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GENERAL EXPRESSION FOR FORCED CONVECTION

HEAT AND MASS TRANSFER FROM ISOPOTENTIAL SPHEROIDS

M. Michael Yovanovich!
Microelectronics Heat Transfer Laboratory
Department of Mechanical Engineering
University of Waterloo
Waterloo, Ontario N2L 3G1

Abstract

A single, semi-empirical, correlation equation for lam-
inar forced convection heat and mass transfer from isopo-
tential spheroids is presented. It is based on blending
two correlation equations of Yuge developed for isother-
mal spheres in air streams, and the diffusive body length,
square root of the total body surface area, of Yovanovich re-
cently proposed for laminar natural convection from com-
plex bodies. The proposed correlation equation is in very
good to excellent agreement over the full range of the
Reynolds number 0 < Re; < 10® with several other cor-
relation equations developed for spheres and spheroids,
but over limited ranges of the Reynolds number.
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Nomenclature

surface area of the body [£2A]

diffusive characteristic body length of
Yovanovich

aspect ratio of oblate and prolate spheroids
Pasternak-Gauvin characteristic body length
dimensionless surface area [A/L?]

sphere radius

spheroid equatorial diameter [P /x]
correlation coefficients

concentration in the extensive fluid
uniform body concentration

concentration remote from body

sphere diameter

molecular diffusivity

eccentricity of spheroids

heat transfer coefficient

mass transfer coefficient

unit vector along flow direction

Bessel function of first kind of order one
thermal conductivity of the extensive fluid
arbitrary characteristic body length
Reynolds number correlation parameter
mass flow rate

dimensionless mass flow rate

[hL/A(co — o)D)

Nusselt number [Nuy = hL/k|

Prandlt number correlation parameter;
outward body normal
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Greek Letters

ay

dimensionless outward body normal [n/ (]
maximum (equatorial) body perimeter
Peclet number [Re, Pr]

Prandt! number [v/q]

dimensionless pressure

heat flow rate

dimensionless heat flow rate

[QL/A(Ts — Too)k]

Reynolds number [U, L /v]

spherical coordinate

shape factor

Schmidt number [v/D]

Sherwood number [{Sh; = h,,L/D]
temperature of extensive fluid

uniform body temperature

fluid temperature remote from the body
cartesian coordinates

uniform free stream velocity

velocity vector

dimensionless velocity vector [‘7 /U]
Bessel function of second kind of order one

thermal diffusivity of the extensive fluid
Drake-Backer parameter [/2Rep Pr]
dummy variable in Eq. (17)

spherical coordinate

fluid viscosity at surface and free stream
temperatures

kinematic viscosity of the extensive fluid
mass density of the extensive fluid
density of fluid remote from the body
dimensionless temperature or concentration
potential [(T — Tw}/(To — Too)]

or {(e = cw)/(c0 — €oo)]

del operator

dimensionless del operator [£ V|
Laplacian operator

dimensionless Laplacian operator [£?V?]




Introduction

Steady laminar forced convection heat (Nusselt num-
ber, Nu) and mass (Sherwood number, Sh) transfer from
isopotential (isothermal or isoconcentration) oblate and
prolate spheroids as well as spheres into an extensive
fluid such as air or water have been investigated experi-
mentally, theoretically and numerically by numerous re-
searchers since the turn of the century.

The primary objective of these studies is to deter-
mine the relationships between the following dimension-
less groups:

1 P
Q;:Nu¢=mz=5hc=7/L—(a;§) dA (1)
0

and the independent physical and thermophysical param-
eters: Reynolds number, and Prandt! and Schmidt num-
bers for heat and mass transfer respectively, in order to
calculate the overall heat transfer rate Q and the mass
transfer rate rn. The relationship given above holds for
any characteristic body length, £, and all values of the de-
pendent and independent parameters provided the anal-
ogy between heat and mass transfer is valid.

