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Abstract—The impetus for this work came as a result of finding that evaluation of the complete elliptic
integrals using theta-function expansions was computationally faster, for the same accuracy, than the well
known conventional method using Landen’s transformations, known as the arithmetic—geometric mean
(A.G.M.). By using relations between Jacobian elliptic functions and theta-functions, it is shown here that
the incomplete elliptic integrals may also be evaluated very efficiently using a Newton-Raphson scheme.
The expressions outlined were found to be substantially more efficient and accurate than several infinite
series or polynomial expansions provided by Abramowitz and Stegun in 1970. Analysis and algorithms
are presented along with accurate tabulated numerical results.

NOMENCLATURE

¢—constants Greek symbols
E—elliptic integral of the second kind

L a—modulus parameter
E’—complementary complete elliptic integral of .
the second kind B, y—angular parameters

F—incomplete elliptic integral of the first kind Ai:Egg;:ll:: g‘r‘:g;:tfunction
k, k’—modulus, complementary modulus ;
K—complete elliptic integral of the first kind » @, @—general functions

, T n—constant = 3.14159265. ..
K’—complementary complete elliptic integral of I1—elliptic integral of the third kind
the first kind

h o, ¢, Y, 0—angular parameters
m, n—integer constants ¢ ¥ gular p

. . . 8,, ®—theta-functions
g, g,—nome in theta-function series, complementary
nome =q(n/2 —a)
u, w, x, y, z—arguments

INTRODUCTION

Integrals of the form

fR(x, Jy)dx,

where R denotes a rational function of x and y and some constant modulus &, and y is generally
a quartic function of x, are of a non-standard type. They are referred to as elliptic integrals in the
literature, and were first studied in Ref. [1]. Inverses of certain types of these integrals are known
as elliptic functions, and they were first studied by Gauss, Abel, Jacobi and Weierstrass at the turn
of the nineteenth century. As outlined in Ref. [2], every elliptic integral can be evaluated by aid
of functions termed theta-functions, and it is this approach which is adopted here. The theta-
functions themselves satisfy certain types of differential equations which are outlined by Refs [2, 3].

Numerous representations of theta-functions have been adopted over the years and perhaps the
best summary of these is outlined by Ref. [2, Chap. XXI]. Evaluation of complete elliptic integrals
of the first and second kind using theta-function theory is very efficient (see Ref. [4]), involves no
iteration, and is slightly superior in computational speed compared to the process of the
arithmetic—geometric mean (A.G.M.) described by Ref. {5]. This theory has actually been known
for some time, as was outlined in Ref. [6]. More recently, Fenton and Gardiner-Garden (7] returned
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to this theory and re-established that theta-function expansions give very convergent methods for
evaluating complete elliptic integrals and their related functions. Numerous other non-standard
integrals may often be expressed in terms of elliptic integrals, as noted in Refs [3,8]. The
applications are many and, in particular, thermophysics problems are a rich source of these, since
they usually involve Lipshitz-Hankel integrals [9], as studied by Ref. [10], which may be written
in terms of elliptic functions.

We note that the evaluation of the complete elliptic integral of the first kind, K(k), is paramount,
since all other complete elliptic integrals may be expressed in terms of it. Correspondingly, in this
work, first emphasis is placed on the evaluation of the first incomplete elliptic integral F(0, k). In
the same manner as for the complete elliptic integrals, the remaining incomplete elliptic integrals
may then be found.

In this work we outline a procedure for the efficient evaluation of the incomplete elliptic integrals
using theta-functions. Numerical results are presented in tabulated form for several cases, including
some incomplete elliptic integrals of the third kind, for which tables exist only to limited accuracy
in the literature (i.e. Ref. [5]). Complex values of parameters are not treated here, but for these,
and additional special cases not covered in Appendix A, refer to Refs [2, 3, 5] for excellent reviews.

EVALUATION OF COMPLETE ELLIPTIC INTEGRALS

It is important to outline first the efficient procedure one may use to evaluate the complete
elliptic integrals. This was studied in Ref. [7], and also used by one of the authors (M.M.Y.) for
many years in applied engineering courses.

