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Abstract

An approximate expression for the thermal resistance
of a bolted microelectronic chip carrier is developed by us-
ing a novel analytical approach for treating mixed boun-
dary conditions. Results obtained for the thermal re-
sistance indicate that there is an optimum thickness to
minimize the resistance. Lift-off of the outer edge of the
carrier has a negligible effect on the resistance for carri-
ers fabricated with the optimum thickness. By increasing
the amount of lift-off for carriers with a thicknesses less
than the optimum value, there is often a reduction in the
thermal resistance. For carriers with thicknesses above
the optimum value, an increased amount of lift-off causes
the resistance to rise.

Nomenclature

- radius of uniform heat flux source

- contact area

- series coefficient

- radius of device carrier

Biot numbers for bottom surface of carrier

inner radius of bottom surface contact area

- entries in coefficient matrix

outer radius of bottom surface contact area

integral of errors squared

- applied bolt force

- entries of right hand side vector

- contact conductance for bottom surface

- Heaviside step function

- Bessel function of first kind, zero order

- Bessel function of second kind, first order

- homogeneous thermal conductivity

- mean absolute surface slope

- number of series coefficients

- contact pressure

- uniform heat flux

- total heat flow across top surface

r,z - cylindrical coordinate system

R - thermal resistance of microelectronic
device carrier

t - thickness of carrier

T - temperature

T, - average temperature rise of uniform flux
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Greek Symbols

a - aspect ratio of carrier (= ¢/b)

Tm - functions to evaluate C,,,

bmn - Kronecker delta function (bmn=0form#n
Smn = 1 for m = n)

5, - eigenvalues of J;(6,) =0

€ - relative contact size (¢ = a/b)

€2 - dimensionless inner radius of bottom surface
contact (e; = ¢/b)

€3 - dimensionless outer radius of bottom surface
contact (e3 = d/b)

Omn - functions to evaluate Cp,,

ps¢ - dimensionless coordinate system
(p=r/b ¢=2/b)

¥ - dimensionless total resistance

o - effective RMS surface roughness

Wy - functions to evaluate C,,,

Subscripts

¢ - contact between surfaces

m,n - refers to series solution and matrix elements
Introduction

The proliferation of microelectronics throughout the
aerospace and defence industries continues to grow. With
many of these applications, however, increased power den-
sities and harsh operating environments are placing tre-
mendous demands on cooling system design. Thus ther-
mal designers are often forced to consider cooling an in-
dividual die by using a metallic or ceramic die carrier to
connect the die thermally to a large external heat sink.

The system under investigation consists of a square
or hexagonal semiconductor die mounted on a cylindrical
carrier which is bolted to a large heat sink as shown in
Fig. 1. In the vicinity of the die and carrier, convection
and radiation can be shown to be negligible modes of heat
transfer relative to conduction to the heat sink. In fact a
simple calculation for carriers typically less than 2 em in
diameter and 5 mm thick shows the combined convection
and radiation resistance for forced-air cooling to be an
order of magnitude greater that of conduction through
the carrier. The thermal resistance of the carrier is of
considerable interest to the thermal designer because it
often represents a significant portion of the overall ther-
mal resistance. The goal of this work is to develop an
approximate analytical expresssion for the resistance of
the carrier under real operating conditions.

With the conservative assumption of negligible con-
vection and radiation, the external surfaces of the carrier
are considered adiabatic. In addition the heat input from
the square or hexagonal die is modelled as a uniform heat
flux over a circular contact of equivalent area. Thermal
resistance within the die itself could also be computed us-
ing, for example, the methods of Negus and Yovanovich?'.
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bigure 1: Typical Configuration of a Semiconductor Die
Carrier Mounted to a Heat Sink
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Figure 2: Basis Problem for Thermal Analysis of the
Semiconductor Carrier

To attach the carrier to the heat sink, a threaded shaft is
soldered to the carrier and the whole assembly is bolted
to the heat sink as illustrated in Fig. 1. Thompson et
al.® and Jofriet et al.* have shown that outer region of
a bolted flanged connection separates when the bolt is
tightened sufficently as shown by the outline in Fig. 1.
The shaft connecting the carrier to the heat sink is usu-
ally made of stainless steel and the heat sink is usually
made of copper or beryllia. Typical thermal conductivi-
ties for steel are 15 W/mK while copper and beryllia are
approximately 400 W/mK and 270 W/mK respectively.
In addition the area for heat flow in the shaft is much less
than that of the heat sink. Thus the steel shaft represents
a large resistance to heat flow relative to the heat sink.
For a conservative estimate of the thermal resistance, the
area of the carrier contacting the steel shaft is therefore
considered to be insulated. These assumptions produce a
basis problem as shown in Fig. 2 with a uniform flux en-
tering a circular contact on the top surface of the carrier
and a uniform contact conductance on an annular area
of the bottom surface.