The heat (and mass transfer) problem is formidable
because it requires the solutions of the dimensionless con-
tinuity, momentum and energy (mass) equations [1]:

V.-y=0 (2)
V97 =-V5+ —V27 3)
Rep
5. 1 -,
V.-Ve= Re; By ¢ (4)

which are subject to the following dimensionless thermal
and kinematic boundary conditions:

on the body: ¢=1and V=0 (5
$—0 and V—~i (6)

The steady bulk fluid flow is assumed to be parallel to
the positive z—axis.

remote from the body:

The general dimensionless heat and mass transfer so-
lutions

Nu‘ﬂ = f(RCc,PT,PCc, ﬂaAR) (7)
and
Shﬂ = f(RCc,SC, PeL: £1AR) (8)

are not available for all values of Reynolds, Péclet, Prandtl,
and Schmidt numbers, characteristic body length, and as-
pect ratio which is defined to be the ratio of the maxi-
mum body length parallel to the flow divided by the max-
imum body length perpendicular to the flow. Thus oblate
spheroids with minor axes parallel to the bulk flow have
aspect ratios less than unity, and prolate spheroids with
major axes parallel to the bulk flow have aspect ratios
grcater than unity. Spheres which can be considered to
be isotropic bodies have aspect ratios of unity.

Table 1: Effect of characteristic body length on Nu® and
C¢ for spheroids for 0 < Pe; <1 [9]

" Body Shape AR L[ Nuf C; L NuP
Prolate 5 P/r 1.069 0.572 A/P 4.274
Sphere 1 D 2 0500 A/P 2
Oblate 0.2 P/m 2617 0468 A/P 1.431

Figures 1 and 2 illustrate the effect of the chosen char-
acteristic body length on the numerical results for a pro-
late spheroid (AR = 5), a sphere (AR = 1) and an
oblate spheroid (AR = 0.2). In Fig. 1 the area-mean
Nusselt and the Péclet numbers are both based on the
equatorial diameter, P /=, of the spheroids. The plotted
results show the oblate spheroid to be more conductive
than the sphere which is more conductive than the pro-
late spheroid. The differences between these spheroids at
Pey = 0 is very large. When the same data are plotted
using another characteristic body length (surface area of
body divided by the maximum perimeter) the data for
the prolate spheroid lie above the sphere data which are
above the oblate results. The difference between the bod-
ies appears to be quite large and the data are shifted sig-
nificantly upward and to the right. Masliyah and Epstein
[9] developed the expression

Nu£=Nu‘1’:°+C,;Pcc (9)

for the spheroidal data shown in Fig. 1 provided Peg is
less than unity. Their results are given in Table 1.

The difference between the Nu$® values for the prolate
and oblate spheroids is 1-15% and the difference between
the C; values is 22% when £ = P/x. On the other hand,
when £ = A/P is used the difference between the NuP
values are reversed and the difference between the oblate
and prolate values becomes 199%. There is no change in
the correlation coefficients C.

Analytical solutions for the limiting condition of zero
Reynolds number, called the diffusive regime, (0 < Re; <
107%), have been presented for oblate spheroids (0 <
AR < 1), spheres (AR = 1), and prolate spheroids (AR >
1) [1]; and it was demonstrated that

Nup = Shy,= f(L,AR) (10)

Yovanovich [1] has proposed and shown that the square
root of the total surface area is the body dimension which
best characterizes the heat and mass transfer in the diffu-
sive regime because it minimizes the effect of aspect ratio
on the area-average Nusselt and Sherwood numbers.

The current state of knowledge about steady forced
convection heat and mass transfer from isopotential, three-
dimensional, bodies of arbitrary shape into an extensive
flowing fluid is somewhat incomplete. Numerous theoreti-
cal expressions, graphical correlations and empirical equa-
tions have been developed to represent the coefficients for
heat and mass transfer. However, the discrepancies be-
tween the expressions proposed for correlations and the
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Fig. 1. Nusselt number for spheroids (0.2 < AR < 5)
for Peclet number less than unity. Character-
istic body length is the equatorial diameter.

different sets of experimental data have still not been com-
pletely resolved or explained. The theoretical results are
mostly limited to the range of Reynolds number for which
the postulates of laminar boundary-layer theory are appli-
cable, i.e., (10° < Rep < 10°). A completely satisfactory
theory for the transition from the diffusive regime to the
laminar regime (10™* < Re; < 10°%), the laminar regime
(10° € Rep < 10°) or the turbulent regime (Rer > 10°),
is presently unavailable for bodies of arbitrary shape and
aspect ratio.

mal bodies of arbitrary shape into an extensive stagnant
fluid.