The four types of theta-functions we will be using are defined by the nome g and Fourier series
(Ref. [5, Section 16.7]) as follows:

0,(z, g) = 2q"*sin z — 2¢°* sin 3z + 2¢*sin 5z — - - - (1
0,(z,q) = 29" cos z + 2¢°* cos 3z + 2¢®* cos 5z + - - - Q)
05(z,q) =1+ 2q cos 2z + 2q*cos 4z + 2q°cos 6z + - - - 3)
6,(z,9) =1—2q cos 2z + 2g*cos 4z — 2g°cos 6z + - - -. @)

These are used for the evaluation of elliptic integrals, and may be found in different notation in
various references. Here we have adopted the notation of Refs [2, 5] [Note: Jahnke and Emde [6],
as well as Byrd and Friedman {3], use 6,(z, q), the “zero-theta”, in place of 6,(z, q).]

The complete elliptic integrals of the first and second kind, denoted in the literature by K and
E, respectively, are given in Legendre notation as,

_ /2 dll/
K= f TRy ©

E=ij—HﬁMWWMw ©)
0

The constant k is referred to as the modulus, and k' = (1 — k?)"? is the complementary modulus.
In terms of theta-functions, z =0 or n/2, and K and E are defined by:

K =210.0.98 = 0.(x/2.0)F, O
T 6i0,9)
E‘KP meJ’ ®

where
g = exp(—nK’/K). 9)

The modulus & is defined as the quotient of theta-functions,

6,0, )\
k= .
(ea(o,q)> (10)
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To obtain efficient convergent series for numerical work, it is obvious that we need to determine
the nome q given k. Hence, using expansions developed by Weierstrass in 1895, from Refs [6, 2],
we can deduce the following procedure for the complete elliptic integrals to 16 decimal place
accuracy:

(i) For the range k < 1/\/5.
21+ k'

g=¢+2+15°+150e" + - - 12)

K=%[1 +2g +2¢* +2¢°F (13)

E

L [1 +9q2+25q°+49q‘2]1 (14)

T 4K 1+q°+4¢°
(ii) For the range 1/\/5 <k <l
11—
(o M1=Vk (15)
21+ /k

gi=€+2%+15¢° + 150eP + - - - (16)
K =%(1 +2q, +2q¢ + 2¢7) a7
2 1 2 6 4 12
E = 7‘, +9‘11+225q1t 99, (18)
4K 1+ qi+ 4,
K/
K=——1Ing (19)
/A
E=—| 4+ K&K - E) 20
—K/ 2 . ( )
An important relation used in equation (20) is Legendre’s relation,
EK'+E'K—KK' = % Q1)

We note that for the range (i), the nome ¢ as defined by equation (9) is identical to the form
(12). For the range (ii), the form (9) must be used to evaluate g after determining X’, XK. This will
be required to evaluate the incomplete elliptic integrals of the second and third kind to be shown
later.

EVALUATION OF THE FIRST INCOMPLETE ELLIPTIC INTEGRAL F(¥, k)

In Legendre’s notation we have

=F(6,k)= ’ dv (22)
HETREIT ) U=k Tsin )™
or, in Jacobi’s notation also in the literature, we may write
u =J. (1 —¢3)~12(1 — k2?12 4y, 23)
0

tThis is found after some manipulation of the form (8).
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where
sn(u, k) = o = sin 4, (24)

and sn is referred to as the Jacobian elliptic sine function. In terms of theta-functions, we have the
relation:

6, 0,(w, q)
sn(u, k) =— =a,
( ) 60,0,(w, q)
where w = u/63%(0, ). The quotient 6,/8, is shown in Ref. [3] and by equation (10) to be equal to
the square root of the modulus &, and thus we obtain

01 (W, Q)
k=——"""2. 26
V=) 20
Expansions for 8,(w, ¢) and 6,(w, q) are given by equations (1) and (4). Now, we proceed to reduce

the trigonometric quantities to a simple series in sin” w, and with this we may reduce equation (26)
to

(25)

0=co+ Y c,sin"w, X))

n=1

or in nested notation, setting x = sin w,
0=x(c; + x(c2+ x(c3+ x(cs+ x(e5+ x(cs + x(c7+ x(c5 + - - )N + ¢o. (28)

This is the functional equation for x, to which we can apply a Newton—Raphson scheme to evaluate
x given the constants ¢,. The constants ¢, are functions of « and &, which need to be specified
beforehand. The first nine constants, truncated to give double precision accuracy, can be shown
to be:

—aJk
o= 2‘/_(1 —2g +2g* — 24° +2¢"%) 29)
cl - q1/4 _ 3q9/4 + 5q25/4 . 7q49/4 (30)
= _“2\/; (49 — 16g° + 36¢° — 64¢'%) 31)
o= 4q9/4 — 20q25/4 + 56q49/4 (32)
o= _—“2—‘/——’5 (16* — 96¢° + 320¢'%) (33)
cs = 16¢5% — 112¢** (34)
o= — 2\/z(64q9——512q'°) 35)
¢, = 64g%" (36)
- \/7‘ 16
¢y = ——1=256¢" (37

The nome g is a function of the modulus &, and can be evaluated as was shown for the complete
elliptic integrals in the previous section.