Many techniques are available to solve this two dimen-
sional problem. Numerical techniques such as finite vol-
ume or finite element methods could be used to solve the
problem but to perform a parametric study the computa-
tion required would be substantial. Instead the problem
is solved by a novel analytic technique. Due to the combi-
nation of the adiabatic and uniform contact conductance
regions on the bottom surface, this problem has a mixed
boundary condition. Several techniques are available to
solve mixed boundary problems but a method similar to
one developed by Negus and Yovanovich? is incorporated
in this work.

Theoretical Derivation

Under the assumptions of homogeneous isotropic ther-
mal conductivity k and steady state conditions, heat con-

duction in the basis problem shown in Fig. 2 is governed
by the following partial differential equation and boun-
dary conditions:

%% (r%%) +%2§=0 (1)
02 =0 (2)
6T(b 2) =0 (3)
kZ—T(r t)=qH(a—7) (4)
aT
— k5 (r0) + he(H(r —¢) = H(r - d))T(r,0) =0 (5)

where H(-) is the Heaviside unit step function and 6, are
the roots of J1(6,) = 0.

The solution to this problem governed by Laplace’s
equation with consideration of the two adiabatic boun-
dary conditions of Egs. (2) and (3) and the non-homo-
geneous boundary condition of Eq. (4) is determined in a
straightforward manner using the separation of variables
technique to yield

T(oc) = & {D+ ds + 3~ [Ancosh(6)
+(wn — A, tanh(8ac)) sinh(6.¢)]Jo(6n0) } (8)

where p = r/b and ¢ = z/b represent dimensionless co-
ordinates. The factor ¢gt/k which has dimensions of tem-
perature permits dimensionless constants D and A,. The
aspect ratio is defined as a = t/b and the relative contact
radius is defined as ¢; = a/b and in addition

2¢ Jl(6n€1)
5r2|a(J0(;n))2 cosh(6 ) (7)

Wy =

The classical method separation of variables technique
cannot account for the mixed boundary condition of Eq.
(5). An approximate analytical technique was developed
by Negus and Yovanovich? to overcome this problem S0
the unknown constant D and the unknown series coeffi-
cient A, in Eq. (6) could be evaluated from the mixed
boundary condition in Eq. {(5). The procedure is initi-
ated by relating the constant D in Eq. {6} to the series
coefficients A, by substituting into Eq. (5), multiplying
by r dr and integrating from r = 0 to r = b to give

2
€
D=—"}\ ZA,‘% (8)

Bi(d-¢) (§-4)

where
_ €3J1(6n€3) - 52J1(6n52)
In = 5 (9)

and the contact Biot number for the bottom surface, the
relative inner radius of the bottom contact and the rel-
ative outer radius of the bottom contact are defined re-
spectively as

h.t
l, = — 10
Bz, P (10)
d
€3 = E (11)
[4
€2 = E (12)

The remaining unknowns are the series coefficients
A,,. Because of the mixed boundary condition on z =0,




these coefficients cannot be solved directly by using the
orthogonality property of the eigenfunctions (Fourier’s
Method). However for a finite number of coefficients N
we can define

2

b | 9T
E=/; r[kg(r,t) +ho|H(c—r) - H(d~r)]T(r,1) (1‘1;)

and choose A, such that
oF

m=0 m=1,2,3,...,N (14)

where E is the continuous integral of errors squared.

