{27+¢ (rl +r2) +¢.(r1+r2 }

where r1l = D;/2 and r2 = D,/2 are the sphere radii
respectively, and 2 = 1.15443.

The PolyGamma function ¥ and its properties are
given in Abramowitz and Stegun. )

If r1 = r2, the two-tangent spheres solution reduces
to the bisphere solution:

5%z = 3475

If r1 >> r2, the two-tangent spheres solution goes to
the single sphere solution:

Stz = 3.5449

Circular Toroid

BN ey RV (UNNPL o &-_mﬁl}
s*‘/“—‘ T ox ¢-1/¢ { P_y12(§) + 2n=1 Pn-llz(ﬁ)
with ¢ = D/d > 1. The functions which appear in the
solution are Toroidal {or ring) functions whose properties
are given in Abramowitz and Stegun [19].
The special functions appearing in the above solutions
can be accurately computed using Mathematica [20].
The solution for the toroid for D/d > 5 approaches
the asymptote: : .
2n\/D/d
VA~ In(8D/d)

Circular Cylinder
The correlation equation of Smythe [13,14] for the right-
circular cylinder has been nondimensionalized with £ =

VA:

o _ 3.1915 + 2.7726 (5/D)"™
va J1+2(Z/D)

where L/D is the aspect ratio and it is limited to the
range 0 < L/D < 8.

In Table 1 the excellent result is obtained with 20 ring
sources. If N is larger, the result is even more accurate
with reference to Figure 7.

Table 1: Result for isothermal sphere.

Number | Present | Exact | Error
of rings | result | result %
20 3.5448 | 3.5449 | -0.003

The numerical results for oblate and prolate spheroids
for a large range of aspect ratio, (0.10 < AR < 20) based
on 10 ring sources are presented in Table 2, and they are
seen to be in very good agreement with the exact solu-
tions given above. The large percent difference observed
for AR > 8 can be reduced significantly by increasing the
number of rings.

Table 2: Comparison of present method with exact
solution for oblate and prolate spheroids for

0< AR 20.
Geometry | AR | Number | Present | Exact Percent
(H/D) | of rings | resuits | solution | difference

Oblate 0.10 10 3.337 3.344 -0.209
» 0.30 10 3.480 3.482 -0.057

B 0.50 10 3.524 3.529 -0.142

i 0.70 10 3.537 3.542 -0.141

» 0.90 10 3.538 3.545 -0.197

i 0.999 10 3.541 3.545 -0.113
Prolate 1.20 10 3.548 3.545 +0.085
” 1.40 10 3.549 3.547 +0.056

? 1.60 10 3.553 3.552 +0.028

" 1.80 10 3.560 3.558 +0.056

i 2.00 10 3.568 3.566 4-0.056

» 4.00 10 3.701 3.706 -0.135

» 8.00 10 4.022 4.040 -0.446

? 10.00 10 4.172 4.195 -0.548

i 20.00 10 4.812 4.841 -0.743

As to two-tangent spheres, the computation based on
about 10 ring sources gives very good results for any ra-
dius ratio (r1/r2) as shown in Table 3.

Table 3: Comparison of present method with exact
solution for two-tangent spheres for 0 < r1/r2 < 1.

r1/r2 [ Number | Present | Exact | Percent
of rings | results | solution | difference
1.000 10 3.474 3.475 -0.02
0.800 9 3.475 3.476 -0.03
0.600 9 3.477 3.479 -0.06
0.400 9 3.483 3.490 -0.2
0.200 10 3.526 3.516 +40.3
0.100 11 3.535 3.534 +0.03
0.001 11 3.545 3.545 0.0 .

The present numerical results for the right-circular
cylinder for (0.1 < AR < 8) based on 12— 20 rings are
given in Table 4. The results are in very good agreement
with the Smythe correlation which is based on analytic
methods. .

>
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Figure 9: Oblate, prolate and two-tangent spheres.
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Figure 10: Single and double cone.

Table 4: Comparison of present method with existing
solution for right-circular cylinder for 0.1 < H/D < 8.0.

Table 5: Results for isothermal solid cone (N = 100).

Aspect Present Aspect Present
ratio (H/D) | results | ratio (H/D) | results
8.0 4.3852 0.6 3.3781

4.0 3.8972 0.4 3.3412

2.0 3.5983 0.2 3.2861

1.0 3.4413 0.1 3.2447

0.8 3.4096 0.001 3.1908

Table 6: Results for isothermal double cone (N = 60).