In order to achieve accuracy to double precision (16 decimal places) as compared with the process
of the A.G.M., over certain values of k£ we need to perform a Gauss transformation as given by
Ref. [3, Section 164.02]. This transformation is outlined as follows:

F(¢, k) =F(0,k)/(1 + k), (3%)
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or
F(0,k)=(1+k)F(¢,k,), (39
where
_l___l.c.:. (1 — b\
kl“l+k;s k'=(1-k% (40)
and
sin (1 + k; sin® ¢) = (1 + k) sin ¢ 4n
S 1+k\ 4717
2sing = ne [(k1 sin 9) k| (42)

It was found that for values of ¢ less than 45° (note: ¢ =sin~'k), no transformations were
necessary for double precision accuracy. For 45° < ¢ <80° one Gauss transformation was
necessary, and for 80° < ¢, 2 successive Gauss transformations were required. For this latter case,
the procedure is similar to equation (38) as follows:

F(0,k) = (1 + k) (1 + k;)F(¢s, k), 43)

where k, is as in equations (40) and

1—k;
=11 (44)
14k 14k, \2 47w
zsmd,z_kzsinqSl_[(kzsinqbl) k| 5)

A summary of these transformations is shown in Table 1, along with initial starting values, x,, for
the iteration process. The remarkable consequence of all this work is the fact that convergence of
the Newton—Raphson scheme is very efficient. This is shown in Table 2. It requires, on average,
about 3 or 4 iterations for the scheme to converge over the entire range of 6 and ¢.

It is important to note that other transformations were attempted, but failed to yield reasonable
results. It is not clearly understood at this point why the Gauss transformation works so well, and
why other transformations in the literature do not. Also, on a real time comparison with the process
of the A.G.M,, it was found that the method outlined here was about 10% slower. This could be
substantially improved if a relationship between the constants ¢, could be found. All computations
were performed in double precision on an IBM PC in BASIC and FORTRAN 77.

RELATED INTEGRALS AND FUNCTIONS

The incomplete elliptic integral of the second kind is defined by

E@0,k)= J 0(1 — k?sin? )" dy. (46)
0

Table 1. Range of transformations for evaluating F(8, ¢)

0° < ¢ < 45° 45° < ¢ < 80° 80° < ¢ < 90°
No transformations | 1 Gauss transformation | 2 Gauss transformations
required. Accuracy | required. Accuracy to | required. Accuracy to
exact with A.GM | double precision with | double precision with
to double precision. | A.GM. AGM.
z, = 0.004 z, = 0.012 z, = 0.022
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Table 2. Convergence of method (Newton-Raphson iterations)t

0°<$<5 |B°<P<4b’ |45°<$ < 80° [ 80° < ¢ < OO°

80° < § < 0°
45° < 8 < 80°
5° < # < 45°
0°<8<5°

N Ww
€
Lo
W o

T Represented by average number of iterations

From Refs [2, p. 518; 5, Section 17.2.13]

4\ AN
2
E(O’k)—_—i—K.{_@ 47)

2K6 u K’
\2x ¢

where u = F(8, k), K and E are the complete elliptic integrals of the first and second kind with
modulus &, and 8, is defined by equation (4). To achieve double precision accuracy, only five terms
are required in equation (4), and four terms for the derivative 6;. Noting that the nome q is a
function of the modulus & as in equations (12) and (16), we need only evaluate u = F(6, k), E and
K, outlined earlier, and we may then determine E(6, k) from equation (47). Twelve decimal place
values for F(0, k) and E(, k) are provided in Table 3.

As a direct result of being able to compute efficiently the incomplete elliptic integrals of the first
and second kind, we can now efficiently compute elliptic integrals of the third kind, IT(0, 2 k),
and also functions such as the Heuman lambda-function A4,(8, k), and the Jacobian zeta-function
Z(B, k). These are outlined below in terms of known functions and limiting forms are also given
in Appendix A.