The second term represents the effect of fluid motion
to heat transfer; it consists of the product of the cor-
relation coefficient, Cg, and the Reynolds and Prandtl
numbers. The correlation coefficient and the Reynolds
number are also dependent on the choice of the charac-
teristic body length. The coefficient implicitly depends
on the Prandtl number and the value of the Reynolds
number parameter, ri. The Prandtl number (Pr = v/a)
is a dimensionless fluid property parameter and therefore
should be independent of body shape and the character-
istic length. The Prandtl number parameter, n, will de-
pendent on the value of the Prandtl number.
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Fig. 2. Nusselt number for spheroids (0.2 < AR < 5) for large Reynolds number.
Characteristic body length is the ratio of body area to equatorial diameter.




The primary shortcoming of the numerous empirical
correlations is their failure to take into account the shape,
aspect ratio of the bodies as well as using the most physi-

cally correct characteristic length in the Nusselt and Reynolds

numbers.

There is a great need for a single, simple but accu-
rate, correlation equation for steady, axisymmetric, lami-
nar forced convection from isothermal bodies of arbitrary
shape in the Reynolds number range: 0 < Rep < 105,

The main objective of this paper is to review the perti-
nent theoretical, numerical and experimental works which
deal with steady laminar forced convection heat and mass
transfer from single, isopotential, spheroids into an exten-
sive flowing fluid to establish a data base for the develop-
ment of a single, simple, but accurate, correlation equa-
tion for area-mean Nusselt (or Sherwood) numbers for
the diffusive to laminar flow regimes 0< Rep < 10%. The
numerous correlation equations which are based on differ-
ent characteristic body lengths will be converted to new
correlation equations based on the diffusive body length
and compared to each other to determine which are most
accurate over certain ranges of the Reynoids number.

A new correlation equation to be based on the char-
acteristic body length first proposed by Yovanovich [1-3]
for the diffusive regime and successfully employed in the
development of simple, accurate correlation equations for
natural convection from isothermal bodies of arbitrary
shape, aspect ratio, and orientation will be developed
and compared to the numerous correlations available for
spheroids.

Heat and Mass Transfer Correlations for Spheres

Correlation equations developed for heat transfer from
isothermal spheres into air streams from 1916 through
1963 are reviewed by McAdams [5] and Hsu [6] . Skelland
(7] deseribes the correlation equations developed for heat
and mass transfer from isopotential spheres and oblate
spheroids; and Clift et al [8] review the theoretical, exper-
imental and numerical results for heat and mass transfer
from isopotential spheres, oblate and prolate spheroids
through 1978.

According to Hsu [6] the earliest correlation equa-
tions were developed by Hughes (1916), Reiher (1925)
and Lohrisch (1929) for heat transfer from isothermal
spheres into air streams for which Rep > 10%. The corre-
lation equations did not include the diffusive term and the
Prandtl number, and were based on the sphere diameter,
i.e., £ = D. It is interesting to note that the recent empir-
ical data and correlation equation of Raithby and Eckert
(1968) [10] given in Table 2 are in good agreement with

the predictions of the correlation equations of the other
authors given therein. For example, at Rep = 10°, the
maximum difference of 12% occurs between the Reiher
and Raithby-Eckert predicts; and at Rep = 10 and 10°
the maximum differences of 14 and 22% respectively occur
between the Lohrisch and Hughes predicts. The other two

Table 2: Empirical correlation coefficients and parameters
for spheres in air streams

Author Cp m Rep
Hughes (1916) 0.326 0.555 >1000
Reiher (1925) 0.35 0.56 >1000
Lohrisch {1929) 0.282 0.585 >1000
McAdams (1954) 0.33 0.60 20 - 150,000

Raithby-Eckert (1968) 0.257 0.588 3600 - 52,000

correlation equations predict values of Nup which agree
to within £5% and they lie close to the average of the
values predicted by Lorisch and Hughes.

