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Constriction Resistance of Circular 
Contacts on Coated Surfaces: 

Effect of Boundary Conditions 

K. J. Negus,* M. M. Yovanovich,t and J. C.  Thompson$ 
University of Waterloo, Waterloo, Ontario, Canada 

The thermal constriction resistance of a circular contact spot on a coated half-space is developed for both heat 
flux and temperature-specified boundary conditions on the contact. Solutions are obtained with the Hankel 
transform method for flux-specified contacts and with a novel technique of linear superposition for the mixed 
boundary value problem created by an isothermal contact. A comparison of the results obtained shows that the 
thermal constriction resistance, which is based on average contact temperature, is insensitive to the contact 
boundary condition for most practical purposes. 

Nomenclature 
U =contact radius 

= dimensionless scaling factors of Neumann 

=error test at point u, 
=complete elliptic integral of the second kind 
=incomplete elliptic integral of the second kind 

=prescribed flux distribution on surface (also 4, 

solutions 
c, 
e, 
E (  .)  
E (  ., . ) 
E, =sum of errors squared 

j =  1,2) 
f 
f =transformed surface flux 
F (  ., . ) =incomplete elliptic integral of the first kind 
gJ = form of the contact temperature for a prescribed 

H (  . ) = Heaviside Unit Step Function 
Ho [ ., . ] = Hankel transform of order zero 
I,, =class of integrals arising from the application of 

the inverse Hankel transform 
Jo ( . ) = Bessel function of the first kind order zero 
J1 ( . ) = Bessel function of the first kind order one 
k =thermal conductivity 
K (  . ) =complete elliptic integral of the first kind 
N =number of test points 
4 0  = nominal heat flux 
Q 
RC =thermal constriction resistance 
T = temperature 
T, = transformed temperature 
TC = contact temperature 
F C  = average contact temperature 
TSP 
U 
Z =coordinate 
01 = dimensionless thermal conductivity parameter 

P 
Y =dimensionless parameter, Eq. (41) 
6 =layer thickness 

flux distribution 

=total heat flux over contact 

= specified isothermal contact temperature 
=dimensionless contact radius (= p / u )  

[ (1  - K ) /  (1 + K ) ]  

=relative layer thickness (= 6 / u )  
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=thermal conductivity ratio (= k ,  / k2)  
=transformed radial coordinate 
= Heumann’s Lambda Function 
=radial coordinate 
=modulus of incomplete elliptic integrals, Eq. (55) 
= complementary modulus 
=dimensionless parameter, Eq. (45) 
=dummy variable of integration; angle of incom- 

plete elliptic integrals, Eq. (54) 
= dimensionless thermal constriction resistance 

parameter ( = kluR,) 
=constriction parameter for uniform flux over 

contact 
=constriction parameter for equivalent isothermal 

flux over contact 
= approximate constriction parameter for an 

isothermal contact 

Subscripts 

I =test point 
j = prescribed flux distribution 

1 = region 1, the layer 
2 =region 2, the substrate 

(1 =uniform, 2 = equivalent isothermal) 

Introduction 
HE phenomenon of thermal contact resistance occurs T when two rough surfaces are brought into contact and 

heat is transferred across their interface. As shown in Fig. 1, 
heat crosses the interface by conduction through small discrete 
contact areas under the assumption of no fluid in the gap and 
negligible radiation. The different modes of heat transfer can 
be dealt with separately, and the gap resistances are usually 
modeled as acting in parallel with the contact resistance. For 
most problems where contact resistance is significant, the con- 
duction through the contact area is the dominant mode of heat 
transfer. 

In recent years considerable interest has arisen in the ther- 
mal contact resistance of coated or layered surfaces. Examples 
of such situations are the oxide layers formed on pressure tube 
materials in nuclear reactors‘ and intentional coatings added 
to decrease the thermal contact resistance in electric com- 
ponents.2 The contact spots on the coated surfaces are usually 
still modeled as uniformly distributed circular contact areas as 
originally outlined in the classical theory of conforming rough 
surfaces. 
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Fig. 1 Constriction of heat flow between contacting rough surfaces. 

