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Introduction

Heat release in a cavity that has openings to cooler sur-
roundings induces a natural convection flow. There are many
examples of such flows (e.g., chimneys, parailel plate fins,
computer boards, etc.), but probably the most extensively stud-
ied and well understood is the natural convection flow induced
by parallel heated isothermal plates. A definition sketch for
this problem appears in Fig. 1(A); the objective is to predict
the total hear flow Q to the fluid from the surfaces of the
plates that face each other.

.) Elenbaas (1942) did an exhaustive pioneering study of this

roblem. By analyzing a simplified set of equations, and by
adjusting constants to fit experimental data, he proposed the
following equation for the Nusselt number:

Nu=Ra (1 _e-ssllska’]:W Ra*=Ra 2 (1)
3 L

This relation is plotted in Fig. 2. One remarkable feature of
the expression is that the channel aspect ratio, L/b, does not
appear explicitly, but has been absorbed into a modified Ray-
leigh number, Ra*, called the Elenbaas Rayleigh number.
Equation (1) also yields the two asymptotes

Nu—Nu,,=0.60Ra*"* Ra*—o (2A)

1
Nu-—Nu/d=§ Ra* Ra*~0 " (2B)

where Nuy, is the Nusselt number for the boundary layer régime
and Nuy is the Nusselt number for fully developed flow
throughout the flow passage. Elenbaas provided an impressive
collection of data that confirmed Eq. (1) over the range
107'<Ra* < 10°.

Raithby and Hollands (1975) derived a different relation
that also captures both limiting cases. Bar-Cohen and Roh-
senow (1984) provided a comprehensive review of this and
related problems. Bar-Cohen and Rohsenow (1984), and
Raithby and Hollands (1985) correlated the heat transfer results
using a blending function of the type proposed by Churchill
and Usagi (1972). After modifying the coefficient in Eq. (2A)
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On the Low Rayleigh Number
Asymptote for Natural Convection
Through an Isothermal, Parallel-
Plate Channel

The problem of natural convection through a channel formed by isothermal, paralle!
Plates forms a cornerstone of our understanding of a class of natural convection
Jflows. Following the pioneering study of Elenbaas, it is widely accepted that there
is a fully developed régime, at low Rayleigh number, in which the Nusselt number
becomes directly proportional to the Rayleigh number. This Dpaper gives a detailed
analysis of heat transfer in this régime. It is concluded that the previous numerical
studies, which appeared to confirm this asymptote, used inappropriate boundary
conditions, and that the asymptotic behavior should, in JSact, not be expected except
under very special conditions.
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Fig. 1 Definition sketch for the generic parallel plate problem (A) and
the specific problem analyzed in this paper (B)
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Fig. 2 Average heat transfer from a vertical paralle! plate channe!
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Fig. 3 Configurations assumed in numerical studies by Kettleborough
(1972) and Nakamura et al. (1982), (A), and by Ormiston (1983), (B); soiid
and dotted lines represent impermeable and permeabie boundaries, re-

spectively

to agree with the measurements of Aung et al. (1972), the
blended function is

‘ Nu=Nuf+Nup)’™;, m=-1.9 (3A)
where 1

Nde= 3 Ra* (3B)

Nuy=0.62Ra*'/* (30)

Equation (3) agrees closely with Eq. (1), as seen in Fig. 2.
Besides the experimental verification of Elenbaas (1942),
Egs. (1) and (3) are in close agreement with the parabolic
solution reported by Bodia and Osterle (1962). Aihara (1973)
carefully examined the effect of different inlet conditions for