It can be seen in Table 2 that the Reynolds number
correlation parameter, m, ranges from 0.555 to 0.60 and
the corresponding correlation coefficient, Cp, ranges from
0.35 to 0.282. The fluid properties: thermal conductiv-
ity, k, and viscosity, u, should be evaluated at the film
temperature.

McAdams [5] correlated the air data of numerous in-
vestigators and recommended the correlation equation:

Nup = 0.33Re%? (12)
for 20 < Rep < 1.5x10°. Hsu [6] extended the correlation
equation to include other gases by assuming Pr = 0.74
and the Prandtl number coefficient to be 1/3 giving:

Nup = 0.37TRe}¢Pri/3 (13)

Beginning with the empirical and theoretical mass trans-
fer research of Frossling [11] the heat and mass trans-
fer correlation equations now included the diffusive term,
Nu$ = 2, the Prandtl number with the exponent, n =
1/3, and the Reynolds number with the exponent, m =
1/2, therefore:

Nup = 2 + CpRel*Pr'/3 (14)

This form of the correlation equation was derived from
laminar boundary layer theory heat transfer by Kudrya-
shev [6]. The correlation equation was studied by numer-
ous investigators [7-9,12-22] for both heat and mass trans-
fer from spheres. The excellent reviews of past work by
Griffiths (1960) [17], Vliet and Leppert (1961) [14], Rowe
et al (1965) [12], Maslyiah and Epstein (1971) [9] and
Clift et al (1978) (8] should be consulted for the details
of the analytical numerical and experimental work done
from 1938 through 1978. Only those references which are
based upon the form of Eq. (14) are considered here and
are reported in Table 3 for convenience. It can be seen
that the correlation coefficient, Cp, was reported to lie in
the range 0.370 < Cp < 0.95 for 0 < Rep < 103. For
Rep > 10% it was observed that the Reynolds number ex-
ponent should lie in the range 0.500 < m < 0.600. For the
subsequent sections of this paper which deal with corre-




Table 3: Correlation coefficients and parameters for heat and mass transfer from spheres

Q Author Nuy Cp m n Pr(Sc) Rep
Frossling (1938) 2 055 1/2 1/3 06-2.1 2 - 1000
Kudryashev {1949) 2 0.33 1/2 i 0.71
Drake (1952) 2 0.459 0.55 0.333 0.71 0.1 - 200,000
Ranz and Marshall (1952) 2 0.60 1/2 1/3 0.6 — 2.5 2 - 200
Tang, Duncan and Schweyer (1953) 2.1 0.42 1/2 1/3 0.71 50 — 1000
Hsu, Sato and Sage (1954) 2 0.544 1/2 1/3 1.0 50 - 350
Radusich (1956) 2.83 0.60 1/2 1/3 0.71
Garner and Suckling (1958) 2 0.95 1/2 1/3 1200 - 1525 60 — 660
Griffiths (1960) 2 060 1/2 1/3 0.7
2 054 1/2 035 0.7
Yuge (1960) 2 0551 1/2  1/3 0.715 10 — 1800
2 0.335 0.5664 1/3 0.715 1800 — 150,000
Vliet and Leppert (1961) 1.2 Pr’3  0.53 0.54 0.3 2 - 380 1 - 300,000
Rowe, Claxton and Lewis (1965) 2 069 1/2 1/3 0.73 65 - 1750
2 019 1/2 1/3 6.8 26 - 1150
Hughmark (1967) 2 060 1/2 1/3 <250 1= 450
2 0.50 1/2 0.42 > 250 1-17
2 0.40 1/2 0.42 > 250 17 - 450
2 0.27 0.62 1/3 < 250 450 - 10,000
2 0.175 0.62 0.42 > 250 450 - 10,000
Raithby and Eckert (1968) 2 0.235 0.606 1/3 0.71 3600 - 52,000
Masliyah and Epstein (1971) 2 0.500 1 1 0.71 0-14
Clift, Grace and Weber (1978) 1 0.757 0.47 1/3 0.70 - 0.73 100 - 4,000
1 0.304 0.58 1/3 0.70 - 0.73 4,000 — 100,000
1 0.724 0.48 1/3 Pr > 188 100 - 2,000
. Sec > 1100
= 1 0.425 0.55 1/3 2,000 - 100,000

lation equations based upon the diffusive body length,

where Ji(a;8) and Yi(a;8) are Bessel functions of the

L = VA, it should be noted that Eq. (11) which is
based upon £ = D can be converted to a new correlation
equation in which Nu¥; = 2y/7 and C ;7 = Cp(v/7)'™™
where 0.5 < m < 0.62.

