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ABSTRACT

A general expression is presented for determining the character-
istic body length of convex bodies for transient conduction. The
proposed definition of the conduction characteristic length contains
a geometry index which depends on two aspect ratios. It is con-
sistent with the characteristic lengths required by the analytical so-
lutions and the lumped-capacitance model for the classical bodies:
[\‘nite slab, infinitely long circular cylinder and sphere. The pro-

ed length was verified by comparing the normalized heat loss from
wfinitely long square prismatic rods and circular cylinders for a wide
range of the Fourier number and all values of the Biot number. The
maximum percent difference was found to be less than 4.4 %; and
it occurred at Fo = 0.2, the demarcation between short and long
dimensionless times. The percent difference is less than 1 % for very
short and very long times for all values of Bi. The square and circle
~results bound the solutions for all infinitely long prismatic rods of
le!ﬂlar polygonal cross-sections. The square solution can be used to
‘@timate the normalized heat loss from rods of equilateral triangle
&roas-section with an estimated maximum percent difference of less
than 3 %. The proposed characteristic length is equivalent to the ra-
dius of the inscribed circle for the regular polygonal prismatic rods.

(OMENCLATURE

: - surface area, m?
Rai, ARy - aspect ratios of a parallelepiped

::'cf:n - F:ourier and Fourier-Bessel coefficients

B <b,2¢ - sides of a parallelepiped, m
- Biot number, dimensionless thermal resistance
ratio, hL/k
- specific heat, kJ/(kg - K)
- Fourier number, dimensionless time, at/L?
- geometry index, G =1+ 1/ARy + 1/{ARa; - AR33)
- convective heat transfer coefficient, W/(m? - K)
- Bessel functions of the first kind
of order 0 and 1 respectively

- thermal conductivity, W/(m - K)

; - arbitrary characteristic body length, m
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N - number of sides of regular polygon, 3 < N < o0
Q - energy remaining in body, peVe, kJ

Q: - initial energy of body, pcV8;, kJ

Te - infinite circular cylinder radius, m

Ts - sphere radius, m

T - constant temperature, K

Ty - uniform fluid temperature, K

T; - initial temperature, I

t - time, s

14 - volume, m?

a - thermal diffusivity, m?/s

bn - eigenvalues, roots of transcendental equations
p - mass density, kg/m>

[ - temperature excess, T — Ty, K

8; - initial temperature excess, Ty —~ Ty, K
INTRODUCTION

Transient conduction from bodies subjected to convective bound-
ary conditions is characterized by the Biot and Fourier numbers. The
Fourier number is an expression of dimensionless time,

at
=77 (1)

and the Biot number is the ratio of the internal resistance to the

Fo

external film resistance,

Bi=— 2

Both dimensionless numbers require a length £ characteristic of the
conduction within and convection from the body. For analysis and
evaluation purposes, the appropriate choice of characteristic body
length is essential.

A survey of the literature leads one to the conclusion that there
is no general method to determine the required characteristic length.
For simple bodies such as infinite slabs (or plates), cylinders and
spheres, the analytical solutions dictate appropriate characteristic
lengths. These characteristic lengths have been used by a num-
ber of authors including Gurney and Lurie (1923), Newman (1936)
and Heisler (1947) in their classic studies, and others [Jacob (1949),
Schneider (1955, 1963), Pashkis and Hlinka (1957), Sha and Ganic




(1981)). This method, however, cannot be used to provide correct
values for more complex bodies such as infinitely long prismatic rods
of polygonal cross-section and polyhedra.

A number of authors [Eckert (1959), Levenspiel (1984), Colakyan
et al. (1984), Incropera and DeWitt (1990)] recommend the use of
a general expression derived from the lumped-capacitance solution.
However, this expression conflicts with the characteristic lengths of
the simple bodies. Other definitions of characteristic lengths have
been proposed [Olsen and Schuitz (1942), Normington and Blackwell
(1964), Schneider (1985)}; but these serve to add confusion because
they are not general expressions and sometimes conflict with other
definitions.

Therefore, the purpose of this paper is to present a general expres-
sion to determine the characteristic lengths of complex bodies which
reduce to characteristic lengths commonly used for simple bodies
such as infinite slabs, circular cylinders and spheres.

CHARACTERISTIC LENGTHS OF SIMPLE BODIES

Numerous studies have dealt with transient conduction from sim-
ple bodies such as infinite slabs, infinite circular cylinders and spheres.
For these simple bodies, the choice of characteristic dimension is
straight-forward; and from the geometry, the characteristic length is

(%) L = a (infinite slab) 3)
(3%) L = r, ( circular cylinder) (4)
(33) L =7 (sphere) (5)

where each length is the distance from the central adiabat to the
solid-fluid or convection boundary.

These characteristic lengths are consistent with those required by
the corresponding analytical solutions. For these simple bodies, the
application of the convective boundary condition to the general solu-
tion produces transcendental equations whose roots are the solution
eigenvalues 6. From Carslaw and Jaeger (1959), the transcendental
equations are given as

(i) S,tand, = ﬁk‘l_ (infinite slab) (6)
(ii) A %Jo(én) (circular cylinder)(7)

by (sphere) (8)

]

(id) (1 - hT’) tan é,

The dimensionless thermal resistance ratio in these equations is the
Biot number. Therefore, the analytical solutions provide character-
istic lengths which are the same as those suggested by the geometry.