Thermal  Contact 
T =  constant ,or  -k 3 = f ( p )  

1 d z  

L Perfect contact 4 

-P  

Thermal Contact 

Fig. 3 Circular contact spot on a coated half-space. 

Laplace’s Equation must be satisfied in each region under the 
assumption of steady-state conditions, or 

dT2 - - k  - - qa= constant 
2 a 2  

as z - - ,a l  

Fig. 2 Elemental circular heat flux tube for a coated surface. 

Because in practice a vast number of contacts are produced, 
each discrete contact spot on the coated surface is modeled as 
a circular contact area located on a concentric circular flux 
tube of semi-infinite length as shown in Fig. 2. By symmetry 
arguments, the contact area should be isothermal, and outside 
the contact area the top surface of the flux tube is adiabatic 
under the previous assumption of vacuum in the gap and 
negligible radiation. These physical boundary conditions 
create a mixed boundary condition that is difficult to deal with 
analytically. However, by prescribing some known flux 
distribution over the contact area, a Neumann specified prob- 
lem results, and thus an analytical solution can be found by 
separation of  variable^.^ 

Unfortunately, under some real contact conditions, this 
analytical solution is very impractical. When the contact 
pressure between the two rough surfaces is relatively light 
and/or the surface coating is extremely hard as with oxides, 
the contact spots are located far from each other. Under these 
conditions, where contact resistance is largest, the analytical 
solution in the form of an infinite Fourier-Bessel series re- 
quires several thousand terms for convergence. 

Essentially though, under these conditions, the individual 
contact spots are each behaving thermally as single contacts on 
a layered half-space. For this case a different solution method 
is required. In this work the thermal constriction resistance of 
a circular contact spot on a layered half-space as shown in Fig. 
3 will be determined by Hankel transform methods. By using 
this method, a variety of contact boundary conditions can be 
considered easily. 

Theoretical Derivation 
For the layer (region 1) in perfect contact with a 

homogeneous substrate (region 2) as shown in Fig. 3, 

V 2 T l  = O  

V2T2=0 

where 

The boundary conditions are 

(3) 

(4) 

TI  ( ~ 3 6 )  T2@,6) (6)  

(7) TI  and T2-0 as (pz+z2)”+m 

wheref(p) is the applied heat flux over the surface and 6 is the 
thickness of the layer. 

By applying the Hankel transform of order zero to Eq. (l), 
Laplace’s equation becomesS 

where (X,z) is the transformed temperature given by 

(9) 

where Jo ( . ) is the Bessel function of the first kind of order 
zero. The solution to the ordinary differential equation of Eq. 
(8) can be written as 

TI  (X,z) = A  (X)e“ + B ( X ) e - h  (10) 

where A ( h )  and B(X) are arbitrary functions of the 
transformed radial coordinate X. Similarly the transformed 
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temperature in region 2 can be written as 

T2(1,z) =C(X)e-k +D(h)ek  

The transformed boundary conditions are 

a TI  
az -k,-(X,O) = f ( X )  

T2-0 as z-00 

where f( X )  is the transformed surface flux given by 

f ( h )  =ffo Lf(p);p--hl 

The two surface heat fluxes considered in this work are a 
uniform heat flux over a circular contact radius a, or 

which gives 

and an equivalent isothermal heat flux over a circular contact 
of radius a. or 

which gives 

In both cases the Heaviside Unit Step Function H (  . ) was 
used to indicate the adiabatic surface condition outside the cir- 
cular contact region and J ,  ( - )  is the Bessel function of the 
first kind of order one. The second flux distribution is com- 
monly called the equivalent isothermal because it is the exact 
flux that results from an isothermal circular contact on a 
homogeneous adiabatic half-space. It was anticipated that this 
flux distribution would give a good estimation of the true 
isothermal contact condition for a layered half-space. The 
validity of this assumption will be tested later when an approx- 
imate solution to the true mixed boundary value problem is 
made. 