Sphere Correlation Equation Based on Diffusive Body
Length

Before reporting the sphere correlation equations which
are considered to be the most accurate over particular
ranges of Reynolds number, the important analytical work
of Drake and Backer (1952) [20] will be considered in its
original development. They obtained an analytical solu-
tion for the energy equation which was approximated by

Uodl |10 (,0T
P55 =k ["a_ ( a—)] (15)
and subject to the following boundary conditions:
r=D/2, T=T, and r 00, T—oTx (16)

By means of the Laplace transform they obtained the
rea-average heat transfer coefficient and the Nusselt num-
ber as a function of the parameter a; = \/2Rep Pr:

2 (o (1+e )1+ 44 1dp

Nup =2+ 7 Jo [Ji(a1B) + Y (a1B)| B

(17)

first and second kinds of order one. Subsequently Drake
[14] provided the simple correlation equation:

Nup =2+ 0.459Re} Pr®3% 1 < Rep < 200,000

(18)

which agrees to within 1% with the values predicted by
the complex expression, Eq. (17). Equation (18) converts
to

Nuz = 2y/7 + 0.594Re25 Pro3ss

for 0.2 < Re sz < 3.5 x 10°.

- (19)

Yuge (1960) [22] reported two empirical equations which
convert to the following expressions:

Nugz =2y7 +0.734Rel/L Pri/* 17.7 < Re 3 < 3,200
(20)
and

Nuz = 2/7+0.431Re5® Pr/* 3,200 < Re /3 < 2.66x10°

(21)
Clift, Grace and Weber [8] gave two correlation equations
based on data from numerous sources for heat transfer
from isothermal spheres into air streams with 0.70 <




Pr < 0.73. Introducing the Prandtl number their cor-
relation equations convert to the following expressions:

Nuyz =7 +1.025Re2 Pr'/* 177 < Re ;7 < 7,090
(22)

and

Nu sz = /7+0.387TReJ2 Pr'/? o

Clift, Grace and Weber [8] also presented a mass trans-
fer correlation equation which was derived from numer-
ical data from several sources for 1 < Rep < 400 and
0.25 < S¢ <100

(Shp —1)/8e/® = [1 + (1/Rep Sc)|'/* RSt (24)

The above equation which correlates numerical data
to within £3% converts to the following heat transfer cor-
relation equation:

1/3
—ﬁ ] Rc?};‘Prl/’ (25)

Nuz=+y7r+14 [1 + Rey Pr

for 1.77 < Re sz < 709 and 0.25 < Pr < 100.

Whitaker (1972) {15] has proposed the following heat
transfer correlation equation:

1/4
Nuz = 2v/7 + [0.533Rel/} + 0.073ReX3] Pro¢ (fuﬁ)
(26)

where

6.2 < Re sz < 135,000
0.71 < Pr < 380
1.0 € poo/18s £ 3.2

He claims the agreement is quite good when compared
against the experimental data of Yuge [22], Krameys [16],
and Vliet and Leppert [14]; the scatter of data around the
correlation is +30% at the very worst over the range of
the parameters given above.

Heat Transfer Correlations for Spheroids

Skelland and Cornish (1963) [23] and Beg (1973, 1975)
[24,25] measured sublimation rates of naphthalene oblate
spheroids in air streams to obtain data on the effect of
body shape or aspect ratio on overall mass transfer rates.
The aspect ratio, AR, ranged from 1 (spheres) to 0.25
(oblate spheroids). Attempts were made to character-
ize the geometry of the spheroids in terms of several al-
ternative body lengths. The correlation was observed
to be best with the characteristic body length proposed
by Pasternak and Gauvin (1960) [26] for all bodies, i.e.,
L = A/P, where A is the total body surface and P is
the maximum body perimeter normal to the flow. The
diffusive body length of Yovanovich {1-3], £ = VA, and
the Pasternak-Gauvin body length are simply related:

