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Laminar Natural Convection From a Vertical Plate With
a Step Change in Wall Temperature

S. Lee! and M. M. Yovanovich**

Introduction

The study of natural convection heat transfer from a vertical
flat plate in a quiescent medium has attracted a great deal of
interest from many investigators in the past few decades. The
plate with various thermal conditions that allow similarity
transformations as well as those that are continuous and well
defined have been examined. However, practical problems
often involve wall conditions that are arbitrary and unknown
a priori. To understand and solve problems involving general
nonsimilar conditions at the wall, it is useful to investigate
problems subjected to a step change in wall temperature. The
problems impose a mathematical singularity and severe non-
similar conditions at the wall.

An early attempt was made by Schetz (1963) to develop an
approximate analytical mode! for the problems with discon-
tinuous wall temperature conditions. Numerous investigations
on the same problem were continued by using an experimental
technique (Schetz and Eichhorn, 1964), numerical methods
(Hayday et al., 1967), or by using series expansions (Kelleher,
1971; Kao, 1975).

In this paper, a new analytical model that can deal with a
discontinuous wall temperature variation is presented. The
method results in a set of approximate solutions for temper-
ature and velocity distributions. The validity and accuracy of
the model is demonstrated by comparisons with the results of
the aforementioned investigators. The agreement is excellent
and the results obtained with the solution of this work are
remarkably close to existing numerical data of Hayday et al.
(1967) and the perturbation series solution of Kao (1975).
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Analyis

Governing Equations. The natural convection problem un-
der consideration deals with a two-dimensional vertical plate
with a discontinuous temperature variation prescribed along

- the wall. The plate is located in an ambient fluid, which is

maintained at uniform temperature. The conservation of mass,
momentum, and energy for steady-state, laminar boundary
layer flow yields the usual set of governing differential equa-
tions expressed as :

du dv
a—x+-a; =0 1)
du ou u ,

u 6x+vay =y ay2+gp7' 7))

ua—T+v£- 3_21' 3)
ax ey Yoy

where x and y are coordinates parallel and normal to the plate,
respectively, u and v are corresponding components of the
velocity, and T'is the local temperature excess over the ambient
fluid temperature. The properties «, », and 8 are the thermal
diffusivity, kinematic viscosity, and thermal expansion coef-
ficient of the fluid, and g is the gravitational acceleration. In
addition to the boundary layer approximations, the assumption
of constant fluid properties, except the density in the use of
the Boussinesq approximation, is included, and the dynamic
pressure work and viscous dissipation terms are neglected in
the above equations.

The boundary conditions associated with the foregoing
equations are

aty=0, u=v=0, T=T,, for x=x,

T=T,, forx>x
“)
as y—oe, u—0, -0

at x=0, u=0, T=0
where T, and 7., are constants; T., > 0and T, =0.

Pseudotransient Equations. An approximate method is
sought to solve the above set of equations by introducing a
pseudotransient coordinate, ¢. The downstream location x is
viewed as u, X t, where u_is defined as a characteristic stream-
wise velocity. With the use of u,, the original x-y plane is
transformed into the ¢-y plane. An assumption is made such
that diffusion is dominant across the boundary layer in the y
direction at given time. This implies that the temperature and
velocity profiles would take forms of those due to a transient
conduction heat transfer into a haif space. Subsequently, the
convective derivatives in the x-y plane, appearing on the left
side of equations (2) and (3), are replaced by transient deriv-
atives, resulting in the following pseudotransient equations:

du *u
—_—=p —— 5
ot ay.+gBT (5)
8T  &*T
R ©

The boundary conditions that are compatible with those pre-
scribed by equation (4) are

aty=0, u=0,T=T,, for st
T=T,, fori>1 N
as y—o, u—-0, T—0
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where ¢ is currently an unknown functioi of x, and # is the
corresponding time of the discontinuity at x;.