Although the geometry and the analytical solutions provide suit-
able characteristic dimensions for these bodies, these results cannot
be readily applied to more complex bodies. Consequently, a general

expression for determining the characteristic length for complex bod-
ies is required.

CHARACTERISTIC LENGTHS FROM LUMPED-
CAPACITANCE SOLUTIONS

The lumped-capacitance analysis based on Bi — 0 assumes unij-
form volumetric temperature and is applied to approximate heat
transfer from bodies with negligible internal thermal resistance. The
lumped-capacitance temperature solution for a cooling problem is

8 T-T _ hA)
e A ®
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The thermal energy loss from the system can be obtained from.
the temperature solution by means of the following integral: —

t hA
0 _/0 hA8; exp (—Wt) dt (10) _
which gives
Q ( h4 ) *
— =1 —exp|{—-—t 1
Qi P\ e ()

The argument of the exponential term of the temperature and —
heat transfer equations can be re-arranged

OO

Letting

2| <
i
N

(13)

we can write Eq. (9) as
g
7= exp(—Bi Fo) (14)

Equation (13) provides a simple general expression for determining
the characteristic length. Colakyan et al. (1984) used this definition
and showed that it is possible to condense the cooling history of
variously shaped objects onto a single plot. :

When the characteristic length of the infinite plate, circular cylin- |
der and sphere are calculated using Eq. (13), the results are

(1) L = a (infinite slab) {(15)
(i) L = r/2 (infinite circular cylinder) ({ 16)
(€11)] L = r,/3 (sphere) (17)

The characteristic lengths specified by analytical solutions for cir-
cular cylinders and spheres differ from those calculated using Eq.
(13). Before the cooling charts of Gurney and Lurie (1923), New-
man (1936) and Heisler (1947) can be used, the Biot and Fourier
numbers whose characteristic lengths are defined by Eq. (13) must

characteristic length. The expression is, however, unsuitable when
applied to the circular cylinder and sphere as the length produced
differs from that required by the analytical solutions for Bi >> 0.
To avoid this confusion, a general expression which also provides the ¢ |

be converted. i
Equation (13) provides a general expression for calculating the § ie

;
characteristic lengths of simple bodies is desired.

ALTERNATE DEFINITIONS OF
CHARACTERISTIC LENGTH

Several authors [Olsen and Schultz (1942), Normington and Black- $
well (1964), Schneider (1985)] have used other definitions for the F s

characteristic body lengths. However, these definitions are not suit- 3
ably general. s
Olson and Schultz (1942) used the plate thickness 2a as the chtl“ ‘
acteristic length for heat transfer from infinite slabs. This Cho'l"-e 1 L 5
made contrary to the results of the analytical solution. Norminto®
and Blackwell (1964) examined heat transfer from prolate and obh: i
spheroids and used the focal length of the generating ellipse a8 ¢
characteristic length. This definition cannot be applied to other
ies.

Schneider (1985) used the smallest dimension of interest i8 the -
problem as the characteristic length. While this definition Qf’“ t
same characteristic length as that required by analytical solutions:

cannot be used for more complex irregular shapes.




GENERAL EXPRESSION FOR CHARACTERISTIC
BODY LENGTHS

aa.  To provide suitable characteristic dimensions for all bodies, the
&Ouowing general expression is proposed:

v
=63 (18)

where the geometry index G is defined with respect to the paral-
telepiped of dimensions 2a by 2b by 2¢ where 2a < 2b < 2¢:

G=1+4+1/ARy + 1/(ARy - AR3z;) (19)

The aspect ratios of the parallelepiped are defined as ARy = b/a > 1
and ARaz = ¢/b > 1. The above definition of G reduces for the
infinite slab (AR3; — o0 ) to

G=1

for bodies finite in one-dimension; for the infinitely long square rod
(ARy =1 and AR3z; — 00) it reduces to

G=2

for bodies finite in two-dimensions (eg. infinite regular polygonal
prismatic rods and circular cylinders), and for ARy; = 1 and ARz =
1 the general expression reduces to

G=3

for bodies finite in three-dimensions (eg. cubes and spheres).

The above general expression provides the characteristic lengths
for simple bodies such as infinite slabs, circular cylinders and spheres
identical to those suggested by geometry and those required by the
analytical solutions.

This expression also provides a characteristic dimension for bod-
"Nies where a suitable length is not immediately evident. Langston
(1982) has shown that heat transfer from an infinite rectangular rod
with cross-section (2a X 2b) can be calculated by superposing solu-
tions for heat transfer from slabs of thickness 2a and 2b. Since each
slab has a characteristic length, the correct choice of characteristic
length for the rectangular rod is unclear. For this shape and for the
other bodies, the use of Eq. (19) resolves this conflict.

The use of a single, general expression also aids in the study of
heat loss by conduction from complex bodies. When comparing nor-
malized heat loss Q/Q; from different bodies, calculated values are
best compared when the dimensionless Biot and Fourier numbers
are made equal. Using the general expression of Eq. (19), a consis-
tent characteristic length can be calculated, thereby allowing valid
comparisons.

A simple dividing line is needed to distinguish between bodies
finite in one-. two- or three-dimensions and to allow the geometry
index G to be determined. Olson and Schultz (1942) claim that even
if Sr'eat accuracy is required, a length can be labelled remote (or
infinite) if it is 10 times the length of the shortest dimension. For
®ample, a parallelepiped (2a X 2b X 2c) where @ < b < ¢ has a
Seometry index G = 3 when 10 > c/a > b/a; G = 2 when c/e >

‘P > b/a (infinite rectangular rod), and G = 1 when ¢/a > b/a > 10
(infinite slab).
m

COOLING OF INFINITE SLABS

Ibe cooling (or heating) of a slab is a basic solution or building
rody for obtaining solutions for rectangular (or square) prismatic
wil and parallelepipeds (or cubes). A brief summary of the results
tl be considered here.