VA

Lpe = —13—1:1' (27)

7,090 < Re 4 < 1.77x10°

The dependent mass and heat transfer parameters,
Sherwood and Nusselt numbers, and the independent flow
parameter, Reynolds number, based on the Pasternak-
Gauvin body length [26] or the diffusive body length are
related in the following manner:

Wz

Shpa = P

VA
Sh\/z, Nupg = ?Nu\/; (28)
and
VA
Repg = —5-Rez (29)

For oblate spheroids the conversion factor is

L2 1/2
ﬂ___ 1 1+1 cln1+e (30)
P V2r 2e 1-¢
and for prolate spheroids it is
A . -1 31/2
£ - 1 1+ sin” e (31)
P V2r eVl —¢?

where e is the spheroidal eccentricity.

For oblate spheroids (AR < 1), e = v1— AR?, and
for prolate spheroids (AR > 1), ¢ = /1 — AR~? When
AR =1, VA/P = 1//7 and when AR = 0, VA/P =
1/V2x.

Skelland and Cornish (1963) [23] derived a single cor-
relation equation for oblate spheroids for which 1/3 <
AR £ 1. Their mass transfer equation converts to the
following heat transfer equation:

Nu gz =0.985Re!/ZPr'/® 213 < Re/;<10,635 (32)

Beg (1973, 1975) [24,25] developed two correlation
equations for oblate spheroids for which 1/4 < AR < 1.
Beg did not distinquish hetween the sphere and oblate
spheroid data, and therefore his correlation equation is
valid for all aspect ratios. Beg’s mass transfer correlation
equations convert to the following heat transfer correla-
tion equations when AR = 1 and VA/P =1//7:

Nuz= o.szsRe:}; Pri/* 355 < Re ; <3545 (33)
and

Nu,z =0.325Re%8 Pr'/* 3545 < Re /5 < 56,720

(34)

Complex Mass Transfer Correlations for Spheroids

Clift et al [8] reported a complex correlation equation
for mass transfer from spheroids with aspect ratios be-
tween 0.05 and 5, Reynolds numbers from 1 to 100 and
Schmidt numbers between 0.7 and 2.4. They correlated
the published numerical data to £5% by means of the
following equation:

Sh—Sho/2 _ 1.25
Shyphere —1 1+ 0.25 AR®®

(35)




i

L)

where

02< AR<S, and 1< Rey < 100 (36)
where both Sh and Shg are based on the equatorial diam-
eter, 2b, of the spheroids. The reference Sherwood num-
ber, Shg, must be determined by means of the following

relationship:
S
Shy = ZII (37)

where A is the total surface area, £ is the characteristic
body length, and § is the shape factor (8],

47rbvV1 — AR?
S = W oblates (AR < 1) (38)
and
bARZ —
rbVAR 1 prolates (AR > 1) (39)

T In(AR + VAR =1

In both shape factor expressions the equatorial diameter
is 2b and it was chosen as the characteristic body length.
The shape factor for a sphere of radius a is 47a.

For the same Reynolds number, the parameter Sh
is obtained from Eq. (24).

sphere

A second correlation was reported by Clift et al [8]
which is based on the numerical results obtained for spheroids;
however, in this case the characteristic body length rec-

mmended by Pasternak and Gauvin (26], i.e., L = A/P,
is used. The alternate correlation equation has the form

SK - Shy/2_ [} (E)=1 (k2] povon
Scl/s - (Re')1/8 Re'Se (Re

(40)
and 1 < Re' < 400.

The parameter K' as shown by Sehlin [27] depends
on the body shape, the aspect ratio as well as the cho-
sen characteristic body length; it is plotted in Fig. 3 as
a function of the aspect ratio, AR. The predictions of

T T T T 1rirsw
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HEAT TRANSFER FACTOR ,K or K'
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Q.2 | o1l 1 11111
X 1O i0

ASPECT RATIO, AR

Fig. 3. Heat transfer factor of Sehlin [27] used in
Eq. (401 for oblate and prolate spheroids.