Table 3. Selected values for F(6, k), E(6, k)

0
g0 ¢ 1 10 30 45

,4)

1 0.017453292790 | 0.017453319237 | 0.017453514038 | 0.017453735571
10 0.174533193454 | 0.174559402848 | 0.174753855140 | 0.174976301923
30 0.523605673662 | 0.524284017289 | 0.520428627052 | 0.535622732805
45 0.7854198970853 | 0.787584037401 | 0.804366101232 | 0.826017876249
60 1047244324488 | 1.051879112762 | 1.089550670052 | 1.142429058046
80 1.396356715044 | 1.405645220554 | 1.484554552055 | 1.808476732060
88 1,536004057997 | 1.547307952699 | 1.645446429580 | 1.804719328423
90 1.570915958127 | 1.582842804338 | 1.685750354813 | 1.854074677301
60 80 88 90

1 0.017453957120 | 0.017454151959 | 0.017464177604 | 0.017454178684
10 0.175200286348 | 0.175398542412 | 0.175424727014 | 0.175425829652
30 0.542229108804 | 0.548425344543 | 0.549270415213 | 0.549306144334
45 0.851228749071 | 0.877408330406 | 0.881211426058 | 0.881373587020
60 1212506615255 | 1.301353213761 | 1.316305100453 | 1.316957896925
80 1.812520534398 | 2.265273260789 | 2.427180030034 | 2.436246053716
88 2.086744920001 | 2.953650200014 | 3.8610751543490 | 4.048125418683

90 2.156515647500 | 3.153385251888 | 4.742717265279 o0
E(,9)
1 10 30 45
1 | 0.017453202250 | 0.017453265802 | 0.017453071007 | 0.017452649489 |

10 0.174532656048 | 0.174506364812 | 0.174312496773 | 0.174091565468
30 0.523591877605 | 0.522915112409 | 0.517881934860 | 0.512049322350
45 0.785376430775 | 0.783241622061 | 0.767195985711 | 0.748186504178
60 1047150781365 | 1.042550471081 | 1.007555555144 | 0.964951457643
80 1396170007845 | 1.300078856068 | 1.316058404877 | 1.226610499417
88 1.535775438373 | 1.524510704027 | 1.437230174207 | 1.325956187678
90 1.570676709128 | 1.558887196602 | 1.467462200339 | 1.350643851048
60 80 88 20

1 0.017452627968 | 0.017452433157 | 0.017452407517 | 0.017452406437
10 0.173870127161 | 0.173674975302 | 0.173649260229 | 0.173648177667
30 0.506092072466 | 0.500742319368 | 0.500030025084 | 0.500000000000
48 0.728224155487 | 0.709723805114 | 0.707212800400 | 0.707106781187
] 0.918393204316 | 0.872755203013 | 0.866299900081 | 0.866025403784
80 1.122485808670 | 1.005432046316 | 0.085689154039 | 0.984807763012
a8 1198692110305 | 1.034013578241 | 1.001185987678 | 0.999390827019
90 1.211056027568 | 1.040114395706 | 1.002584085528 | 1.000000000000
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Table 4. Incomplete IT(6, v, ¢); y2=0.1, 0.5

9 1 18 30 45
4* = 0.1

1 0.017453470001 | 0.017453529087 | 0.017453601254 | 0.017453912791
15 0.262392651443 | 0262500556406 | 0.263137864406 | 0.263895537974
30 0.528205419032 | 0.529750056640 | 0534119286520 | 0.540411178855
4 0.800152692676 | 0.805143972639 | 0.819719226671 | 0.842006304336
60 1.070536324835 | 1.090576712217 | 1.124054916306 | 1.179796546823
75 1.365687820054 | 1.385201841526 | 1.446495439636 | 1.557387474808
(1] 1.017104884312 | 1.645207887991 | 1.735523375692 | 1.908422904221
90 1.655804132724 | 1.685358775764 | 1.780303404655 | 1.063259707143
60 78 88 20