A much simpler method is to apply Fourier’s method
to the mixed boundary condition as follows. Substituting
Egs. (8) and (6) into (5) gives

—€} —a)_(wn — Antanh(,a))Jo(6ag) +

n=1

Bi.D[H(r —c¢) — H{r — d)]+
Bi, i:lA,,[H(r — o)~ H(r — d))Jolbnc) =0 (15)

Multiplication of Eq. (15) by b*¢Jo(6m¢)d¢ and integra-
tion from ¢ = 0 to ¢ = 1 then yields

—a i[wn — A, tanh(&na)]ﬁn—('h)—zgﬁ'l)-i&mnﬁ-

n=1
Bi.Dvm + Bi. Y Anfma =0 (16)
n=1
where
- 53J1(5m53) - €zJ1(5m€2) (17)
m 6m

and for m # n

.o - o {5mJ0(5n€3)J1(6m53) - 6nJ0(6m53)J1(6n€3) }

8% - 62

SmJo(bne2) J1(6mez) — 6nJo(bmea) J1(bne
_62{ o{Sn€2) 1 52_53 o 2)J1(6n€z) (18)

and form=n
un = F1(Jo(503))" + (albne))"
~Ei(so(e) + (RG] (19)
Substituting Eq. (8) into Eq. (16) and isolating the un-

known series coefficients results in an infinite system of
linear algebraic equations of the form

[Crmal{An} = {Gm} (20)
where
c Spatanh(8,0) (Jo(6n))*6mn
mn - 2
2Bic'7m'7n .
S o BiOmn (21)
2 2

6. = Wnbma(Jo(6m))? ;me 5 (22)

2 €3 — €2

An approximate solution for the temperature distri-
bution is obtained by solving a finite subset of the infinite
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Figure 3: Dimensionless Thermal Resistance: Effect of
Decreasing Bottom Surface Contact Area

system of linear equations of Eq. (20). Any desired de-
gree of accuracy can be achieved, in theory, by increasing
the number of series coefficients.

One interesting point to note is the limiting case where
€3 approaches zero and €3 approaches one. In this case the
mixed boundary condition goes to a homogeneous Robin
boundary condition along the bottom surface. It can be
easily shown that the off diagonal entries are all zero and
that the series coefficients are identical to the coefficients
obtained by applying Fourier’s method for this limiting
case.

The thermal resistance of the carrier is given by the
definition B
n - Too

Q

where for this problem T, = 0 and Q is the total heat
flow rate crossing the top surface of the carrier or

Q = gra? (24)

The average temperature rise on the contact portion on
the top surface of the carrier is defined as

R= (23)

- 1 a
= — 25
T. /; 2nrT(r,t)dr (25)

ma?
A dimensionless thermal resistance is defined as
% = 4kaR (26)

Using the approximate solution of Eq. (6) and com-
bining it with Eqs. (23-26), an approximate expression
for the dimensionless thermal resistance is given

4ae; 4Da
+

+ Sa i[A sech(6pcx)
7 mey 3 " "

ﬂ'fl n=1
€1J1(5n€1)
6n

Y =

—Q, tanh(b,a)] (27)

where
261J1 (6,.61)

a62(Jo(6n))?
with N coefficients A,, determined by solving Eq. (20).

nn = (28)




Implementation and Results of the Solution

To evaluate the dimensionless resistance given by Eq.
(27), the solution of Eq. (20) for a finite number of series
coefficients A, is required. The formulation of the system
of equations is accomplished by substituting for C,,,, and
G, from Egs. (21) and (22). A Cholesky decomposition
solver with optimized pivoting was used to solve for the
unknown series coefficents A,,. The solver and expression
for the resistance were programmed in Microsoft Fortran
on an IBM-PC. As many as 250 coefficients could be de-
termined within the 640K byte memory limitation of this
microcomputer.

The dimensionless thermal resistance is a function five
of dimensionless parameters or

’J) = w(Bicy @, €1, 52163) (29)

By using the five dimensionless parameters in Eq. (29),
the number of independent parameters is reduced from
the original seven (a,b,¢,d,t, k., t) to five. Even with
this reduction in the number of independent parameters
a comprehensive parametric study is difficult to achieve.

To demonstrate the major influences of some of the
various dimensionless parameters, dimensionless resistan-
ces were evaluated for a wide range of values. The pa-
rameter ¢; was fixed at the value of 0.4 while the value of
es was decreased to show the effect of a smaller contact
area {or larger “lift-off”} on the bottom surface. In order
to keep the number of plots to mininum, the value of ¢
was fixed at 0.3. The three remaining paramenters were
varied and the results are plotted in Figs. 3 and 4.