Eq. (40) for dry air, Pr = 0.71, and spheroids having as-
pect ratios ranging from 0.05, a circular disk, to a slender
prolate spheroid with an aspect ratio of 5 are presented
in Fig. 4. It is seen that £ = A/P gives values of Nu,
which appear to be strongly dependent on AR when the
Reynolds number, also defined with the same character-
istic body length, is small, i.e., Re; = 1. The dependence
decreases with increasing Reynolds number as noted in
Fig. 4. For details of the numerical data used in Fig. 4,
the reader should consult Clift et al [8] for the pertinent
references.

For convenience the various correlation coefficients de-
veloped for spheroids are reported in Table 4 for the three
body lengths: equatorial perimeter {P/x), the Pasternak-
Gauvin body length {4/P) and the Yovanovich diffusive
body length (v/4).

10°

FTTY

Fig. 4. Nusselt number for spher-
oids (0.05 < AR < 5)
based on the Pasternak-Gauvin
body length and Pr = 0.71 {8].
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Table 4: Correlation coefficients and parameters for spheroids (0.2 < AR < 5)

Author AR L Nup Cp m n  Pr(Sc) Re;
Skelland and Cornish (1963) 1/3-1 A/P 0 074 1/2 1/3 2.4 120 — 6000
Masliyah and Epstein (1972) 0.2 A/P 1.431 0468 1 1 0.7 0-1
0.2 P/x 2617 0468 1 1 0.7 0-1
10 A/P 2 050 1 1 0.7 0-1
1.0 P/x 2 0500 1 1 0.7 0-1
5 A/P 4274 0571 1 1 0.7 0-1
5 P/x 1.060 0571 1 1 0.7 0-1
Beg (1973) 0 A/P 0 067 054 1/3 24 270 — 34,900
Beg (1975) 025-1 A/P 0 062 1/2 1/3 24 200 - 2,000
025-1 A/P 0 026 0.6 1/3 24 2,000 - 32,000
Yovanovich (1987) 0.2 VA 3.430 0468 1 1 0.7 0-1.41
1.0 VA 3545 0500 1 1 0.7 0-141
5.0 VA 3791 0572 1 1 0.7 0-141

General Correlation Equation for Spheroids

It is clear from the above review of the literature that
numerous correlation equations have been proposed for
steady laminar forced convection heat and mass trans-
fer from isopotential spheroids into an extensive flowing
fluid. The proposed correlation equations for spheres are
based on the diameter and those proposed for oblate and
prolate spheroids are based on either the equatorial diam-
eter or the Pasternak-Gauvin characteristic body length.
Skelland and Cornish [23] and Beg [24,25] have shown that
the Pasternak-Gauvin body length is superior to all other
body lengths, but this body length gives values of Nusselt
(Sherwood) numbers for zero Reynolds number which are
quite different for thin oblate spheroids and long prolate
spheroids as seen in Tables 1 and 4 and Figure 4. The
diffusive body length proposed by Yovanovich [1] gives
values of Nu® 7 which differ by less than 10% as seen in
Table 4. This body length when introduced into the two
Yuge correlation equations developed for spheres in air
streams yields Eqs. (20) and (21). These correlations can
be blended into a single equation which should be accu-
rate over the full range of Reynolds numbers. By simple
trial and error analysis the following general expression
for spheres which is accurate to within 5% with Yuge’s
two equations is developed:

Nugz=27+ (0.2003ef//;

which is valid for 0 < Re s <2x 108,

+ 0.350Re%5%) Pri/®  (41)

By simple geometric arguments the above equation

can be modified to predict heat (mass) transfer from spheroids

with 0 < AR < 5:

Nuyz = NuZg + (Ci(P/VA)/ Rel)2 + C,Re22) P(rl/’)
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where P is the equatorial perimeter perpendicular to the
bulk flow, C, = 0.150 and C, = 0.350. The diffusive limit
Nuyli for spheroids has been presented by Yovanovich
(1. The general expression for spheres, Eq. (41), with
Pr = 0.71 is compared with the correlation equations of

Masliyah and Epstein, Hughmark, Clift et al, Raithby
and Eckert, Yuge’s two equations, Whitaker, and Drake
in Figs. 5-7 over the full range of the Reynolds numbers.
The agreement between the proposed general equation
and the several correlation equations is seen to be ex-
cellent. The maximum difference between the proposed
general equation and the Hughmark correlation equation
occurs in the range 1 < Rc\/; < 200. Table 3 shows
that Hughmark’s correlation is identical to the correla-
tion equations of Ranz and Marshall [18,19] and Griffiths
[17). The correlation equations of Fréssling [11], Drake
[20,14] and CIlift et al 8], however, are in excellent agree-
ment with the proposed general equation in this range of
Reynolds numbers as seen in Figs 5 and 6.