1 0.017454134344 | 0.017454296541 | 0017454354831 | 0.017454355011
15 0.264665130496 | 0.265236385116 | 0.265443180145 | 0.265447019880
30 0.547123080287 | 0552336708048 | 0.554278260274 | 0.554314570939
4 0.868168661072 | 0.800401264384 | 0.899218368451 | 0.809386364852
60 1.253930007389 | 1.320257564848 | 1.363848205364 | 1.364541468240
75 1731212785137 | 1.972040003456 | 2.137926356560 | 2.142013900670
(1} 2.216030126452 | 2.816582108285 | 4.175310739802 | 4.382988078332
90 2.293549650346 | 2.966009011167 | 5.154873005005 o

=05

1 3 30 3

1 0.0174 .01 Lﬁﬁﬁmﬁfﬁ‘o.umns
15 0.264811133186 | 0.265012314941 | 0.265568608104 | 0266338066933
%0 0.548151967556 | 0.549801656740 | 0.554466014962 | 0.561188504815
45 0.870445649607 | 0876200098974 | 0.893065728905 | 0.919022739166
60 1.258165008864 | 1.267259462391 | 1.310168161246 | 1.382180357781
143 1700309567121 | 1.736940079983 | 1.824333511007 | 1.984641750819
s 2.151844214223 | 2.194604893074 | 2.333096359405 | 2.602617110801
90 2.221630684918 | 2.266850425642 | 2.413671504201 | 2.701287762005
80 L [ 90

T | 0.017454343304 | 0.017455008518 | 0.017455063808 | 0.017455064888
15 0.267121300856 | 0.267702008116 | 0.267912451904 | 0.267916355942
30 0.568365562104 | 0.573944469434 | 0.570022055047 | 0.576061831288
45 0940385473370 | 0.975378987023 | 0.985713913052 | 0.985010074827
] 1470063558781 | 1.578813355307 | 1.625064106811 | 1.625993807386
5 2.241855968376 | 2.608458401726 | 2.865200335263 | 2.874678895261
88 3.095288629000 | 4.097833673743 | 6.480005245197 | 6.851017961617
% 3.234773471249 | 4.306205147481 | 8.242040572377 o

Heuman’s lambda-function Ay(B, k) and Jacobian zeta-function Z(B, k)

Complete elliptic integrals of the third kind can be expressed in terms of A,(8, k) and Z(B, k),
and therefore these will be summarized first. From Ref. [11], we note

A8, k) =2 1E ~ KOF(B, k) + KEGB, k") )
Z(5, k) = EB, k) ~ EF(, k)X @)
where k' = (1 — k?)"?, E = E(n/2,k), K = F(n/2, k).

Limiting cases are listed in Appendix A.

Elliptic integrals of the third kind
The elliptic integral of the third kind is given by the Legendre and Jacobi forms respectively,

2 6 dy
H(O,Y ’k)= . —72 sin? !p)(l —kZsin? ./’)”2, (50)
Y dt
=L (1 =y2)[(1 — ) — k22" 1

where y =sin 8, t =siny and y2 # 1, y? # k%

This integral is complete when @ = n/2 (or y = 1), and then the notation IT(y2 k) is often used
in the literature. Following Ref. [11], various cases of the elliptic integral of the third kind can be
reduced to combinations of the first and second kind elliptic integrals. The hyperbolic cases are
defined if (i) y2>1 or (ii) 0 <y?<k?, and the circular cases occur when (iii) y2<0 and (iv)
k*<y*<1. Both cases (i) and (iii) can be reduced to cases (ii) and (iv) respectively using
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Table S. Incomplete 11(8, 72, ¢); y2=0.9, 1