The solution to the one-dimensional diffusion equation, a4 /0z% =
06/dt, where 8(z,t) = T(z,t) — Ty is the instantaneous local tem-
perature excess is [16]

NgE

R

Ay exp(~82Fo) cos(a,,-z-) (20)

n=1

The Fourier coefficients A,, obtained from the initial condition, 8(z,0) =

8; = T; ~ Ty, are given by

2sin 8,

An = 6y, + sin 6y, cos b, 1)
and 8, are the roots of the transcendental equation
by sin é, = Bicos§, (22)

where Bi = ha/k, is the slab Biot number and « is the slab half-
width.

The instantaneous area-mean temperature excess defined as

8(t) = }; /0 " 8(z, t)dz (23)

is obtained from

]
~

i

L

s

B,, exp(—6, Fo) (24)

]

n=1

1]

and the Fourier coefficients, B, are given by

2sin? 4,

Bn = &8y + sin &, cos b,)

(25)

During the cooling (or heating) process the slab loses (or gains)
a definite quantity of thermal energy, @, and three methods can be
used to find Q. The first method is based on the temporal integration
of the conduction rate out of the slab at the solid-fluid boundaries;
the second method is based on the temporal integration of the con-
vection loss through the solid-fluid boundary; and the third method
is based on an enthalpy balance of the slab between the initial and
final cooling times.

The three methods give the same result:

—QQT =1- i B, exp(—62 Fo) (26)

where Q; = 2aApcé; is the initial enthalpy of the slab.

n=1

Computation of Eigenvalues

The above equations for the instantaneous and area-mean tem-
perature excess, and the thermal energv loss from the slab require
the evaluation of the Fourier coefficients, A, and B,,. The Fourier
coefficients are dependent on the eigenvalues §,, which are the roots
of Eq. (22).

The iterative Newton-Raphson technique is one method which
can be used to calculate the roots accurately. To compute each root
8, for a particular value of Bi, one can iterate until convergence the
following expression:

S+l = i &% sin &%, — Bicos 8}

- - 27
™ §icosél + (14 Bi)siné}, (27

The number of iterations can be reduced significantly by means
of the following approximations of the first root of the transcendental

equation: 12
3Bi 1/ 3Bi )2
- A L 28
o {3+Bi[1 45(3+Bz’ ]} (28)
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for small values of 0 < Bi < 2, and for all Bi > 2 use

nBi 7r2
L TF Y1) [1 Y20 F B + 72(2Bi - 1)] (29)

The maximum error for both approximations of 6y is less than 0.1%
and it occurs at Bi = 2. To initiate the iterative procedure for
the second and higher order roots let the value of the first guess be
61 = 61(converged) + T, 8} = 6y(converged) + T, - -+, etc.

A computational study shows that only 5 terms of the summation
are required to obtain four decimal place accuracy for all Bi provided
the dimensionless time, Fo > 0.02; otherwise more terms are required
to achieve the same accuracy.

The thermal energy loss from the slab during very short time
intervals Fo < 0.02 can be accurately computed from the half-space
solution [16] which when divided by Q: = pcaAb; gives:

Q _ 2 1 . 2
-7 Fo B [1 erfc(BivV Fo)exp(Bi Fo)] (30)
For Bi < 2, the above result can be used for maximum dimensionless
times determined by the following relationship:

1.0 +T0=05B:]
- Bi (1)

Fomar =
and for Bi > 2, Fomar = 0.0625.

The half-space result should not be used for very small Bi and
very small Fo when negligible heat loss has occurred; the lumped-
capacitance model is more suitable for these cases. The half-space
result is recommended for all Bi > 2 and all Fo < 0.06.

TWO- AND THREE- DIMENSIONAL SOLUTIONS

One can combine one-dimensional solutions developed for the slab
in a straight-forward manner to obtain solutions for multidimensional
systems such as rectangular (or square) prismatic rods and paral-
lelepipeds (or cubes). Simple analysis shows that if (8/0;)2a and
(8/8:)2 are temperature solutions for infinite slabs of thickness 2a
and 2b respectively, the temperature solution for a rectangular pris-
matic rod of dimensions 2a by 2b is given by the product of the two
independent slab solutions:

@@ @, @

Similarly, for a parallelepiped of dimensions 2a by 2b by 2¢, the
temperature solution is given by the product of three slab solutions:

@@ @@ @

Langston (1982) has demonstrated that one can obtain the ther-
mal energy loss for two- and three-dimensional systems from the
above equations. For one-dimensional systems of width 2a and 2b
respectively, one has

@@ e

(@u=r-k (B, @

However, for a rectangular prismatic rod one has

(@)L Lo o

and

which can be written as
SIS ARSI NG
- =1-1}- —_ dx -/ (-—) 7
(Qe 2D ato \8:/2 bJo \6; “dy @7
The above results lead to the following expression:

(&) -0-@I-@)] e

Therefore, expanding the previous resuit gives

(©),-(0.+ @, (0. @),

In a similar manner one can extend the above two-dimensionai
results to three-dimensional systems to obtain for the parallelepiped:

(@)=~ - @G- @) @

The expressions for the square prismatic rod and the cube can be '
obtained from the above general two- and three-dimensional results: -

(@) =@).-Q. |

(@)@, @) @)l @]

INFINITE CIRCULAR CYLINDER SOLUTION

and

Heat transfer from infinite circular cylinders is reviewed because {
it is an important analytic solution, and also the circular cylinder
represents an N —sided regular polygon with N — oco. The tempera-
ture solution of the one-dimensional diffusion equation a[826/8r% +
(1/r)06/0r] = 80/8t within a solid cylinder of radius a is [16]:

0 o
7= 2 A exp(—éf,Fo)Jo(é,.‘—’;-) (43)
t =1 k

where Fo = at/a?, and the Fourier-Bessel coefficients A, are given
by

A = 2Bi
"7 (82 + Bi?)Jo(6n)
with Bi = ha/k. The eigenvalues §, are the roots of the transcen-
dental equation:

(44)

b2J1(65) = BiJo(6s) (45)

where Jo(-) and Jy(-) are Bessel functions of the first kind of order,
zero and one tespectively. These special functions can be easily a4 [
accurately computed using the polynomial approximations present
in Abramowitz and Stegun (1980). ;

The area-mean instantaneous temperature excess is defined as

=L [ |
i=— [ o(rp2erdr ? ]
which leads to _ H 3
§ B
%= z-:l B, exp(—62Fo) (“Z

The thermal energy loss from a cylinder of length 2L and of r‘d’-
2 during the time interval fromt =0 tot =11is f

T a9 (48}
Q —/o 4r L (—5;) rdr




which gives -
% =1- Z B, exp(—62Fo) (49)
" where @i = 2ra?Lpch; is the initial internal thermal energy of the
cylinder. The Fourier-Bessel coefficients B,, are found from the fol-
1owing reduced equation:

n=1

4Bi?

Bn = 52(82 + Bi?)

(50)
The eigenvalues can be computed using the iterative Newton- Raphson
method applied to the following equation:

_ §.1(8}) — BiJo(4}) (51)
61.Jo(8;) + BiJy(83)

w a
5t = g

The first eigenvalue lies in the interval 0 < 61 < 2.40483 for 0 < Bi <
. One can reduce the number of iterations for n > 2 by letting the
first guess of 83 = 61(converged) + 7, 8 = §(converged) + m, - -+,
etc. For Fo > 0.02, only 5 terms of the summation are required to
give four decimal place accuracy.

COMPARISON OF NORMALIZED HEAT LOSS FROM
INFINITELY LONG SQUARE RODS AND CYLINDERS

The results of the above reviews and the proposed general char-
acteristic body length will be used to compare the heat loss from
infinitely long square rods and circular cylinders for a wide range of
Foand all values of Bi. This is an important comparison because the
square and circular cross-sections can be classified as regular poly-
gons of N = 4 and N — oo respectively; therefore, these geometries
bound an infinite set of regular polygons.

/" Heat loss from the square and circular cross-sections can be de-
termined accurately using the known analytical solutions. However,
both solutions require a characteristic body length, namely the half-
width for the square and the radius for the circle. The proposed
general characteristic body length, £ = GV/A, which becomes

cross — sectional area

L=

convection perimeter

will be used in the two independent parameters: Bi = hL/k and
Fo = at/L? which determine the solution.

For both solutions described above, the eigenvalues §, are calcu-
lated using the Newton-Raphson method discussed earlier. Succes-
sive iterations on the roots are continued until

gnew _ 601 d
n n

new
6".

<10°°

In order to obtain very accurate solutions for this comparison,
checks for the convergence of the infinite summations are made by
comparing the result after 10 additional terms have been included in
the summation, and applying a maximum tolerance on the difference:

(%)Mw - (g:)n < 10-1°
(8:) n+10 -

An upper limit of 2000 terms was applied to the infinite summations.
The heat loss from the square and circular cross-sections are com-
Pared by computing the percent difference:

. % difference - (g:)circle B (8:> square| o 100% (52)
(gj) square

The percent difference was computed for Fo ranging from 10
to 7.0 x 103 for Bi ranging from 0.001 to 160 which essentially
corresponds to an infinite value of Bi. The normalized heat loss
@Q/Q; ranged from 2.0 X 10-* to 1. Tabulated results are presented
in Tables 1 through 13 for selected values of Bi.

From these tables it can be seen that the percent difference is less
than 1 % for all values of Fo when Bi < 0.1. This is to be expected
because the lumped-capacitance model applies to both geometries
when Bi < 0.1. The percent difference continues to be less than
1 % for very short times and very long times for all values of Bi.
The percent difference exceeds 1 % but never rises above 4.4 % for
all other values of Fo and Bi. The maximum percent difference
appears to occur in the range 0.2 < Fo < 0.5 for 1 < Bi < 160.
In general, the maximum percent difference for Bi > 2 occurs at
Fo = 0.2 which is often said to be the demarcation between short
and long time solutions. The heat loss from the circular cross-section
exceeds that of the square cross-section for all values of Bi and for
all Fo> 0.

DISCUSSION AND CONCLUSIONS

A general expression is required to provide characteristic body
lengths for transient conduction within complex bodies. For simple
bodies such as infinite slabs, infinite circular cylinders and spheres,
the general expression must reduce to the characteristic length pro-
vided by the analytical series solutions. Present expressions are ei-
ther insufficiently general or provide conflicting characteristic lengths
for simple bodies.

