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UMMARY

This study is concerned with the development of an analytic-numerical

ethod for modelling multi-layered rectangular printed circuit boards with
‘bitrarily located, surface mounted finite heat sources. Heat conduction is
ssumed to be steady-state and fully three-dimensional in the solid, with
ich layer having a homogeneous thermal conductivity. The cooling of the
Jlid is achieved through a forced air flow boundary condition which in-
udes the influence of an upstream heat flux from the solid into the fluid.
1 analytical Fourier series solution is used, and the boundary conditions
¢ approximately satisfied using a continuous least-squares criterion. A
ear set of symmetric equations is obtained for determining the unknown
ies coefficients. Unlike fully numerical, domain discretization schemes,
s procedure does not require discretization, making it particularly attrac-
ve for three dimensional conduction problems. The model can simulate
:sh-mounted heat sources, arbitrarily located on opposite surfaces of a rect-
.gular domain with convective cooling. Results are presented illustrating
e effects of multiple laminates and heat source spacing, with applications
cooling microelectronic circuit boards.

INTRODUCTION

The thermal analysis of heat source modules arbitrarily located on the
rface of rectangular multi-layered boards, is currently of practical interest
the microelectronics industry. The typical system shown in Figure 1, is
mprised of a solid, multi-layered conductive board, usually of alternating
reglass and copper layers, to which the electronic chip components are at-
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tached. These chips can be treated as heat sources which dissipate electrical
energy as heat, through the chip casing to the fluid, and via pins and surface
mountings to the printed circuit board.

Of particular interest to electrical designers is the die temperature Tp,
located within the chip module. This is unknown, but the heat dissipation
rate ¢ can be specified for the problem. The thermal resistances, between
the die and fluid Rpr, and between the die and board Rpp (see Figure 1
inset), will vary depending on package construction [1]. Experimental and
numerical validations in [2] have shown that by assuming Rpr and Rpg to
be negligible, hence Tp = T = Tw, reasonable temperature estimates can
be obtained for heat source modules located in a strip-wise fashion along
the board, in the direction of flow (). Inherent also, is the assumption that
the small module thickness does not significantly affect the flow, so that the
fluid essentially sees a smooth heated wall surface.

Tw Package

Heat Source Module / f Rpp
Module Resistances
S; with fluid flow Uy, T
Layer 1
Layer M
L,

L,
/}}}, \J x% with fluid flow Ug,, Teo

Figure 1: 3D Thermal Board with Heat Source Modules

If the heat source modules are small relative to the overall dimensions of
the solid substrate, two-dimensional analyses will not adequately predict the
temperatures as noted in [3]. Also, because the board will be non-isothermal,
a conjugate fluid-solid analysis must be undertaken which accounts for up-
stream heating of the air flow by the solid conducting medium. Theoretically
this amounts to a solution of the energy-momentum equation on the fluid-
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side, for it’s velocity u and temperature field T,

d b oTw
%= Jo uldz = ~a Era (1)
which is obtained from boundary layer assumptions, and the solid-side Lapla-
:ian equation in each layer,
T 0T, 0T,
5z T 0y? t o < 0, (2)
vith boundary conditions. Equations (1) and (2) can be simultaneously
solved numerically using finite element or finite difference methods. This
would involve discretization of both the fluid and solid domains requiring
oroblem-specific mesh generation. For a smooth, non-isothermal wall, the
wall-fluid temperature may be approximated [4,5] using boundary layer the-
ory approximations [6] for forced convection flow, of the form

T =T = g0 % [ (1 (q;(g))f ) ¥

Too and Uy, are free stream quantities, and gf, c1 and ¢ vary depending on
vhether the flow is laminar or turbulent, wall shear conditions, and assumed
elocity profiles [4,5]. Numerous researchers have studied similar problems
vith different assumptions and methods [7-11]. A film coefficient can usually
e extracted from (3) for use in the classical convection boundary condition
eeded for the exposed surfaces;

6% ha, Tw)(Tw - To) + a(2,3) = 0. @

“he film coefficient A and heat flux g in (4) may both vary positionally, but
ince b will also be temperature dependent, it must be iteratively computed
sing (3) and a solution to (2). Models using (4) automatically require
eration to establish A, and are also automatically restricted to discretizing
e entire exposed surface. Although the method to be introduced here
\n easily incorporate the form (4) as shown in [12,13], this study directly
ses the interface condition (3) thereby avoiding unnecessary intermediate
erations and discretization.