From Eq. (15) it is required that 

Application of the transformed boundary conditions of 
Eqs. (12-14) gives 

where K is ratio of the thermal conductivities of regions 1 and 
2, or 

~ = k , / k ~  (25) 

By solving Eqs. (22-24), the transformed temperature in 
region 1 can be written as 

where 

~ = ( I - K ) / ( ~ + K )  (27) 

In a thermal contact resistance problem, the main interest will 
be only in the contact temperature, or 

Since - 1 1a5 1, then lae-2A* I I 1, and Eq. (28) can be ex- 
panded by the binomial theorem to give 

m - ") [ 1 + 2 c  (--l)nane-2Xn*] (29) 
TI (X,O) =- 

Xkl n = l  

The actual surface temperature rise is found by applying the 
inverse Hankel transform H,- I ,  which coincidentally is iden- 
tical to the normal Hankel transform operator, or 

Tl ( P , O )  =Ho [Tl  (LO);h-Pl  

= SomXTl (h,O)Jo(Xp)dX (30) 

Therefore, the surface temperature rise for the layer in perfect 
contact with a semi-infinite substrate as shown in Fig. 3 is 

Constriction Resistance for Flux-Specified 
Contact Conditions 

The constriction resistance of the circular contact spot on a 
coated half-space is defined as 

R,  = T,/Q (32) 

where Q is the total heat flux over the contact and T, the 
average contact temperature rise given by 

(33) 

Furthermore, a dimensionless thermal constriction resistance 
parameter is defined as 

$ = k,aR, (34) 

If a uniform heat flux is prescribed over the circular contact 
then by combining Eqs. (18) and (31) with Eqs. (32-34), the 
constriction parameter is 
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where the subscript u indicates the uniform flux condition. 
Upon evaluation of the inner integral,6 Eq. (35) becomes 

2 4 "  
*a pa n = l  

$, =-I , ,  +- ( - 1 )"a"Z,, 

where the integrals I , ,  and I , ,  are given by6,7 

4a 
3* 

- -- (37) 

a "  
2 r  0 

=- 1 [4n2P2+(2-2 co~C$)~-2nP] (1+cos4) dC$ (38) 

By integrating each term in Eq. (38) and expanding one term 
with the binomial theorem, 

) -2*n@] (39) 
s 0.09375 0.0341797 0.00320435 -- (1+- + + 

2 6  Y2 Y4 Y6 

where E (  - ) is the complete elliptic integral of the first kind as 
described in Ref. 8 and 

P =  6/a (40) 

(41) 

Thus, the thermal constriction resistance parameter for a 
uniform heat flux prescribed over the contact is given by 

y = 2 n 2 p  + 1 

where I , ,  is integrated numerically with Eq. (38) for n o  < 0.5 
(or y< 1.5) or II2 is evaluated directly by Eq. (39) for n0~0.5 
(or 72 1.5) with a maximum relative error of about 0.01%. 

Similarly, if an equivalent isothermal heat flux is prescribed 
over the circular contact, the constriction parameter denoted 
by the subscript ei is given by 

where the integrals I,, and Z22 are given by6s9 

dh 
J ,  (ha) sin (ha) 

= s o  1 2  

*a - 
4 

- -- 

m e - 2 X n *  sin(ha)J, (ha)dh 
122 = so h2 

=a[( l -7-2)"(7-7-1)+ 'h  sin-I(7-l)-2nP] 

where again = 6/a and 

7 E n p +  (nZP2+1)" 

Thus, the thermal constriction resistance parameter for an 
equivalent isothermal heat flux prescribed over the contact is 
given by 

1 2 "  
4 * n = ,  

$,=-+-E (-l)nanz2* 

where Z22 is given by Eq. (44). 

Constriction Parameter for an 
Isothermal Contact 

As mentioned previously, one contact boundary condition 
of major interest is that of an isothermal contact. Since the re- 
mainder of the surface of the coated half-space is modeled as 
adiabatic, a mixed boundary value problem results for the 
polar coordinates of Fig. 3. 

One technique for solving such a mixed boundary value prob- 
lem with Hankel transforms consists of posing the solution in 
terms of dual integral equations.I0 However, for the problem 
of a layer in perfect contact with a semi-infinite substrate, the 
integrands of the dual integral equations are quite complex. 