A novel expression has been proposed to calculate the character-
istic body length of non-classical two- and three-dimensional bod-
ies such as infinitely long prismatic rods of regular polygonal cross-
section, and parallelepipeds. This simple expression is based on
the lumped-capacitance model as well as the analytical solutions for
slabs, infinitely long circular cylinders, spheres and cubes. The ex-
pression was derived from the lump-capacitance model applied to a
parallelepiped, and, therefore, it contains a geometry index which is
a function of two aspect ratios which are defined to be equal to or
greater than unity.

It can be easily applied to all bodies; when applied to simple
bodies, the proposed body length agrees with those body lengths
required by the analytical solutions.

The percent difference between the normalized heat loss for the
infinitely long square and circular cross-sections, whose solutions
were based on the proposed characteristic body length, was found
10 be less than 4.4 %. This maximum difference occurs at a dimen-
sionless time of approximately 0.2 for Biot numbers greater than 2.
Otherwise, the percent difference was found to be less than 1 % for
very small and very long dimensionless times.

Solutions for infinitely long prismatic rods of regular polygonal
shape 4 < N < oo, where N denotes the number of sides, are
presently unavailable. Since the square and circular cross-sections
bound the infinite set of regular polygonal geometries, i.e., 4<N<
00, the normalized heat loss for these geometries is expected to lie
between the results for the square and the circle reported in this
study. The arithmetic mean of the square and circle results can
provide a good approximation for these two-dimensional geometries.
Indeed, the square results can provide a good approximation for the
prismatic rod whose cross-section is an equilateral triangle (N = 3)
with a maximum percent difference estimated to be less than three
percent provided the proposed characteristic body length is used.
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Percent Difference Between (Q/Qi)ssuare and (Q/Qi)cirele

Dimensionless 0 Percent
[
Time
Fo Square Circular Difference
Rod Cylinder
1.0x 107} 1.9994 1107 | 1.999sz107* | 3.72107?
1.5 2.9989 2.9990 43
2.0 3.9983 3.9984 4.9
3.0 5.9966 5.9970 5.8
5.0 9.9921 9.9928 7.0
7.0 1.3986 x 1072 | 1.3987x107% | 7.7
1.0 x 10° 1.9974 1.9975 8.1
1.5 2.9946 2.9948 8.5
2.0 3.9907 3.9911 8.6
3.0 5.9801 5.9806 8.8
5.0 9.9469 9.9478 9.0
7.0 1.3898 21072 | 1.3899x 1072 | 9.0
1.0x 10} 1.9798 1.9797 9.0
1.5 2.9548 2.9547 9.0
2.0 3.9198 3.9201 9.0
3.0 s5.8217 5.8222 8.9
5.0 9.5132 9.5141 (X ]
7.0 1.3060 x 1071 | 1.3061x 1070 | 8.7
1.0 x 102 1.8121 1.8123 8.4
1.5 2.5911 2.5913 8.0
2.0 3.2959 3.2962 7.7
3.0 4.5108 4.5111 7.0
5.0 6.3200 6.3203 5.7
7.0 7.5329 7.8332 4.7
1.0x10° 8.6457 8.6460 3.5
1.5 9.5016 9.5018 2.2
2.0 9.8166 9.8167 1.5
3.0 9.9752 9.9753 1.0
5.0 9.9995 9.9996 8.9x107*
7.0 1.0000 x 10° 1.0000 x 10° 0.0
Table 1 Blot = 0.601
Dimensionless -g- Percent
1
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107! 1.9943x 107 | 1.9947x107% | 2.1x107°
1.5 2.9890 2.9899 2.9
2.0 3.9826 3.9840 3.6
3.0 $.9664 5.9692 4.7
5.0 9.9216 9.9275 6.0
7.0 1386111072 | 1.3870x1072 | 6.6
1.0x 10° 1.9740 1.9754 7.1
1.5 2.9462 2.9484 7.4
2.0 3.9087 3.9117 1.6
3.0 5.8052 5.8096 1.7
5.0 9.4866 9.4939 1.7
7.0 1.3024x10° | 1.3034x107% | 7.6
1.0x 10! 1.8073 1.8086 7.4
1.5 2.5845 2.5863 74
2.0 3.2879 3.2901 5.7
3.0 4.5010 4.5037 6.0
5.0 6.3090 6.3120 4.8
7.0 7.5225 7.5254 3.8
1.0x10% 8.6376 8.6399 2.6
1.5 9.4971 9.4984 1.3
2.0 9.8144 9.8150 6.2110°°
3.0 9.9747 9.9748 1.3
5.0 9.9995 9.9995 s0x10”?
7.0 1.0000 x 10° 1.0000 x 10° 0.0
Table 3 Blot= 0.61