. PRELIMINARY ANALYSIS

The origin of the local coordinate systems, in z,y,z of each layer,
located at the bottom left corner as illustrated in Figure 1 for layer 1.
etting 0, = Tin(z, 9, 2) — Too, with homogeneous thermal conductivity Ky,
separable solution can be obtained in a straightforward manner,

0 oo
om(z’ Y, z) = CmZ+ Z Z COS(/\;z) cos(ﬂjy)[am_;,,' COSh('Y",]'z) +
1=0 j=0

+bm,i,; sinh(v; ;2)] , (5)

P,

i
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which satisfies the insulated end conditions for each layer at ¢ = 0, L, and
y = 0, Ly, with constants

LA YO LW SO
)‘t—‘ Ll ) ﬁ]— L2 ’ 7!,]"' ’\i +ﬂg . (6)

The board ends are treated as insulated since the aspect ratio of the exposed
z —y surface to the total z-thickness is generally > 100 : 1. Each of the layers
are in perfect contact with each other, thus satisfying the following boundary
conditions along the whole of each interface,

em(z’ Y, tm) = 9m+1(z, Yy 0) ’ (7)

26, 96, km
fm (2, Yy tm) = a;l(z,y,O);ﬂm = (8)

Using orthogonality, the constants in (5) may be related using (7) and (8),
and it can be shown that in proceeding from layer 1 to layer M,

Cmtlij = Gmyij cosh(7i jtm) + bm,i Sinh(‘y,"jtm) 14,7=0,1,2,..., (9)

bmt1,i; = Km{Gm,i,j Sinh(Yi jtm) + bm i,j cosh(7i5tm)) 54,7 =0,1,2,...,

(10)

Am+1,00 = 0m,0,0 + Cmlm ; Cm4l = KmCm (11)

In (9) and (10), the relations hold whenever i and j are both not zero.

Tables and relations are provided in [14] for three types of unmixed boundary

conditions imposed on layer 1 at z = 0 (surface S1), which initialize the

first layer constants for use in (9)-(11). The special case where 7 also has

mixed boundary conditions with multiple heat flux and convective sections,
is considered later in section 4.

Using (5)-(11), we can write the general series form on surface 53 (layer
M,z=1tm )’

O,y tag) = 305 (i e (i) + 0is(ene)) coshiz) cos(Bim) ,  (12)

1=0 5=0

%qzﬁ(z, Yotm) = i i(di,jfﬁf,j(tM) + i ;(tm)) cos(Aiz) cos(By), (13)

1=0 j=0
with
$ij(2) = Fy;jcosh(7ijz) + Fajsinh(7i;2) ;4,5 =0,1,2,..., (14)
0;i(2) = Fs,;jcosh(¥i2) + Fe4jsinh(7i52) 54,5 =0,1,2,..., (15)

¢0'0(2) = Fyz+4 Fy; 0‘0,0(2) = Fpz+ Fs. (16)

The derivative functions ¢’ and o’ are obtained by differentiating the above
with respect to z. The F; along with the d;; are outlined in [14]. For
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clarity, the d;; are expressible in terms of a;j, b; ; and c, depending on the
57 conditions.

From the fluid-side, the general wall condition to be satisfied is given
by (3). We shall consider Rpr = Rpp = 0; thus the form (3) is continuous
along the wall-fluid interface, i.e. on Sy, Tw(z) — Teo = Om(z,¥,tr). The
form (3) also allows for surfaces Sy and S, to have independent fluid free-
stream properties through the constant g;.