o
g0 ¢ 1 15 30 45
=09
1 0.017454887928 | 0.017454947022 0.017456100213 0.017455330783
15 0.267311610467 | 0.267516201343 0.268082026367 0.268865400118
30 0.571068620117 | 0.572840046669 0.577854045902 0.585084455240
45 0.968565073983 | 0.978465627078 0.995689639173 1.026954262326
60 1.584686188326 | 1.605155590664 1667876624374 1.774526374757
75 2.744639915481 | 2.799900256217 2.977101484511 $.312107513623
88 4.620017519437 | 4.739522277316 5.133937179732 5.933811793915
90 4967868999231 | 5.099584555503 5.535513209603 6.425573644196
60 75 88 90
1 0.017455552368 | 0.017455714589 0.017455772889 0.017455773968
15 0.269661175528 | 0.270251812985 0.270465776257 0.270469747206
30 0.592810387583 | 0.598820907975 0.601061292363 0.601103202435
45 1.063715776463 | 1.095352365590 1.107973699411 1.108214594931
60 1.920812149907 | 2.074876579981 2.147627913792 2.148996317919
7% 3.876614376125 | 4.744332058197 5.404323238959 5.421258204038
88 7.505603800885 | 11.124061618136 | 21.517134981934 | 23.284483567519
90 8.200869161724 | 12.464001505630 | 30.304518759221 oo
=1
1 15 30 45
1 0.017455066198 | 0.017455124293 0.017455286487 0.017455508061
15 0.267950129014 | 0.268155503835 0.268723839483 0.269510573079
30 0.577358455473 | 0.579164988705 0.584275373072 0.591647537839
45 1.000032684912 | 1.007311426564 1.028657249209 1.061695675463
60 1.732155119238 | 1.755647021548 1.827800262659 1.951138930286
75 3.732419888196 | 3.816547721377 4.088637756786 4612796113312
88 28.640381402161 | 20.500854673433 | 32.802148252251 | 39.675239854077
90 ) o0 0 00
60 75 88 90
1 0.017455729650 | 0.017455891874 0.017456955376 0.017455951254
15 0.270309771690 | 0.270902956534 0.271117909952 0.271121832123
30 0.599626819407 | 0.605657988621 0.607943717461 0.607986405500
45 1.100604787410 | 1.134143595278 1.147537853149 1.147793574696
60 2.121599132046 | 2.302764655626 2.388787111951 2.390529756031
75 5.525541968744 | 7.003718597607 8.192303774545 8.223563231008
88 54.689422357619 | 98.276543996369 | 341.910456760807 | 412.291487581163
90 0 oo o0 oo

transformations given by Ref. [5; Section 17.7]. Expressions for limiting cases of the elliptic integral
of the third kind are summarized in Appendix B. Here we note the hyperbolic case (ii) for the
incomplete elliptic integral of the third kind, which may be expressed in terms of theta-function
expansions.

Incomplete I1(0,y% k), 0 <y*< k2, {hyperbolic}

When 7%= k?, the integral is defined by equation (A.26). For 0 < y2 < k2, the integral reduces
to

V[F(0, k)Z(B, k) — Q]

IO, k) = FO. k) + =07 (52)
where
B =sin~'(y/k), (53)
- (jir o)
v =nF(0, k)/2K, (55)
w(B)=nF(B,k)/2K (56)

and 6,(z, g) is defined in equation (4). Tabulations for IT1(6, y2, k) are shown in Tables 4 and 5 for
g1,

CONCLUSIONS

An efficient and accurate methodology for computing incomplete elliptic integrals using
theta-function expansions has been summarized and results have been provided in tabular form
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for several cases. Software has been provided with interactive codes based on the outlined material.
Special forms in Appendices A and B have also been included in the codes.

Table 3 values can be compared to results in Ref. [5, Chap. 17]. Tables 4 and 5 were also
compared to Ref. [11] whose authors used Simpson numerical integration to provide six decimal
place accuracy. For the circular cases occurring when k% < y? < 1, listed in Tables 4 and 5, the form
given by Ref. [5, Section 17.7.11] was used. Complex arguments would otherwise occur using
theta-function expansions, and these are not within the scope of this work.

Computations were compared to the process of the A.G.M. and found to be sufficiently accurate
and efficient. These integrals have numerous applications both old and new and their efficient
computation, particularly on a personal computer, provides the analyst with substantial savings
over resorting to numerical integration schemes. Although accuracy is usually needed to only a few
decimal places, particular applications sometimes require a series of these integrals, or ratios (i.e.
Ref. [10]. In these cases, for adequate convergence, substantial decimal accuracy (10-16) is required.
We also note a lesser known work by Gonzilez [12], who provided compact expressions for
incomplete elliptic integrals in terms of Legendre polynomial series. These were found to be less
efficient, although quite accurate, requiring a convergence acceleration scheme (see Ref. [13]) over
certain range of parameters. Although Carlson in Ref. [14] has provided robust schemes for elliptic
functions, the object of this work was to summarize and clarify the use of theta-functions for
evaluating elliptic integrals. Perhaps further work could be undertaken to compare more rigorously
the duplication formulae given by Ref. [15], with the theta-function expansions shown here. Finally,
the merit in this work is due to the research that was conducted by the many early mathematicians
who devoted time towards functions which are not so well known, albeit remembered, today.
Ironically, the use of these theta-functions vastly supersedes many present-day numerical integra-
tion techniques. Other applications of these functions can only be the subject of further research.
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APPENDIX A
Special Values
Complete elliptic integral K(k) and E(k)
E)=E@0) =1 (A.1)
K1)=K'(@0)=o (A2)
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K©O) =K (1)=n/2
E@©)=E(1)=n/2.