e g




Percert Difference Between (Q/Qi)square and (Q/Qi)circte

Dimensionless a—‘ Percent
Time
Square Circular Difference
Fo Rod Cylinder
1.0x 1072 1.9841 x10°% | 19845311077 | 2.3x1072
1.5 2.9704 2.9714 3.5
2.0 3.9539 3.9557 4.6
3.0 5.9139 $.9179 6.7
5.0 9.8101 9.8207 1.1x1071
7.0 1.3679x107% | 1369911072 | 1.5
1.0x 107! 1.9439 1.9478 2.0
1.5 2.8936 2.9016 2.8
2.0 3.8319 3.8451 3.4
3.0 5.6781 5.7035 4.5
5.0 9.2603 9.3119 s.§
7.0 1.270s x 107! | 1.2782x107! | 6.0
1.0 x 10° 1.7629 1.7740 6.3
1.5 2.5225 2.5385 6.3
2.0 3.2121 3.2319 6.1
3.0 4.4063 4.4315 s.7
5.0 6.2014 6.2304 4.6
7.0 7.4205 7.4482 3.7
1.0 x 10! 8.5565 8.5787 2.6
1.5 9.4514 9.4641 1.3
2.0 9.7915 9.7980 6.6x10°2
3.0 9.9699 9.9713 1.4
5.0 9.9994 9.9994 49x107*
7.0 1.0000 x 10° 1.0000 x 10° 0.0
Tadble 3 Biot=0.1
Dimensionless -g— Percent
[
Time
Fo Square Circular Difference
Rod Cylinder
1.0x1073 1.9525x 1073 | 1.9531x107? 3.1x1072
1.5 2.9127 2.9138 4.0
2.0 3.8656 3.8675 5.1
1.0 5.7532 5.7574 7.2
5.0 9.4695 9.4804 1.1x2107!
7.0 1.3122x107% | 1.3143x1072 1.6
1.0 x 1072 1.8503 1.8544 2.2
1.5 2.7257 2.7343 3.1
2.0 3.5787 3.5932 4.0
3.0 5.2295 $.2598 5.8
5.0 8.3558 $.4307 8.9
7.0 1.1297x 207! | 1.1430210°! | 1.18x10°
1.0x10"! 1.5434 1.5673 1.55
1.5 2.1747 2.2194 2.06
2.0 2.7480 2.8148 2.44
3.0 3.7574 3.8664 2.90
5.0 5.3610 5.5262 3.08
7.0 6.5501 6.7364 2.84
1.0 x 10° 7.7873 7.9665 2.30
1.5 8.9445 9.0757 1.47
2.0 9.4965 9.5799 g.7x107!
3.0 9.8854 9.9132 2.8
5.0 9.9941 9.9963 2.2x1072
7.0 9.9597 9.9998 1.5x 10"}
1.0 x 10° 1.0000 x 10° 1.0000 x 10° 0.0
Table & Blot= 1.0
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Dimensionless o Percent
1
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107? 3.8138x 1073 | 3.8160x10°° | s.8x107?
1.5 5.6596 $.6640 7.8
2.0 7.4781 7.4854 9.9
3.0 1.1048x3072 | 1.1063x107% | 1.4x 107}
5.0 1.7975 1.8014 2.2
7.0 2.4677 2.4749 2.9
1.021072 3.4394 3.4531 4.0
1.5 4.9873 5.0154 5.6
2.0 6.4629 6.5093 7.1
3.0 9.2432 9.3356 9.9
5.0 1.4291x107! | 1.4503x1207% | 1.49 x10°
7.0 1.8831 1.9190 1.90
1.0x 107} 2.4940 2.5543 2.42
1.5 3.3745 3.4782 3.07
2.0 4.1281 42131 3.51
3.0 5.3623 5.57118 3.91
5.0 7.0882 7.3462 3.64
7.0 8.1691 8.4091 2.94
1.0x10° 9.0870 9.2616 1.92
1.5 9.7137 9.7946 8.3210°}
2.0 9.9102 9.9429 3.3
3.0 9.9912 9.9956 4.5x1072
5.0 9.9999 1.0000 x 10° 8.9x107¢
7.0 1.0000 x 10° 1.0000 0.0
Table 5 Bilot= 2.0
Dimensionless -Q& Percent
Time !
Fo Square Circular Difference
Rod Cylinder
1.0x107* 7.7640 2107 | 7.7667x107% | 3.5x10"2
1.5 1.1568x1073 | 11571211072 | 3.3
2.0 1.5338 1.5343 3.4
3.0 2.2791 2.2800 3.8
5.0 3.7425 3.7445 5.2
7.0 5.1769 5.1804 6.7
1.0x 1072 7.2849 7.2915 9.0
1.5 1.0704x10°2 | 1.0m821072 | 1.3x 107!
2.0 1.4028 1.4052 1.7
3.0 2.0447 2.0496 2.4
5.0 3.2584 3.2705 3.7
1.0 4.4011 4427 4.9
1.0x1072 6.0137 6.0533 6.5
1.5 8.4963 8.5734 9.0
2.0 1.0783x 107! | 1.0905x10~! | 1.13x10°
3.0 1.4923 1.5150 1.52
5.0 2.2009 2.2481 2.15
7.0 2.8019 2.8758 2.64
1.0x 107! 3.5681 3.6828 3.22
1.5 4.6042 47822 3.87
2.0 5.4375 5.6672 42
3.0 6.7057 6.9962 4.33
5.0 8.2656 8.5504 3.48
7.0 9.0853 9.3002 237,
1.0 x 10° 9.6496 9.7653 1.20
1.5 9.9292 9.9620 3.3x107}
2.0 9.9857 9.9939 8.211072
3.0 9.9994 9.9999 47x107?
5.0 1.0000 x 10° 1.0000 x 10° 0.0
Teble 6 Blot= 4.0




Percent Difference Between (Q/Q1)square and (Q/O:V .o e.