- the parabolic problem and his predictions also agree closely

with Egs. (1) and (3).
Based on these and other confirmations, the current con-
clusion seems to be that natural convection heat transfer in an

isothermal parallel-piate channel is a fully resolved problem,

at least for the laminar flow régime.
There have been the disquieting pieces of evidence, however,

that suggest major discrepancies with the Elenbaas’ asymptote
for fully developed heat transfer, Eq. (3B). Sparrow and Bah-
rami (1980), using the naphthalene sublimation technique,
measured a higher transfer rate in this régime; their data,
converted to equivalent heat transfer, are shown in Fig. 2.
They argued that the large corrections Elenbaas used to account
for radiation and edge effects had caused fortuitous agreement
with the theoretical fully developed asymptote. During the
sublimation process, however, heat must be absorbed by the
solid naphthalene, and this must be drawn from both the piates
and the gas. If a significant portion of the heat transfer comes
from the gas, the buoyancy forces induced by the cooling can
be shown to be of the same order as the buoyancy forces due
to concentration changes. It can be argued, therefore, that this
effect could account for the discrepancy between their meas-
urements and Elenbaas’ data.

Kettleborough (1972) and Nakamura et al. (1982) solved the
full (elliptic) equations of motion for the geometry shown in
Fig. 3(A). Kettleborough’s predicted heat transfer was much
higher than Elenbaas’ curve (Fig. 2). The predictions of Naka-
mura et al. (1982) for the same geometry were in reasonabie

Nomenclature
b = half-width of channel, upstream plenum bound- T., = temperature of the am-
Fig. 1 ary . bient fluid and of the inlet
c, = specific heat at constant Nucony = Nu for the case Ly~ of the plenum, K
pressure, J/kg K Nuy = Nu for the fully developed u, v = velocity components in the
g = gravitational acceleration, - régime: Eq. (3B) or (24) x and y directions, m/s
m/s o Nu = Nul? u, = reference velocity =
k = thermal conductivity, W/ p = pressure, Pa Lik/pc,b
mK ) p* = p/pu; _ 7 = average u velocity in the
L. = channel length, Fig. 1(B) Pe = Peclet number = pbic,/k channel
L: = LJ/b ) Pr = Prandtl number = uc,/k u*, v* = dimensionless velocities:
L, = plenum length, Fig. I(B) Q = total heat transfer from u*=u/u,, v*=v/v,
Ly = Ly/b both plates, per unit depth u, = reference velocity =
m = mass flow rate through the of channel k/pc,b
channel, per unit depth = Ra = Rayleigh number = X, y = coordinates, see Fig. 1(B)
pu2b 88(T,,— Tu)b*/ ver x* = x/L,
Nu = Nusselt number = Ra* = (Elqpbaas, Rayleigh number y* = y/b
(Q/2LAT,— T)I(b/K) ) = Ra(b/L.) B = thermal expansion coeffi-
Nup, = Nusselt number for the Ra = modified Rayleigh number cient, 1/K
lmxnm boundary layer ré- = Ra*(L2) ¢ = nondimensional tempera-
. gime, Eq. (3¢) . T = temperature, K ture = (T-T)/(Tu—-Ts)
q Nuconp = Nu for conduction be- T. = temperature of the isother- u = dynamic viscosity, kg/ms
tween the plates and the mal plates, K o = fluid density, kg/m’
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agreement with Eq. (1) or (3) but only one predicted point fell
in the fully developed régime. Ormiston (1983) predicted flow
and heat transfer for the geometry shown in Fig. 3(B). He was
able to show that counterflow heat conduction, out the inlet,
caused his Nusselt numbers (see Fig. 2) to lie well above the
fully developed prediction of Elenbaas for low values of Ra®,
even when the semicircular inflow boundary (Fig. 3B) was far
removed from the plates. These results exhibit the trends al-
ready seen in Sparrow and Bahrami’s data, and the questions
concerning the validity of both Elenbaas’ data and the earlier
analyses for low Rayleigh numbers become more difficult to
dismiss.

Because the problem of natural convection through parallel
plate channels is arguably the most important cornerstone
problem of the open-cavity type, it is imperative that the flow
and heat transfer at low Rayleigh numbers be understood. The
purpose of this paper is to explore this low Rayleigh number
régime.