A similar approach to solve the mixed boundary value prob- 
lem approximately requires the linear superposition of two or 
more Neumann or flux-specified solutions such that a nearly 
isothermal contact temperature results. By requiring the 
contact temperature rise to be isothermal only in a least- 
squares sense, better accuracy is obtained for the constriction 
parameter based on an integrated or average temperature than 
is obtained for the actual temperature." 

In this particular problem, only two flux-prescribed solu- 
tions will be considered. When written as the linear superposi- 
tion of uniform flux and equivalent isothermal flux solutions, 
the temperature rise on the contact is 

(47) 

where C ,  and C2 are dimensionless scaling factors and g, ( p )  
and g 2 ( p )  represent, respectively, the form of the contact 
temperature profiles resulting from the uniform flux and 
equivalent isothermal flux cases. The functions g, ( p )  and 
g, ( p )  can be written as 

m 

g, ( P )  =I31 + 2  ( -  1)"a"132 (48) 

g, ( P )  =I41 + 2  ( - 1 ) n a n z 4 2  (49) 

n = l  

m 

n = l  

The integrals of Eqs. (48) and (49) derive from combining 
Eq. (31) with Eqs. (18) or (20) and can be evaluated6,'J1 to 
give 

2 
=---E(u) 

T 

where u is the dimensionless contact position defined as 

u=p/a (5  1) 

and again E (  e )  is the complete elliptic integral of the second 
kind. Furthermore, 

where again P=6/a. The symbol K (  ) is the complete elliptic 
integral of the first kind and A, (I#I,u) is the Heumann Lambda 
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function which can be expressed most conveniently in the which creates two linear algebraic equations with two 
form8 unknowns. Upon solving the constants, C, and C, are given 

by 

where F(  ., . ) and E (  a ,  . ) are incomplete elliptic integrals of 
the first and second kinds, respectively,8 and the angle + and 
modulus u are given by (64) 

cg, (4) -C,Q, Iu,)g,(u,) 
% ( u , )  c, = 

sin+ = 2nP (54) where in Eqs. (63) and (64), E implies E: ,. 
[ (1 - u ) ~  +4n2P2] The dimensionless thermal constriction resistance 

parameter for the approximately isothermal contact will be 
4u denoted as and is defined as 

r?r 
0-2 = ( 5 5 )  4n2f12 + ( 1 ~ ) ~  

$ai = k ~ a ~  1 ,  

and the compkmentary modulus @, is 

u, = (1 - UZ)% 

For Eq. (49), the integrals are1, 

dX 
OD sin ( Xa)Jo ( X p )  

z41 = 1, 
7r - -- 
2 

ae-2xn*jo ( X p )  sin(Xa)dh 
A 142 = s, 

(56) Because of the choice of test points, Tc = Tsp. The total heat 
flux Q is given by the sum of total fluxes from each prescribed 
flux distribution, or 

(57) 

It is now required to determine the dimensionless scaling 
factors C, and Cz by a linear least-squares analysis. If it is 
assumed that the desired contact temperature is T, = Tsp, then 
a dimensionless error in the approximate contact temperature 
given by Eq. (47) can be defined as 

(59) 

where the dimensionless contact position u = p / a  is used to 
define a “test point” u,. If N test points are chosen for the do- 
main 0 I u < l ,  then the sum of the errors squared is 

Obviously, since CI and C, are linear scaling factors they 
will be linearly proportional to the value of T, chosen. For 
convenience, a value of Tsp = qoa/k will be chosen so that Eq. 
(60) becomes 

N 

Et = [ 1 - C,g1 ( u , )  - Czg2 ( u , )  I (61) 
r = l  

Since the ultimate goal of this work will be to obtain an ac- 
curate approximation of the constriction parameter for an 
isothermal contact, the test points are chosen such that max- 
imum accuracy in the average temperature over the contact is 
achieved. As discussed in Ref. 11, this requires the test points 
to be at the centers of N equal area annuli that divide up the 
circular contact. From the experience gained in Ref. 11, a 
value of N= 15 was chosen. 