Dimensionless —g- Percent
]
Time
Fo Square Circular Difference
Rod Cylinder
1.0x1074 1.1476 x 1073 | 1.1480x 1073 | 3.6 x 1072
1.5 1.7044 1.7050 3.7
2.0 2.2538 2.2546 3.9
3.0 3.3341 3.3357 48
5.0 5.4370 5.4407 6.9
7.0 7.4794 7.4862 9.1
1.0x 3073 1.045321072 | 1.0466310°2 | 1.2x 107}
1.5 1.5221 1.5248 1.8
2.0 1.9799 1.9844 2.3
3.0 2.8513 2.8605 3.2
5.0 4.4628 4.4846 4.9
7.0 5.9459 5.9839 6.3
1.0x 1072 7.9946 8.0617 3.3
1.5 1.1067x 107 | 1.1192x10°! | 1.13x10°
2.0 1.3828 1.4019 1.38
1.0 1.8692 1.9029 1.80
5.0 2.6710 2.7366 2.46
7.0 3.3281 3.4262 2.95
1.0x120"! 4.1420 4.2872 3.50
1.5 5.2085 5.4218 4.09
2.0 6.0414 6.3049 4.36
3.0 7.2666 7.5776 4.28
5.0 8.6830 8.9543 3.13
1.0 9.3644 9.5484 1.96
1.0 x 10° 9.7869 9.8718 8.6x10°!
1.5 9.9655 9.9843 1.9
2.0 9.9944 9.9981 3.6x1072
1.0 9.9999 9.9999 9.4x107*
5.0 1.0000 x 10° 1.0000 x 10° 0.0
Table 7 Blot= .8
Dimensionless -37 Percent
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107¢ 1.5080x 1073 | 1.5086x10"3 | 4.0x 102
1.5 2.2327 2.2337 4.2
2.0 2.9447 2.9460 4.7
3.0 4.337§ 4.3400 5.9
5.0 7.0265 7.0326 8.7
7.0 9.6158 9.6268 1.1z107t
1.0x 1073 1.3354x1072 | 1.3375z21072 | 1.8
1.5 1.9281 1.932¢ 2.2
2.0 2.4911 2.4981 2.8
3.0 3.5491 3.5629 3.9
5.0 5.4684 5.5002 5.8
7.0 7.2018 7.2557 7.4
1.0x 1072 9.5552 9.6478 9.6
1.5 1.3015x 107! | 1.3181x30"! | 1.28x10°
2.0 1.6067 1.6314 1.54
3.0 2.1342 2.1762 1.97
5.0 2.9827 3.0607 2.61
7.0 3.6635 3.7766 3.09
1.0x107! 4.4929 4.6552 3.61
1.5 5.5608 5.7913 4.14
2.0 6.3816 6.6599 4.36
3.0 7.5666 7.8818 .17
5.0 8.3879 9.1444 2.89
7.0 9.4910 9.6543 1.72
1.0 x 10° 9.8424 9.9112 6.9x10"!
1.5 9.9777 9.9908 1.3
2.0 9.9968 9.9990 2.2x1072
3.0 9.9999 1.0000 x 10° 3.0x107¢
5.0 1.0000 x 10° 1.0000 0.0
Table .8 Blot=8.0
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Dimensionless —QQ— Percent
1
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107* 1.8581 x 10°3 1.8589 x 1073 41121072
1.5 2.7427 2.7439 4.5
2.0 3.6080 3.6099 5.1
3.0 5.2927 5.2962 6.7
5.0 8.5198 8.5284 1.0x10°}
7.0 1.1602 2 1072 1.1617 x 1072 1.3
1.0x10°3 1.6016 1.6045 1.8
1.5 2.2946 2.3004 2.5
2.0 2.9463 2.9557 3.2
3.0 4.1570 4.1755 4.4
5.0 6.3178 6.3590 6.5
7.0 8.2334 8.3068 8.2
1.0z 1072 1.0810 x 107! 1.0925 x 1071 1.06 x 10°
1.5 1.4533 1.4732 1.37
2.0 1.71M 1.8062 1.64
3.0 2.3293 2.3774 2.06
5.0 3.2028 3.2890 2.69
7.0 3.8940 4.0167 3.15
1.0x10°! 4.7275 4.9001 3.65
1.8 $.7896 6.0295 4.06
2.0 6.5981 6.8832 4.32
3.0 7.7514 8.0661 4.06
5.0 9.0076 9.2523 .72
7.0 9.5615 9.7108 1.56
1.0x10° 9.8712 9.9304 6.0x10"!
1.5 9.9833 9.9938 1.0
2.0 9.9978 9.9994 1.5x%10°2
3.0 1.000000 x 10° | 1.000000 x 10° | 0.0
Table 9 Blot=16.0
Dimensionless -% Percent
[}
Time
Fo Square Circular Difference
Rod Cylinder

1.86x10°* 3.46652107° | 346852107 | s.6x10°?
1.8 5.0447 5.0481 6.7
2.0 6.5600 6.5653 8.1
3.0 9.4448 9.4552 1.1x107}
.0 1.4786 x 10~2 1.4811 x 1072 1.6
7.0 1.9718 1.9756 2.1
1.0x107? 2.6547 2.6621 2.8
1.8 3.6860 3.6999 3.7
2.0 4.6204 4.6416 4.6
3.0 6.2872 6.3253 6.0
5.0 9.1026 9.1789 8.3
7.0 1148531070 | 1.1602x1070 | 1.02x 10°
1.0x 1072 1.4550 1.4732 1.25
1.5 1.8807 1.9099 1.55
2.0 2.2387 2.2790 1.80
3.0 2.8307 2.8926 2.14
5.0 3.7349 3.7 2.76
7.0 4.4316 4.5721 3.17
1.0x107! 5.2560 5.4459 3.61
1.5 6.2863 6.5394 4.03
2.0 7.0563 7.3475 4.12
3.0 8.1279 8.4314 3.73
5.0 9.2360 9.4495 2.31
7.0 9.6880 9.3068 1.23
1.0 z 10° 9.9185 9.9598 a1x107}
1.5 9.9913 9.9970 s.7z1072
2.0 9.9991 9.9998 6.8x1073
3.0 1.000000 x 10° | 1.000000 x 10° | 0.0