Description of Problem

Because the purpose of this study is to enhance understand-
ing, it is helpful to select the simplest geometric arrangement
that still contains the relevant physics. The flow is therefore
taken to be steady and two dimensional (no variation normal
to the plane of Fig. 1A). If there is a large array of plates
(such as a stack of circuit boards) at the same temperature,
the flow and heat transfer in the channels in the central portion
of the array will be the same, so it is sufficient to analyze one
channel. Further assuming that the plates are thin, the problem
reduces to that shown in Fig. 1(B). On the channe! boundaries
(solid lines) the velocity will be zero and the temperature fixed
at T,,. In the plenum upstream of the channel, sheltering by
neighboring plates will result in symmetry along the vertical
dotted lines (v=0u/dy=047/3y=0). The flow is assumed to
enter the upstream plenum boundary at temperature T,,. Fully

developed conditions (v=0du/dx=3T/dx=0) are prescribed at -

the downstream boundary, but the limitations of these con-
ditions are discussed later. Furthermore, the pressure at one
point on the inlet and exit plane are set to the same value.

Equations of Motion and Their Numerical Solution. The
two-dimensional equations of motion for steady flow of a
Newtonian fluid with constant properties are

au av

4
ax ay @
ap azu u
—-(puu)+— (pvu)—-—— axl ay
+oB(T-Tg  (5)
a 82 2 Ci
—(puv>+— )=~ L+ <ax" s ) ©
*T &
(pc,,uT)+ (pcva) k< x2+$72—> )

These equations were discretized on a Cartesian mesh, with
the flexibility to concentrate the mesh along the walls and near
the channel inlet where gradients in the dependent variables
are expected to be greatest. The computational method used
(see Martin, 1988) was a variant of the methods described by
Patankar (1980) and Van Doormaal and Raithby (1984).

It is necessary to add to the boundary condition specification
already given that the pressure was specified as zero (relative
to atmospheric pressure) at only the center node on the inlet
and exit planes. To accommodate this pressure specification,
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one control-volume mass conservation equation was removed;
this is permitted (in fact desirable—see Van Doormaal and
-Raithby, 1984) because the velocity boundary conditions make
one control-volume continuity equation redundant on each of
these planes.

An exhaustive study was undertaken by Martin (1988) to
ensure that the code was free of errors and that the mesh was
sufficiently fine to provide accurate predictions. For low Ra*,
solutions were obtained on a sequence of grids, and the value
of Nu at zero grid spacing was estimated by extrapolation. The
Nu values reported in this study used grids for which Nu is
within 1 percent of this asymptote. For Ra*—0, the Nu values
obtained by the code were checked against results from a con-
duction analysis. At Ra* =229, where the boundary layer as-
sumptions are expected to be valid, the present code predictions
were found to agree with Aihara’s (1973) predictions to within
1.1 percent. Based on these and other studies, all solutions
reported in this paper give heat transfer and mass through flow
rates that are believed accurate to within about 2 percent, with
the accuracy of most results well within this bound. These
predictions will be presented in later sections.

Dimensional Analysis. Introducing the nondimensional vari-
abies defined in the Nomenclature, Egs. (4)-(7) become

du* av*
= 8
ax oy ®
o O et 30t L (1) du
ax* " Ayt ox* L:) ax** " ay*? ‘
v +Ra*Pré (9)
.‘?_?_: ‘@:_ _23}7
u ax_+u ay‘— L)
1 .
((z— X'2+ ‘2> (10)
30 3 e
—=t3 11
ut ax* ay < ) ax*? an
The boundary conditions are
ye==zxl O<sx*<l: w'=v*=0 0=1 (I12A)
L du* a0
r=xl; -2 =x*=<0: v'=r—T=7—=0 (I12B)
¢ : 3y oy
L. 3
x*=-=2, —l<y'<l: v*=7—=0=0;
L:
p*=0(1point) (12C)
. RSV .
x*=1, -l<y*< ”‘ax-‘ax' 3
p*=0(lpoint) (12D)