The solutions to the above transient equations with the spec-
ified boundary conditions are obtained by means of either
Laplace transforms (Schetz and Eichhorn, 1962; Menold and
Yang, 1962), or similarity methods (Lee, 1988). The resulting

solutions for t > ¢, are
T = T, erfc 9o+ (T, — Twyerfe 8)

u = 28B(Tuy t fulnd) + (Tu, = Tu) €= t)fulm)l  (9)

where
n ierfc 9 for Pr=1
fam=§ 2 o e N a0
— lercn—xerc\[ﬁ or Pr=
no and 7, are similarity variables given as
Y
= —== 11
o 2\/& ( )
Yy
m =ty (12)

Pr is the Prandtl number, and erfc, ierfc, and i%erfc are the
complementary error functions. These solutions are exact for
transient natural convection heat transfer from an infinitely
long plate experiencing wall temperature variations given by
equation (7). The solutions for ¢ < ¢#; can also be obtained by
simply discarding the second term of each equation.

The problem is now reduced to finding a proper character-
istic velocity or velocities, u., over the boundary layer. Deter-
mination of u. will, in turn, convert the solutions in the ¢-y
plane back into the x-y plane.

t-x Transformations for x < xo. The parameters from the
steady-state solutions for a uniform temperature plate, and
those appearing in the above pseudotransient solutions are
compared as follows:

Reference Velocity Group:

Cu NAgBTwox = 286Twt (13)
Similarity Variable:
Gr 1/4y y
C. | == A A 14
" < 4 > x Wt (14)

where Gr, = gB8T.,°/v’, and C, and C, are dimensionless

proportionality constants, functions only of the Prandtl num-
ber. The parameters on the left side of the above comparisons
are from the similarity analysis of Sparrow and Gregg (1958).

By rearranging equations (13) and (14) for ¢, one finds,
respectively,

x
t = C,—=— 15
e (15)

Pr X 16)

" 2C gBTogx

Equations (15) and (16) are the ¢ - x transformations sought
for x = x,. Although they express different relationships be-
tween ¢ and x, they both exhibit an identical functional form
such that u. = \/gBT7,,x/C, where

C=C, (17
or
Pr
sz(,—‘-,z, (18)
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The former equation defines the time associatec with the
reference velocity group and the latter defines the iime asso-
ciated with the similarity variable. The constants C, and C,
are determined by emploving the integral method using the
velocity and temperature profiles given by the first terms of
equations (8) and (9), with ¢ substituted by equations (15) and
(16). It follows that

— -1/2
2V Pr
2= G+ =G, 1
G (G RPN ) (19
¢,=VPrC,C, (20)

where G,, and G, are tabulated in Table 1.

t-x Transformations for x > xy. The similarity character-
istic of the existing boundary layer, which was initiated at the
leading edge, will no longer be maintained at the downstream
location at x > X, as a secondary thermal boundary layer is
established from the wall at x = x,. This secondary boundary
layer grows quickly into and will eventually engulf the existing
one as x approaches infinity, where the solutions become sim-
ilar once again based on T,,. Not only would the characteristic
streamwise velocity over the existing boundary layer hence be
altered, but another distinct characteristic velocity would also
evolve over the secondary boundary layer. In the transient
solutions, equations (8) and (9), ¢ appearing in the first terms
is related to the original boundary layer and ¢ — 1, appearing
in the second terms is related to the secondary boundary layer.
The ¢-x transformations are thus defined by

X X
t=—=Cop ———= 1)
uc VeBT.x
X=Xy X—Xp
t—1y= =Cf ———= (22
= VEBT o X )

where C represents, as previously defined by equations (17)
and (18), two different coefficients depending on whether ¢
and t — 1, are associated with the velocity group or the sim-
ilarity variables. The function ¢ in equation (21) modifies the
existing characteristic velocity that would have been attained
at the location of interest if the thermal condition at the wall
were maintained at T, The other function, ¥ in equarion (22),
represents the ratio of the existing characteristic velocity to the
new one that characterizes the flow velocity within the sec-
ondary boundary layer initiated at x = x,. These functions
are dimensionless and dependent on Pr, 8., and &, where

By = Tw /Ty and £ = x/x;.