Table

10 Blet = 20.0

!
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Percent Difference Between (Q/Q:)quare and (Q/Qi)sircte

Dimensionless -g—‘ Percent
Time
Fo Square Circular Difference
Rod Cylinder
1.0x 1074 1.3844 31072 | 1386431072 | 1.4x10°!
1.5 1.8302 1.8334 1.7
2.0 2.2166 2.2209 2.0
3.0 2.8782 2.8851 2.4
5.0 3.9467 3.9587 3.0
7.0 4.8235 4.8407 3.5
1.0x1073 5.9326 5.9576 4.2
1.5 7.4583 7.4963 5.1
2.0 8.7403 8.7914 5.8
3.0 1.0878 x 107! | 1.0954x107! | 7.0
5.0 1.4224 1.4352 8.9
7.0 1.6902 1.7080 1.05 x 10°
1.0x10°2 2.0221 2.0472 1.24
1.5 2.4680 2.5050 1.50
2.0 2.8341 2.8827 1.71
3.0 3.4279 3.4987 2.06
$.0 4.3173 4.4288 2.58
7.0 4.9927 5.1409 2.97
1.0x107} 5.7834 5.9789 3.38
1.5 6.7597 7.0027 3.74
2.0 7.4792 7.7625 3.79
3.0 8.4576 8.71377 3.31
.0 9.4184 9.5973 1.90
7.0 9.7806 9.8718 9.2x107!
1.0 x 10° 9.9492 9.9769 2.8
1.8 9.9956 9.9987 3.1x1072
2.0 9.9996 9.9999 3.3x1073
3.0 1.0000 z 10° 1.0000 x 10° 0.0

Dimensionless _QQ_ Percent
i
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107* 6.0976x 1073 | 6.1027x10°? | 8.2x1072
1.5 8.6660 8.6750 1.0x 107}
2.0 1.1060x 1072 | 1.1074x10°% | 1.3
3.0 1.5466 1.5491 1.6
5.0 2.3238 2.3293 2.3
7.0 3.0087 3.0175 2.9
1.0x 1073 3.9210 3.9354 3.7
1.5 5.2385 5.2633 6.7
2.0 6.3870 6.4227 5.6
3.0 8.360S 8.4192 7.0
5.0 1.1548x 107 | 1.1654x 107! | 9.1
7.0 1.4151 1.4306 1.09 z 10°
1.0x 1072 1.7420 1.7646 1.30
1.5 2.1858 2.2202 1.58
2.0 2.5529 2.5988 1.80
3.0 3.1517 3.2199 2.14
5.0 4.0537 4.1631 2.70
7.0 4.7418 4.8883 3.09
1.0x107} 5.5503 5.7450 3.51
1.5 6.5529 6.8078 3.89
2.0 7.2960 7.5846 3.96
3.0 8.3168 8.6088 3.51
5.0 9.3426 9.53M 2.08
7.0 9.7431 9.8459 1.06
1.0 x 10° 9.9372 9.9704 3.3zx107t
1.5 9.9940 9.9981 4.121072
2.0 9.9994 9.9999 43121073
3.0 1.0000 x 10° 1.0000 x 10° 0.0
Table .11 Biot = 40.0
Dimensionless —g— Percent
1]
Time
Fo Square Circular Difference
Rod Cylinder
1.0x107* 9.7711x10°% | 9.7825x107% | 1.2x 107!
1.5 1.3423x1072 | 1.3443x1072 | 1.4
2.0 1.6700 1.6728 1.7
3.0 2.2494 2.2542 2.1
5.0 3.2198 3.2291 2.9
7.0 4.0379 4.0518 3.4
1.0x 1073 5.091S $.1127 4.1
1.5 6.5635 6.5971 5.1
2.0 7.8140 7.8602 5.9
3.0 9.9160 9.9875 |12
5.0 1.3234 x 1071 | 1.3356x107F | 9.1
7.0 1.5902 1.6073 1.08 x 10°
1.0x10™2 1.9218 1.9463 1.27
1.5 2.3685 2.4049 1.54
2.0 2.7358 2.7838 1.78
3.0 3.3324 3.4026 .11
5.0 4.1 4.3383 2.63
7.0 4.9074 5.0553 3.01
1.0x10°! 5.7045 5.9001 3.43
1.5 6.6902 6.9441 3.80
2.0 7.4179 7.7033 3.85
3.0 8.4108 8.6952 3.38
5.0 9.3936 9.5778 1.96
7.0 9.7685 9.8633 9.6x10°!
1.0 x 10° 9.9454 9.9748 3.0
1.5 9.9951 9.9985 3.4x 1072
2.0 9.9996 9.9999 3.5x107?
(30 1.0000 x 10° 1.0000 x 10° 0.0
Table ' 12 Blot = 80.0

Table 13 Biot = 160.0