If the parabolic approximation is made, all diffusion effects
in the x direction are ignored (3*( )/8x**=0), and the y-mo-
mentum equation is replaced by p*(x, y) =p*(x). Because there
is no diffusion in the x direction, there will be no change in
the solution in the inlet region; —(L,/L)<x*<0, so the so-
lution of Eqs (8)~(12) becomes independent of L} and L.
This results in the following functional dependence of the
nondimensional heat transfer and flow rate

Nu=Nu(Ra*, Pr): Pe=Pe(Ra”, Pr) (13)

These are the dependencies suggested, but not proved, by Elen-
baas (1942).

At low Ra* (fully developed régime) one must expect that
diffusion in the x direction will be comparable to convection,
so that 8%( )/3x*? terms should not be dropped from Egs. (8)-
(12). If the inlet plenum is very long (L;— ), the following
dependence is deduced:
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Nu=Nu(Ra*, Pr, L?): Pe=Pe(Ra*, Pr, L?) (14

For the fully developed régime, this dimensional analysis does
not support Elenbaas’ conclusion (that Eq. (13) is valid) except

when L2 becomes asymptotically large.

At values of Ra* that are small enough for x diffusion to
be important, and if L} is not asymptotically large, the solution
to Eqs. (8)-(12) will also depend on the plenum length, L3 =L,/
b. The dependencies of the dimensionless average heat transfer
and mass flow rates for the general problem in Fig., 1(B) are
therefore

Nu=Nu(Ra*, Pr, L?, L;) Pe=Pe(Ra*, Pr, L, L;) (15)

From dimensional analysis, it is therefore concluded that
Elenbaas’ asymptote, Eq. (3B), is not correct at low values of
Ra* unless L~ gnd Li—oo. It remains to establish the actual
Ra* range over which the effects of LZ and L; become im-
portant.

Fully Developed Asymptote L;—

Before giving the results of a2 numerical study, some guidance
(relating to the question of the behavior of Nu in the Ra*
domain over which x-diffusion is important) is obtained from
an approximate analysis. The case of a long inlet plenum,
L}—, is considered first, where the functional relation (14)
is expected to be valid.

When there was no flow through the channel in Fig. 1(B),
the temperature on the x=0 plane would vary from T, at
y= b to a slightly smaller value near y=0. Any flow will
cause this temperature to decrease toward 7T.,. Specification
of T=T, on x=0 is therefore an upper bound on the tem-
perature on the inlet plane that becomes approximately correct
as Pe—0 (i.e., in the fully developed régime). In this régime,
the dynamic pressure variations are small, so that the u velocity
in the inlet plenum can be approximated as uniform at #%.

In the fully developed régime, the upper bound on the tem-
perature distribution in the plenum is therefore described ap-
proximately by

_dT | d*T
x=0 T=T.

T=T,

The nondimensional plenum temperature distribution is there-
fore given by .

X==L,= ~o

f=exp(Pe L} x*)
=1 x*=0

The total buoyancy force inducing flow through the channel
and plenum, per unit depth (i.e., distance normal to the plane
of Fig. 1) of channel and for L;—, is

x*=<0 an

1
Fa=2088(T\~Tu)Lb| 6.dx" (18)

Equating this to the viscous drag force on the wall over the
domain 0=<x* =1, assuming the velocity profile to be para-
bolic, results in the velocity

pgﬁ(Tw— Ten)b 2 I: 1 1 ]

U=

+ 19
3u L2 Pe (19)
The second term in Eq. (19) is a correction to the Elenbaas
equation for velocity. This is an implicit equation for &, be-
cause Pe contains @, which can be solved to yield