With the method of least squares, the unknown constants 
C, and C, are to be chosen such that E, is minimized or 

(j= 1,2) -- - 0  aE, 
aci 

Q= Clqo7ra2 + Czq027ra2 (66) 

Since T, has been given the value qoa/k then $ai becomes 

Presentation and Discussion of Results 
To generate results for the three different constriction 

parameters considered for this work, double-precision com- 
putations (15 digits) were made in compiled BASIC on an IBM 
personal computer. For all the constriction parameters, the 
summation of infinite but monotonically convergent series 
was required. The convergence of these series was greatly ac- 
celerated by multiple use of the Shanks series transform, l 3  

which typically produced the accuracy of 100-200 terms with 
only 10-20 terms for the series of this work. For many of the 
series encountered in the expressions for the constriction 
parameters, computations of complete and incomplete elliptic 
integrals of the first and second kinds were required. These 
functions were computed efficiently and accurately by using 
the process of arithmetic-geometric mean and the descending 
Landen transformation. I4 

The accuracy of the approximate solution to the mixed 
boundary value problem can be judged partially by examining 
the actual contact temperature rise produced by the superposi- 
tion of the two solutions. Ideally the contact temperature 
should be nearly isothermal, and any slight deviations should 
offset each other so that maximum accuracy is attained for the 
integrated result $,,. This goal was successfully achieved to ac- 
ceptable accuracy over ranges of dimensionless thermal con- 
ductivity ratios K = k ,  / k z ,  and dimensionless layer thickness, 
f l  = 6 / a ,  which should encompass most anticipated applica- 
tions (0.01 ID< 100, 0.01 < K S  100). Note that when is large 
or K nears unity, the equivalent isothermal flux distribution 
alone produces a nearly isothermal contact temperature. 
Thus, the largest temperature deviations occurred when K 

tended to 0.01 or 100 and P decreased towards 0.01. The worst 
deviations from an isothermal contact temperature were on 
the order of 5070, but nearly all temperature deviations were 
less than 1 Yo. However, from the experience gained in Ref. 11, 
the error in $a, with respect to the true isothermal constriction 
parameter should be considerably less than that of the hybrid 
temperature profile because the local errors tend to cancel out 
in the integrated result. In Figs. 4 and 5 ,  the actual contact 
temperature profile of each flux distribution [that is, g, ( u )  
and g, (u ) ]  and of their linear superposition are plotted for 
two fairly severe cases, P = 0.1, K = 0.1, and f l  = 0.1, K = 10. AS 
seen graphically in Figs. 4 and 5 ,  neither the uniform flux 
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Table 1 Constriction resistance parameter for different contact boundary conditions 

0.01 0.00587 0.00554 0.00583 
0.1 0.03014 0.02799 0.02875 

0.01 0.5 0.1374 0.1272 0.1279 
2 0.5314 0.4917 0.4893 

10 2.4464 2.2701 2.2202 
100 14.9219 14.1450 13.4597 

0.01 0.03275 0.02966 0.03206 
0.1 0.05624 0.05135 0.05436 

0.1 0.5 0.1557 0.1434 0.1463 
2 0.4737 0.4406 0.4327 

10 1 SO82 1,4298 1.3677 
100 4.3892 4.2663 4.1097 

1 

10 

0.01 0.1749 0.1565 0.1581 
0.1 0.1865 0.1678 0.1692 
0.5 0.2293 0.2098 0.2105 
2 0.3293 0.3083 0.3076 

10 0.5267 0.5044 0.5021 
100 0.8755 0.8527 0.8497 

0 0.2593 0.2392 0.2392 
0.1 0.2607 0.2405 0.2405 
0.5 0.2656 0.2454 0.2454 
2 0.2766 0.2564 0.2564 

10 0.2973 0.2771 0.2771 
100 0.3321 0.3123 0.3123 

0.01 0.2691 0.2489 0.2489 
0.1 0.2693 0.2491 0.2491 

100 0.5 0.2697 0.2495 0.2495 
2 0.2708 0.2506 0.2506 

10 0.2729 0.2527 0.2527 
100 0.2752 0.2562 0.2562 

0.2702 0.2500 0.2500 
0.2702 0.2500 0.2500 

11 c 2 =  1.132 3 J LL 

8 

t 0.2 a 

E o,l l3;O.l c 

n 

0.5 

W n 

I =0.1 -1 
5 

o a2 0.4 0.6 0.8 1.0 
DIMENSIONLESS RADIAL POSITION 

u : p / a  

Fig. 4 Contact temperature rise for the Neumann solutions and their 
linear superposition: j 3 = O . l ,  ~ = 0 . 1 .  

distribution [gl ( u ) ]  nor the equivalent isothermal flux 
distribution [ g, ( u )  ] produce nearly isothermal contact 
temperature profiles. However, their linear superpositions 
with the constants C, and C, as indicated in Figs. 4 and 5 pro- 
duce contact temperature profiles that are nearly isothermal 
and fluctuate about the desired result. 