By substituting the above f-x transformations, equations
(21) and (22), into equations (8) and (9), a set of approximate
solutions to. the original problem in the x-y plane can be ob-
tained. After nondimensionalization, the resulting set of so-
lutions for x > xo may be expressed as

=l=erfc 79+ (B, — Derfc m ' (23)

Tug

Table1 Gnand G,
Pr=1 Pr#l (p=vPr)
G WI-4i 1+ -p - (VI 1P +p7) - 1
i 4 1.5p*(1 - p*)?
c. | ¥i-1 A+ - P =22 - 1p? -1
N 4 2p3(1-p4)
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Table2 h,and h,

Pr=1 I‘ Pral (payFr)
A L+ w3 o 10+3(1 - AT 4y g i e o kd b/l-r:-.:‘,’" P16~ L LAY pdY 14 v}
v2-4 i =g e P V2P - ) < L
n (ea? 03 g % (FaviPl e i1 egi= P - 2P eI Lo thpa g I-pK 1+
Vil 1 depPl-p-qvI-1pi -1
Ut = e = ol (10) + (Buy = D/ (m)] (24)
2 gBTwox wPUuln0 wy Yfu (M) (
where
"o = 2 G“ Y @)
Vo x
Mo
m== (26
; )
and 1 is related to the modifying functions as follows:
1\ ¢
v= 1-=] = 27
(1-) & @

In the above solutions, ¢ and + are the only parameters that
are required to complete the solutions. They are determined
by solving the following set of first-order ordinary differential
equations that are obtained again by employing the integral

method:
dd 1 4 dH, dv
— = — 1 oy — - —m 2
a . { + (6w =Dy - 47 dz} (28)
a’<I>
1 wy ™ — 4Ty 7
d_Yi_i + (0w, - 1)/ y—H, T »
dt 4 dH, @9
dvy’
with® = ¢’¢ = land+’ = Oat £ = 1. Also, the dimensionless
functions H, and H, are given by
Hp = 140w - 1Y’ + (04, ~ Dhn 30
H, = 1+ 04— 1’7’ + (00, — Dh, @31

where h,, and A, are tabulated in Table 2 The above equations
can be solved numerically for & and ¥°, hence ¢ and v, with
specified values of 4, and Pr.

Aninteresting and important observation can be drawn from
equation (22). Although ¢, the corresponding pseudotime at
fixed xo, is constant in the s~y plane, it is no longer possible
to isolate the fixed #j in the x-y plane. This makes the term -
fa unique variable, and, therefore, the parameter ¢ in equation
(22) is not the same ¢ defined by equation (21). The facts that
there are two distinct time-spatial transformations, and the
existing characteristic velocity had to be modified by ¢, are
all parts of the conditions that are required if the nonlinearity
of the problem was to be reflected through the transformation
functions for x > xg.

Results and Discussion

The solutions given in equations (23) and (24) are evaluated
for a wide range of Prandtl numbers with various wall tem-
perature ratios 0,,,. Clearly, the solutions to a problem in which
the entire wall is at uniform temperature T, can also be found
from the solutions by discarding the second terms and setting

= 1. Due to the limited spaces, however, only the cases with
a step change in air (Pr = 0.72) will be presented herein to
demonstrate the accuracy of the present model. Further com-
parisons of the results with others can be found from Lee
(1988).
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Fig. 1 Comparison of dimensionless temperature field development
with a step change in wall temperature: 8., = 0.503, Pr = 0.72
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Fig. 2 Comparison of dimensionless velocity field development with
a step change in wail temperature: 4,,, = 0.503, Pr = 0.72
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Figures | and 2 depict the temperature and velocity distri-
butions responding to step changes in wall temperature. Also
presented in the figures are the numerical data of Hayday et
al. (1967), who solved the boundary layer equations using finite
difference methods. Excellent agreement is observed in the
temperature distributions, and some discrepancies are found
in the velocity distributions over the outer region of the bound-
ary layers. However, the discrepancies are shown to have min-
imal effects on the surface heat transfer as demonstrated in
the following comparison.