Ra 12
Pe=— |1+ +
°=7s L: Ra

(20
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NUMERICAL Nu,, -Ea. (3C) ~— <
PREDICTIONS _r-
a %=2
-l= & (%=8
o 5=20
5 "2 i
b4 (A ‘%
(=
g3 B
Log—®
%0 j P
-4 4
£a.(38) 2~ — Nu={Nupg+Nuge)™ ;m=-19 T
-5k Nugg - £q.(22)  Ney, - Eq.{3C)
! ] ! ! 1 -
-5 -4 -3 -2 -1 [0} ]
Log Ra*

Fig. 4 Heat transfer predictions for various channel heights, L3 and
for a large plenum length, [j--o

Table 1 Values of Nuconp

LJ/L. L:=8 L:=10
1 0.01481 0.009574
0.5 0.02814 0.01838
0.25 0.05120 0.03400
0.10 0.1007 0.06939

Performiné an energy balance on the channel and plenum,
the total heat flow from the plates, 0, is

Q=mcy(Ty—Ta) @21
The average Nusselt number is therefore

Pe_Ra
L 6L?

Nu;d= 1+ {1+ (22)

L2 Ra

This equation is the appropriate fully developed asymptote for
the problem in Fig. 1(B) for the special case: L;—~oo.

To obtain an equation for the Nusselt number that spans
the fully developed and boundary layer régime, it is appropriate
to use Eq. (3), but with Eq. (3B) replaced by Eq. (22). This
equation is plotted in Fig. 4 for Ra* <50. For L2=<10 (short
channels) it is seen that there is no range in Ra* over which
the Elenbaas asymptote, Eq. (3B), is valid. As L7 increases,
the range in Ra* over which the Elenbaas asymptote is ap-
proached becomes wider. The Li—c curve is the Elenbaas
asymptote (Nuy—Ra*/3 in Eq. (22) as Li—o).

The symbols that appear in Fig. 4 are predictions based on
the numerical solution of the full equations of motion (4)-(7).
The agreement between these and the approximate solution
just presented is seen to be excellent.

New Nusselt and Rayleigh Numbers for the Fully De-

veloped Régime

If a new Nusselt and Rayleigh numbers are defined as fol-
lows:

Nuy=(L:)'Nuy Ra=LiRa=(L:)’Ra* (23)

Eq. (22) becomes
- Ra / 12
Nuy=-~— |1+ (1+— 24)
6 Ra

This equation is significant because there is no separate de-
pendence on L2 that is, all predictions in the fully developed
régime should fall on a single curve of Nu versus Ra.
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+Cc=20
a ‘:c=lo
o % =8
XI:C=2

~ ~m ~m Vm

Nu = ( Nugg+ Nupy) ; m=-L9
Nde - Eq (24)

Nuy, - Eq. (26)

5 i
12
o Le
o
-0
1t
Lo
L) Lp—o
M
[
]
-1 L.T...;
]
-2 -1 0 ] 2
Log Ra
Fig. 5 New coordinates that coilapse all predictions in the fuily de-
veloped régime onto a single curve
BOUNDARY - LAYER
O ASYMPTOTE
=10 ‘—T
Lp/Lc= Le
> -l ol
=z ——O—— Lp
o 0.25 L ri
3 -L_p 2 O = -4 -
¢ 0.2—»-——-: —!ﬂ
‘2 | ]
_~" —— EQUATION (28) 05‘“;“1 i
/ |
[
L ELENBAAS FULLY- PR |
5 yd DEVELOPED ASYMPTOTE ‘ T
- —— /
| | ] |
-3 -2 -1 0 |

Log Ra*

Fig. 6 Heat transter for a fixed channel length, L3= 10, and for various

inlet pienum lengths, L;

Equation (24) has two asymptotes

Nug— /533 as Ra—0 (25A)
~ R .
Nuf,,--—jE as Ra-—o (25B)

The second of these is the Elenbaas equation, Eq. (3B). The
first, Eq. (25A), represents a new asymptote that accounts for
the effect of upstream conduction. Because of transition to
the boundary layer régime, the range of Ra over which the
Elenbaas asymptote is valid is limited; the previous section