Aspect Results Aspect Results
ratio (H/D) ratio (H/D)

0.001 3.1951 0.8 3.4503

0.1 3.2521 0.9 3.4613

0.2 3.3003 1.0 3.4711

0.3 3.3423 2.0 3.5595

0.4 3.3755 4.0 3.7842

0.5 3.4008 6.0 4.0150

0.6 3.4205 8.0 4.2297

0.7 3.4371 10.0 4.4248

Table 7 gives the results for the solid spherical cap in-

cluding the hemisphere (w=90). At the two limits (w —0

and w —180), the results approach the exact values for
the disk and the sphere, i.e. S*=23.1915 for the disk
and S =3.5449 for the sphere.

Table 7: Results for isothermal solid spherical cap

AR | Number | Present | Smythe Percent
(H/D) | of rings | results | correlation | difference
0.1 12 3.3469 3.3533 -0.191
0.2 12 3.3880 3.3871 +0.027
0.4 14 3.4176 3.4089 +0.256
0.6 16 3.4328 3.4196 +0.384
0.8 18 3.4451 3.4306 +40.420
1.0 20 3.4578 3.4435 +0.415
2.0 18 3.5392 3.5272 +0.340
4.0 20 3.7208 3.7144 +0.171
6.0 14 3.9000 3.8867 +0.343
8.0 18 4.0563 4.0402 +0.398

Additional Numerical Results

In the following, we give results for the isothermal
single cone, double cone, spherical cap, and the square
toroid, whose exact solutions are presently unknown.

In order to give accurate results, a large number of
ring sources was used for the solid cone and double cone
shown in Figure 10. The numerical results for the single
cone with N = 100 in Table 5, and the numerical results
for the double cone with N = 60 in Table 6 are pre-
sented. It is believed that at least 3 digits of the result
are correct and the result should be slightly greater than
the unknown exact solution with reference to Figure 8 for
the single cone. It is expected that the accuracy of the
results for double cone is similar to that of the single cone.

(N = 60).

w(degree) | Results | w(degree) | Results
0.5 3.1956 100 3.4800
10 3.2364 110 3.4977
20 3.2737 120 3.5129
30 3.3076 130 3.5254
40 3.3387 140 3.5347
50 3.3667 150 3.5406.
60 3.3926 160 3.5437
70 3.4171 170 3.5446
80 3.4397 179.5 3.5449
90 3.4606

Table 8 gives the results for the square toroid which
are compared with the exact solution of the correspond-
ing circular toroid, for which D = 2(ro — 0.5s),7d = 4s
with reference to Figure 11, i.e. the two major diameters
are set equal and the two perimeters of the two cross-
sections are set equal. We observe that as s/ro — 0,
the numerical results for the square toroid approach the
analytic solution of the equivalent circular toroid.
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Figure 11: Spherical cap, square and circular toroids.

Table 8: Results for isothermal square toroid (N = 96).

Present results Exact solution
s/rg | for square toroid | for corresponding
circular toroid
0.9999 3.4185
0.9 3.3451
0.8 3.3015 3.440
0.7 3.2885 3.411
0.6 3.3098 3.425
0.5 3.3738 3.479
0.4 3.4964 3.583
0.3 3.7116 3.797
0.2 4.1064 4.188
0.1 5.0120 5.075
0.05 6.2414 6.321
0.01 10.9011 11.015
0.001 26.1700 26.378
0.0001 66.6423 67.068

Summary and Conclusions

The surface element method based on ring sources has

been presented to obtain accurate numerical values of the
dimensionless shape factor for an arbitrary, isothermal
axisymmetric surface. The proposed method does not
require much memory space and computing time, and
hence is easy to implement on personal computers.

The convergence process is accelerated by a novel lo-
cation optimum of temperature points.

Extremely accurate results with errors < 1% are pre-
sented and even more accurate results can be obtained
easily by increasing the number of the rings, if necessary.

It is shown that the dimensionless shape factor is a
weak function of the body shape (7, 16] with respect to
the characteristic body length £ = VA.

Numerical results are presented in tabular form for
nine types of isothermal bodies: the sphere, oblate and
prolate spheroids, two-tangent spheres, right-circular cylin-
der, single cone, double cone, spherical caps(including
hemisphere) and the square toroid for a range of aspect
ratio.

The proposed surface element method based on ring
source has the potential to be applied to multiple ax-
isymmetric bodies or single axisymmetric bodies with
multiply-connected surfaces.
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