From equation (23), the nondimensionalized local wall heat
flux at the location x > x, may be obtained as

;I=q“' =-l_ 1+0_“'L__l.
qwy Vo Y

where Gy is the local heat flux at the location of interest with
the entire wall maintained at temperature T, The result ob-
tained by using the above equation is plotted and compared
with other data in Fig. 3. The values indicated by arrows are
the asymptotic values at large £, and they are obtained from

lim g5, =67 ¢33

x—

(32)

The laminar regime is not likely to be maintained at far
downstream locations in practice. Nevertheless, it is worth-
while stressing that the resulting solutions satisfy all the limiting
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Present Solution

Numerical Solution (Hayday et a', 1967}
Perturbation Series Solution (Kao, 1975)
Asymptotic Series Solution (Kelleher, 1971)

Experimental values
(Schetz and Eichhorn, 1964)

Qw
Quy

Fig. 3 Comparison of local wall heat-flux variation: Pr = 0.72

conditions at large £, as both ¢ and ¢ can be shown 10 become
independent of the Prandti number and approach 0;‘” 2, Figure

3 exhibits an excellent agreement of the predictions especially
with the fully numerical results of Hayday et al. (1967) and
the perturbation series solution of Kao (1975). For the case of
6., = 0, Kao’s solution is unavailable since his perturbation

parameter becomes unbounded. Considering the limiting con-
ditions at large &, inconsistent deviations are observed in the
asymptotic series solution presented by Kelleher (1971).

As with most other approximate solutions, further studies
would be needed to validate the use of the solutions for Prandtl
numbers and conditions. other than those presented. The cur-
rent methodology is equally applicable for developing a model
for problems with a step, as well as multistep changes in surface
heat flux (Lee, 1988).
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Use of Vortex Generators and Ribs for Heat Transfer
Enhancement at the Top Surface of a Uniformly Heated
Horizontal Channel With Mixed Convection Flow

J. R. Maughan' and F. P. Incropera’

Nomenclature
g = acceleration due to gravity
h = heat transfer coefficient
H = channel height or plate separation
k = thermal conductivity
L = channel length
Nu = Nusselt number = AH/k
Nuy,, = spanwise-averaged Nusselt number
on bottom plate
Nu,, = spanwise-averaged Nusselt number
for smooth channel (no attach-
ments)
Nu,, = spanwise-averaged Nusseit number
on top plate
Pr = Prandtl number
q’m = convection heat flux
Ra* = modified Rayleigh number =
gBq Iéoan-‘/kVa
Re = Reynolds number = WH/v
W = average axial velocity
X, ¥, Z = spanwise, vertical, and axial coor-
dinates
z* = nondimensional axial coordinate
= z/HRePr
Z. = axial coordinate at which second-
ary flows become evident
a = thermal diffusivity
B = coefficient of thermal expansion
v = kinematic viscosity
Introduction

Although secondary flows driven by buoyancy forces en-
hance heat transfer from the bottom surface of a heated, hor-
izontal channel, heat transfer coefficients at the upper surface
are known to remain near forced convection levels (Osborne
and Incropera, 1985). In situations where performance is lim-
ited by the maximum local temperature, such as the cooling
of electronic circuitry, enhanced heat transfer at one surface
may be of little advantage if approximately equivalent en-
hancement does not exist at the opposite surface. Hence dif-
ferences between top and bottom surface conditions may
prevent a designer from taking full advantage of buoyancy-
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