Journal of Heat Transfer

showed, in fact, that there is no Ra range over which it is valid

for short channels (L2<10). . :
In order to obtain an equation in these coordinates that

spans the fully developed and boundary layer régime, Eq. (30)
is transformed to

Nu, =0.62Ra'* (L2)*? (26)

and Eqgs. (24) and (26) are substituted into the blending relation

Nu=Nu%+ Nuy)/™ m=-1.9 '.(_27)

i i Ju,, and Eq. (26) for Nugy,

gql;ll?)ttltoeg (1317)1‘:1;15 I;l g }1\51‘:0 (52:3):: ;I:I:he twoqfugly developed

asymptotes given by Eags. (25A) and (25B).
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Numerical predictions obtained for L;—o are plotted in
Nu-Ra coordinates in Fig. 5. This figure confirms that these
coordinates indeed collapse all the predictions, for different
L2, onto a single curve in the fully developed régime. The
boundary layer asymptote (in these coordinates) now depends
on the value of LZ; Eq. (27) predicts the correct Ra at which
results break away from the fully developed régime toward the

boundary layer régime.

Effect of Upstream Conduction to Plenum Boundary
(Finite L)

In all the results just presented, as Ra—0 the Nusselt number
approaches zero. In any real situation this will not occur be-
cause there will always be some heat conduction to surrounding
surfaces. For the boundary conditions shown in Fig. 1(B), as
Ra—0, the Nusselt number will approach that for conduction
from the plates at T, to the upstream boundary at T.. As
L;—oo, this limiting heat transfer approaches zero (the case
reported in the previous sections). Note that the boundary
conditions allow no conduction through the x= L. boundary
in Fig. 1(B), a point still to be addressed.

In this section, the Nusseit number for the Lj—o case is
given the new notation, Nucony (i.e., Nuconv is given by Eq.
(3A), using Eq. (3C) for Nu, and Eq. (22) for Nuy). The
Nusselt number for conduction to the plenum inlet boundary,
at x= —L,, is denoted by Nuconp.

The solution to the pure conduction problem, given by Gibbs
(1958), requires elliptic integrals and related functions that can
be easily calculated using theta functions, as outlined by Lem-
czyk and Yovanovich (1988). The values of Nuconp for the
conduction limit are given in Table 1. Note that as L,—oo,
Nuconp—1/(L5LD

The Nusselt number, including conduction, can again be
approximated by the blending equation

Nu = (Nuonp + Nugonv)’” n=1.9 28

Equation (28) is plotted in Fig. 6 for four values of Ly/L,
between 0.1 and 1.0, all for L?=10. Heat conduction to the
upstream boundary is seen to have a pronounced effect on the
heat transfer from the plates, even when the inlet channel has
a length equal to the piate length (L,/L.=1.0).

The results of numerical predictions are also shown in Fig.
6. For the limited range of parameters examined, there is good
agreement with Eq. (28).

Discussion

For the geometrically simple case shown in Fig. 1(B), up-
stream conduction can have an important effect on the heat
transfer from the plates. For'L,—, the upstream conduction
preheats the fluid before it enters the channel causing the
effective height of the buoyant column to increase; this, in
turn, induces a higher throughflow and therefore a higher heat
transfer from the plates.

For a short inlet pienum, heat transfer is further augmented
by conduction to the upstream boundary. The combined effects
of higher effective height of the buoyant column and of heat
conduction to the boundary can result in heat transfer rates
that are very much larger than those predicted by the low
Rayleigh number Elenbaas asymptote.

For other shapes of inlet channel, upstream conduction will
play a different, but important, roie. For the geometry shown
in Fig. 3(B), upstream conduction is much more important
than for the geometry of this study (Fig. 1B) for a given distance
petween the channel entrance and the upstream boundary. This
is because the area for the flow increases with distance up-
stream, which has the dual effect of decreasing the velocity
that moves counter to the upstream heat conduction and of
decreasing the resistance to conduction. Even for R/b= 100,
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the results of Ormiston (1983), shown in Fig. 2, indicate a very
significant contribution to the low-Ra heat rtransfer.