In Table 1, the thermal constriction resistance parameters 
for the three contact boundary conditions considered in this 
work are tabulated for the range of dimensionless thermal 
conductivities and relative layer thicknesses 0.01 I: KI: 100 and 
0.01 S ~ S  100. From these results, for thin conductive layers 
( p  < 1 ,K  > 1) the constriction parameters calculated for the ap- 

0 0.2 0.4 0.6 0.8 LO 

unp/a  
DIMENSIONLESS RADIAL POSITION 

Fig. 5 
linear superposition: j3 = 0.1, K = 10. 

Contact temperature rise for the Neumann solutions and their 

proximately isothermal contact condition are seen to be lower 
than those of the equivalent isothermal flux distribution. This 
differs from previous experience with flux tubes," where the 
equivalent isothermal flux and uniform flux distributions are 
found to be the respectively lower and upper bounds for the 
mixed boundary condition. When the relative layer thickness 
reaches p= 100, the value of K in the range 0 . 0 1 ~ ~ ~ 1 0 0  is 
seen to have a negligible change in any of the constriction 
parameters. Also, when p< 1, the equivalent isothermal flux 
distribution and approximate isothermal contact temperature 
results are nearly identical. Most importantly though, the 
results of Table 4 show that the three constriction parameters, 
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coated half-space. An approximate solution for the case of an 
isothermal contact has been obtained by using a linear super- 
position technique that combines the flux-specified solutions 
by a least-squares criterion. 

After comparing the resultant constriction parameters com- 
puted over a wide range of relative layer thicknesses and layer- 
to-substrate thermal conductivity ratios, the effect of the con- 
tact boundary condition on the thermal constriction resistance 

poses, the assumption of a flux-specified contact boundary 
condition that does not create a mixed boundary value prob- 
lem is adequate for predicting the thermal constriction 
parameter. A correlation of the thermal constriction resistance 
parameter has been provided for coated surfaces where the 
layer has a lower thermal conductivity than that of the 
substrate. 
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Fig. 6 Approximate isothermal constriction parameter, &t, vs the 
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which differ only by about 8% for the limiting case of K = 1 or 
8-00, also differ by about 11% for the most severe case in- 
vestigated of 8 = 0.01 and K = 100. For many practical applica- 
tions in contact resistance, uncertainties in the surface 
characteristics or material properties can easily introduce er- 
rors greater than 11 Vo. Thus, for most engineering purposes, 
the thermal constriction resistance parameter of a circular 
contact on a coated half-space is found to be very insensitive 
to the actual contact boundary condition over a wide range of 
relative conductivities and layer thicknesses. 

Correlation of Results 
The approximate isothermal constriction parameter is 

shown graphically in Fig. 6. A correlation of J/oi for 
0.01 5/35 100 has been made for the resistive layers, 
0.01 I 5 K 5 1. The correlation gives 

~(0.12368 - 0.12309~-0.00085~~) tanh(0.28479+ 1.33378, 

+ 0.068648:) + 0.12325 + 0.14328~ - 0.01657~~ (68) 

where 

8’ ‘log108 

The maximum relative error associated with Eq. (68) is ap- 
proximately 2.6% at 8 = 0.01, K = 0.2. Attempts have also been 
made to correlate the data obtained for the conductive layers, 
1 I K I 100, but a single convenient expression such as Eq. (68) 
has not yet been determined with acceptable accuracy. 

Conclusions 
An analytical method based on the Hankel transform 

technique has been developed to determine the thermal con- 
striction resistance of a flux-specified circular contact on a 
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