3. SOLUTIONS FOR MIXED CONDITIONS ON §; ONLY

Since Rpr = Rpp = 0, the positive heat flux entering the fluid from
surface Sy, for use in (3), may be written as

quw,2(§) = —ka—M-(g’;M +4s2 , (17)

where ¢s; may take on finite or zero values across the exposed surface. Sub-
stituting (12), (13) and (17) into (3), we obtain after a little manipulation,

>3 dlvii(z,) - flz,y) =0, (18)

i=0 j=0

where
dl;=dijFy;jcosh(Yijtny) 6,5 =0,1,2,... ; dig=dog  (19)
#i3(23) = cos(By0) (pes(tae) conlie) + kaapl(tn) [ 0n(6,2) cos(0i6)d6)
(20)
pii(tm) =1+ %"" tanh(7yi jtar) ; po,o(tar) = doo(tm) (21)
14
Fyij ’ /

/’:',J'(tM )= (‘j;v‘j"‘l + tanh(y; jtm )) s Pooltm) = #o,0(tm) (22)

1%,7

f@u)= [ o6z~ 33 cos(Bn) {ossttr)eostve)

1=0 j=0

ot [ 62 cosEe) (23)

We define the quadratic functional on 53,

L [N N 2
Isy = /0" /OL {zzd:,,-«»;,j(z,y)—f(z,y)] dody.  (29)

1=0 j=0

By minimizing this variational form, a system of linear equations results
which may be used for the solution of a finite aumber of unknown d/;.
Thus, taking 0Is;/0d,, , = 0, we obtain the (N + 1)? linear equations

Rd'=G, (25)
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with

Js
Rp,n,i,j = Z-// "pp,n(z, y)d’:,y(z‘,y)dﬂ?dy v Py nviaj":oa 1,29"'N)(26)
s=1 s

il

J,
Z//‘ Ypn(z,¥) f(2,y)dzdy ;p,n =0,1,2,...N . (27)

s=1

Gon

where [ [, denotes an area integration over every section s on S, where ¢
or f may change value with z and y. Since (3) is positionally dependent on
coordinate z, and not y, the total number of sections J, necessary is only
dependent on the number of heat source locations [14].

Solving (25) will yield an approximate set of (N + 1)? coefficients d/ ;,
which can be post-processed to yield the necessary solution coefficients in
(5) for the thermal fields. However because of the earlier assumptions that
Tw = Ty = Tp, the integrations in (26) can be singly represented by a total
area integration fg“ foL’ over Sq, regardless of heat source location, since
1 is unaffected. The R matrix can be computed once for a given problem.
Further details on particular integrations can be found in [14].

4, MIXED BOUNDARY CONDITIONS ON §5; AND 5,

Here we assume that heat flux specified sections with forced convection
cooling, are also arbitrarily located on both surfaces S) and §3. This is
representative of electronic circuit boards with chip modules mounted on
sides of the board. This results in two unknown coefficients which have to
be determined in (5), as opposed to one in (12). A procedure detailed in
[12,13] can be used to relate coefficients in (5) in a similar manner that was
shown for the solution of the coeficients in section 3. The location and
intensity of heat sources, including fluid properties, may differ on §; from
S1. We will briefly outline the methodology in the following.

The general condition on surface Sy, with forced convection and arbi-
trarily placed heat sources, may be written as

3> a1,ii%1,0,5(3, ¥) + brijeii(z,¥) — filz,y) = 0, (28)

i=0 y=0

where %; and %, can be established using a similar methodology as in section
3 to derive (18), and outlined in detail in {14]. We can then define on §; the
form

N 2

Ly L | N
Is; = -/0 /0 [E 3 a1 %1i5(2, ) + bui e, i(z, v) — fi(z, )| dedy,
- (29)

1=0 j=0
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and on $,

2

Ly L, N N
Is; = /0 /0 [ZZGM.i,j’KbS,i.j(z,y)+bM,i.j¢’4,i,j(z’y)"fM(z:?l)J dzdy,

1=0 3=0
(30)
or
Ly L, N N 2
Is; = /0 /0 [ZZM..‘,;’%..‘.;’(%!/)+b1,;,j1/1e,i,j(w,3/)—fz(z‘,y)] dzdy,
i==0 j=0
(31)

where 95, ¥g can be related recursively to 93 and 94 using a simple algorithm
based on the forms (9)-(11). We now take two minimizations of forms (29)
and (31), i.e. let I = I, + Is,, thus we take

oI oI
e ——— y AT — = 0 9 32
da1,pn Ob1pn 32)
to obtain the 2(N + 1)? equations
R1 Rg a1 Gl
= . (33)
Ry R, by G2

for the solution of @y ; and by, ;. Particular entries of (33) are similar in
form to those in (26), and are detailed in [14].