Finally the general equation is compared with the
correlation equations of Skelland and Cornish {23], Beg
[24,25] and Pasternak and Gauvin [26] in Fig. 7. Be-
cause Skelland and Cornish, and Beg elected to correlate
all spheroidal data, including sphere data, with a single
equation, the effect of aspect ratios is not apparent.

The effect of aspect ratios is relatively small as seen
in Table 5.

The difference between the values of the Nusselt num-
ber for spheres and prolate spheroids (AR < 5) is less
than £7% over the entire range of Reynolds number. The
difference between the values of the Nusselt number for
the oblate spheroids (AR > 0.2) is less than +3% over
the entire range of Reynolds number. The sphere can
therefore be used to approximate heat and mass transfer
from oblate and prolate spheroids for aspect ratios be-
tween 0.2 and 5 provided the diffusive body length is used
in the Reynolds and Nusselt (Sherwood) numbers. The
geometric parameter (P/+/A)Y/? is also a relatively weak
function of the geometry and aspect ratios. For example,
this parameter takes the values 0.942, 1.331 and 1.548
for the prolate spheroid (AR = 5), sphere (AR = 1) and
oblate spheroid (AR = 0.2) respectively. This parameter
differs by approximately 40% for the aspect ratio range
0.2 < AR < 5, which is quite large.




Table 5: Effect of aspect ratios on Nusselt numbers for

i

@ spheroids (0.2 < AR < 5) and Pr =0.71

AR 0.2 1.0 5
Rc\/x Nu.\/; Nu\/;‘- Nu\[;
0.01 3.46 3.58 3.83
0.1 3.58 3.68 3.91
1 3.95 4.03 4.23
10 5.24 5.25 5.34
102 9.74 9.56 9.29
108 2560 24.78 23.40
104 81.70 7891 T73.95
108 280.8 272.0 255.7
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Summary and Conclusions

A review of the important correlation coefficients pro-
posed for laminar, axisymmetric, forced convection heat
and mass transfer from isopotential spheroids into an ex-
tensive flowing air stream has been presented. The effect
of various characteristic body lengths on the correlation
equations has been discussed. It is shown that the char-
acteristic body length of Pasternak and Gauvin which ad-
equately correlates heat and mass transfer data at high
values of the Reynolds number does not appear to be
useful in the diffusive regime. On the other hand the
diffusive body length proposed by Yovanovich which is
the best body length for characterizing laminar natural
convection heat and mass transfer is shown to be appro-
priate over the entire range of Reynolds number because
it minimizes the effect of body aspect ratio.

A single, relatively simple, correlation equation based
on the blending of the two Yuge correlation equations for
isothermal spheres in air streams is in very good to ex-
cellent agreement with several other correlation equations
developed for certain ranges of the Reynolds number.

The blended equation was converted to a new cor-
relation equation based on the diffusive body length of
Yovanovich.

By means of simple geometric arguments the correla-

tion equation was modified for oblate and prolate spheroids.

The comparison between the predictions of the pro-
posed correlation equation and those of numerous other
authors is shown to be very good to excellent over the
entire range of Reynolds number.

It is also shown that the difference in the area-average
Nusselt number for the oblate spheroid (AR = 0.2) and
the prolate spheroid (AR = 5) is less than 10% over the
entire range of Reynolds number when the diffusive body
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REYNOLDS NUMBER, Reg
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length is used in the Nusselt and Reynolds numbers. The
sphere data is found to lie between the oblate and prolate
data. At a Reynolds number of 10 the difference between
the oblate and prolate data is less than 2%.
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