Other special values and limiting cases can be found in Byrd and Friedman Ref. [3, Section 111].

Incomplete elliptic integrals F(0,k) and E(8, k)
EQ,k)=F@0,k)=0
E(6,0)=F(6,0)=0
E@®,1)=sin 0
F(68,1)=In(tan 8 + sec §)
F(—6,k)= —F(®,k)
E(—6,k)= —E(8,k)
F(mn + 6, k) = 2mK (k) + F(8, k)
E(mn + 0, k) = 2mE(k) + E@, k).

Complete elliptic integral (n/2,7% k)
A2, 9% 1) = D(x/2,1,k)= o
I(n/2,0,k) = K(k)
n(n/2,0,0)=mn/2

T
H(n/2, ‘}72< 1,0)=m

Incomplete elliptic integral 11(0,v7, k)

o,y%,k)=0
11(8,0, k) = F(0, k)
(0,0,1)= F(0, 1) =In(tan & + sec 0)
ne@,1,0)=tané
tanh~![(y? — 1) tan 0]
O
tanh~'((1 — y*)"2 tan 9)
(1 —)7
6.1,k = k™2F(8, k) — E(B,k);ztan (1 — k2 sin? 9)'/2; ozl
1+7ysing |2
I —ysin 0] 5

1(0,y*>1,0)=

e,y <1,00=

In(tan @ +sec8) —y ln[

m6,y*>0,1)= T vl
6.2 <0, 1) = In(tan 6 + sec 9)1+ |y2| tan~!(]y|sin 0)
-7
10.K% k) = E(0, k) — (k?sin 0 c:s2 0)/(1 — k? sin? 9)'/2; oy

sin 1 n 0
nell)=—-—+- —+—]|
@ Lh=3 s t2 1“[“"’(4 + 2)]
Heuman lambda-function Ay(B, k) and Jacobian zeta-function Z(B, k)

Am/2,k) =1, Aymm/2,k)=m; m=0,1,2,...
Z(nf2,k)=2Z(0,k)=A1,(0,k)=Z(B,0)=0
A«B, 0) =sin §
AfB, 1) =28/n
A =B, k)= — AB, k)
Ag(mn £ B, k) =2m + A(B, k).

(A3)
(A4)

(A.5)
(A.6)
%))
(A.8)
(A.9)

(A.10)

(A.11)

(A.12)

(A.13)
(A.14)
(A.15)

(A.16)

(A.17)
(A.18)
(A.19)
(A.20)

(A.21)
(A22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)
(A.29)
(A.30)
(A31)
(A.32)
(A.33)
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APPENDIX B
Complete Elliptic I(r /2, k)

Complete I(y% k), y? < 0, {circular}
If y2 = —k, then the integral reduces to

I(~k, k)=

1
) [% + 2(1 + k)K).

For other cases, we note that there are two equivalent expressions

k'K = YAy, k)

2 by -
m6 D = 25 -y o= T
or
s K n YR = 1]
B A A PR T T g Yoy TR

where

- .y2 £/2 o 1
¢ = Sin ‘yz—-kz s ﬁ = St (l_—yzw.

Complete I1(y% k), k? <y? < 1, {circular}
When y2 = k? or k, the special forms are:
E
k% k)= 0
and

Ik, k) =

1
2(1 — k)k].
A kK]
For other cases, there are two equivalent expressions:
. p(1 =446, %))
DGk =K +=—mm 0200
0O =K = -
or
n 744(¢, &)
2[(2 =KD =y

. 1_72 12 . .YZ_kZ 1/2
8 =sin l(l—kz) s €=sln ! mz—) .

Complete IT1(y%, k), 0 < y? < k?, {hyperbolic}

% k)=

where 6 and ¢ are defined as:

One special case is defined here when y? = k2, hence this is given above. For other cases we note

vKZ(B, k)
0= K s =
where
B =sin~!(y/k).
Complete I1(y* k), y°> 1, {hyperbolic}
This case is simply defined by
ek k) = - G k)

(6= DE =k
where

B =sin'(1/y).
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(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)