5. NUMERICAL RESULTS AND DISCUSSION

Numerical cases were studied examining the effect of heat source loca-
tion on a laminated, 7-layer board. Figure 2 illustrates results for a single
heat source centrally located (see inset) on the top board surface S, with
forced convection cooling (3) on both sides, $; and S, of the board. Pa-
rameters are given in Table 1. The dimensionless heat source x-width/Ly,
Ws, was fixed at 0.2, and the y-width/L,, W,, was varied between a small
hot-spot size of 0.2 to a strip size of 1.0.

Similarly, Figures 3 and 4 show results for two heat sources of different
size; a larger heat source trailing the first, and the larger preceeding the sec-
ond, in the z-direction of coolant flow. All figures show the temperatures of
the top surface Sy, from z = 0 to Ly, along a constant y-line located centrally

on the source (denoted by - - - - in the insets). In all cases a two-dimensional
T — z strip solution would correspond to Wy, = 1; a two-dimensional z — y
spatial solution, denoted by — — in the graphs, corresponds to a line of

symmetry (insulated boundary) being drawn midway through the total z-
thickness of the board (and ¢ = ¢/2). This z ~ y spatial solution is also
sometimes determined by assuming an effective thermal conductivity of the
substrate, thereby treating the z-temperature drop as negligible.




1353

807 S, Plan View w,

—— |

— e 2D (spatial)

--F-w,

0 Y T T —
0.0 0.2 0.4 X* 0.6 0.8 1.0

Figure 2: Temperatures For a Single Heat Source

Differences can be noted between the possible two-dimensional approx-
imations to the three-dimensional thermal spreading problem, and these are
always largest at the heat source. In all instances, the spatial solution will
underestimate, and the strip solution will overestimate, the temperatures in
the system. Further results are presented in [14].

The continuous least-squares Fourier solution to the heat conduction
problem has been shown ([12,13]) to give stable estimates for the coefficients
as the truncation value N is increased. As is typical with Fourier series type
solutions, this value controls the level of error in convergence, as opposed to
the degree of discretization required with numerical methods such as finite
element, finite difference and even the boundary element method. For all
cases considered herein, it was found that at most, a 5% temperature dif-
ference was observed between taking a truncation value as little as N = 10,
compared with N > 50, to which the temperature solution could be con-
verged to higher decimal degree of accuracy, but with significantly increased
computation time.
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Board

(fibreglass) {copper)

t1,13,t5,t7 = 3.8 X 104 m t4 = 3.6 X 1075 m
ki,k3, ks, k7 = 0.4 W/mK ta,t6 = 1.8 X 10-5m
L1 = L2 =0.1m kg,k4,k6 = 386 W/mK

Fluid (Air-laminar flow) gy = 0.73Pr=1/3,1/2k71 m2K [s1/°W
Uww =3m/s ; T, = 20°C

kfi=ksa=26x10"2 W/mK ; Pr=0.71

c1=1; ¢2=3/2;v=15x10"%m?/s

Heat Source : centroids at z* = z/L; , y* = y/Ls

Figure 2 =y =05; W;=0.2; W, =02,04,0.7,1.0
g = 5000 W/m?
Figure 3 W1 =01; Wy =0.1,1.0; z* =0.15; y* = 0.85,0.5

Waep=04; Wy =0.4,1.0; z* =0.60; y* = 0.40,0.5
q1 = 1000 W/m? ; g, = 4000 W/m?

Figure 4 We=04; Wy =0.4,1.0; z*=0.40; y* = 0.60,0.5
Wea=01; W, =0.1,1.0; z* = 0.85; y* = 0.15,0.5
¢1 = 4000 W/m? ; g3 = 1000 W/m?

80 Table 1: Parameters for Numerical Studies

3D
vlvll Sy Plan View e e 2D (spatial)
Il

W,EE.___-_-
Q@

60

0
0.0 0.2 0.4 < 0.8 0.8 1.0

Figure 3: Effects of a Larger Downstream Heat Source
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Figure 4: Effects of a Larger Upstream Heat Source
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