In reality, Surface 2 in Fig. 3(B) could not be maintained
adiabatic for gas flows. The heat flow path from the channel
to Surface 2 is much shorter than the path to Surface 1, so
that heat transfer from the plates to this surface would likely
be very important at low Ra. This would further increase the
discrepancy between observed heat transfer and the Elenbaas
asymptote. It is, therefore, concluded that Elenbaas’ low Ray-
leigh number asymptote will not be observed except under
extremely special conditions.

Since the parabolic solutions (e.g., Bodoia and Osterle, 1962)
have been one of the key pieces of supporting evidence for the
Elenbaas asymptote, one must now enquire as to why these
solutions are also incorrect. The answer seems to be that the
parabolic flow assumptions are invalid at low Ra. Certainly
axial diffusion is important at low Ra, and clearly the speci-
fication of T=T, at x* =0 is incorrect. In facrt, if axial dif-
fusion were retained with this boundary condition specification,
asymptotically large heat transfer would be found for Ra—0
because of the thermal short circuit where the inlet plane in-
tersects the plates. It is only because of a partial cancellation
of simplifying approximations that the parabolic solutions yield
reasonable results at all.

The remaining questions relate to the disagreement among
different sets of experimental data. It now seems that Sparrow
and Bahrami (1980) measured high (equivalent) heat transfer
at low Ra partly because of the cooling that accompanied the
sublimation and partly because upstream diffusion at the inlet
both augmented buoyancy and transferred mass to fluid that
never passed through the channel. It aiso appears that Elen-
baas’ data yielded reasonable agreement with his low-Ra
asymptote partly because his L? were large, but also because
the large corrections to the data (see Sparrow and Bahrami,
1980) resuited in fortuitous agreemen;

“"The present study has analyzed the heat transfer from the
parallel plates for two-dimensional flow, for one channel in
an infinite stack of channels, and for zero heat conduction
from the top of the channel. For the analysis and discussion
in this paper, the heat transfer is expected to be much different
for one, or only a few, channels because the upstream diffusion
will be different. (The present analysis should not, therefore,
be expected to agree with the Sparrow and Bahrami data.) For
low Ra, neither the depth of the plates nor the number of
channels would be sufficient to prevent three-dimensional con-
duction effects at the inlet. Furthermore, the fully developed
boundary condition on temperature at the duct outlet ((d7/
dx)=0 at x=L,) often becomes inappropriate at low Ra, es-
pecially if there are nearby cool surfaces to which the plates
can conduct. While the problem analyzed in the present study

has been educational, the conclusion of this study is that these

predictions will only be valid under restrictive conditions. In
general, the low-Ra heat transfer will depend on the particular
inlet and outlet configuration used.

Summary and Conclusions

The problem of flow and heat transfer by natural convection
through a channel formed by parallel isothermal plates is cen-
tral to our understanding of open-cavity flows. Despite some
scattered experimental and numerical evidence to the contrary,
there is wide acceptance that the Elenbaas fully developed
régime exists at low Rayleigh numbers, in which the Nusselt
number becomes directly proportional to the Rayleigh number.

This paper has presented a numerical study, a simpie anal-
ysis, and correlation equations for natural convection through
an array of large parailel, vertical, heated plates. The Elenbaas
fully developed régime is shown to exist only as a very special
limiting case. For the problem studied, new asymptotic (fully
developed) relations are presented for this particular problem.
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From the analysis presented, it becomes clear that the heat
transfer at low Rayleigh number will depend on the shape and
boundary conditions of the inlet and outlet plenums. In par-
ticular, Elenbaas’ asymptotic expression for low Rayleigh
numbers will not be valid except under extremely special cir-

cumstances.
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