Several important effects are observed for the varia-
tions in the parameters, Bi., ¢z and a in Figs. 3 and 4.
First, the dimensionless resistance approaches a constant
value for large values of the Biot number as expected since
the bottom contact approaches an isothermal condition
for sufficiently large Bi.. As the aspect ratio of carrier is
increased the resistance often increases because the heat
has to flow through more material. However, from Figs.
3 and 4, it is obvious that this phenomena does not oc-
cur for all Biot numbers. The simple explanation is that
in these cases the increased aspect ratio decreases the
constriction resistance and this has a larger effect than
the increase of the material resistance. When the value
of the Biot number is small there is an increase in the
overall resistance because the contact resistance becomes
larger relative to the material resistance. From Fig. 3, it
is also apparent that for a small aspect ratio the overall
resistance becomes independent of the contact area for
large Biot numbers. When the aspect ratio is small, heat
cannot easily conduct radially along the carrier and thus
spread uniformily across the carrier-heat sink interface.
With little heat spreading over the contact, the outer re-
gion of the contact has little effect on the resistance of
the carrier as evident from the computed results.

A Practical Example

A specific example problem is given to show the prac-
tical implementation of the solution developed. In this
example problem a die with a equivalent radius of 4 mm
is placed on die carrier with an overall radius of 12 mm.
A stud 4 mm in diameter is silver soldered to the bot-
tom surface of the die carrier. The size of the die is not
a parameter the thermal designer has much control over
therefore its value will remain constant during the anal-
ysis. The size of the die carrier is limited by the overall
chip packing density and consequently is taken to be fixed
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Figure 4: Dimensionless Thermal Resistance: Effect of
Increasing Thickness

Material | Conductivity | Hardness
(W/mK) (MPa)
Copper 400 803
Aluminum 237 1470
Aluminum 36 23226
Oxide
Beryllium 272 11172
Oxide
Kovar 16 2185

Table 1: Properties of Materials Used for Die Carrier
Construction

also. Since a specified stud size is normally incorporated,
the size of the stud remains fixed in this analysis of the
die carrier.

With the values of a,c and b fixed, the remaining pa-
rameters that can be varied are t,d,k, and k.. The con-
ductivity k is determined by the type of material used for
the construction of the die carrier. The range of thick-
nesses was chosen to vary from 1 - 10 mm. The remaining
two parameters d and h. are a function of the torque ap-
plied in tightening the nut. As more torque is applied to
the nut a larger downward force is applied to the bottom
surface of the die carrier. By increasing this force the
thermal resistance of the die carrier will vary according
to the effects of increased contact conductance and lower
contact area.

To predict the contact conductance a correlation de-
veloped by Yovanovich? is used and is given by

1.25km 7 P\ %%
he = o (E) (30)

where o is the effective RMS surface roughness, m the
mmean absolute surface slope, P the contact pressure and
H the hardness of the material. The contact pressure is
a function of the applied load and is obtained from

F
A

P= (31)




where F is the applied bolt load and A, = n(d? — ¢?) is
the contact area on the bottom surface. From Egs. (30)
and (31), it is obvious that the contact conductance is
not only a function of the applied load but it is also a
function of the contact area. However, the contact area
is dependent on the applied load because the outer edge
of the chip carrier begins to lift-off as the bolt load is
increased.

As mentioned previously, Jofriet et alt. investigated
the separation of a flanged connection when the bolt is
sufficiently tightened. In their work the flange separa-
tion was caused by the bolt head and nut faces pushing
inward on two flange plates. For the chip carrier, how-
ever, the separation from the heat sink is due to the stud
pulling down on the central area soldered to the stud and
prediction of the actual region is more difficult.

Since the contact area can not be evaluated easily for
this situation, the value of d or the contact area is varied
independent of the load applied to at least determine its
importance to the overall thermal resistance. To simplify
the analysis, a fixed load is chosen while contact area is
being varied.

The analysis of the chip carrier in this example prob-
lem was performed for different materials to investigate
the effect of surface hardness and thermal conductiv-
ity. Typical materials available for the comnstruction of
the chip carrier are copper, Kovar, aluminum oxide and
beryllium oxide and the properties of these materials are
summarized in Table 1. The hardness in Eq. (30) is for
the softer material and since the heat sink is assumed
to be made of aluminum its properties are also shown
in Table 1. From Table 1, it is obvious that hardness
of aluminum is used except for a copper carrier. Two
important parameters for the evaluation of the contact
conductance are the surface roughness and mean surface
slope. Since these parameters depend on the individual
surfaces from which information is not available, typical
values of ¢ = 2um and m = 0.1 were chosen for all of
the surfaces. The maximum bolt force is limited by the
tensile strength of the solder used to join and stud and
chip carrier. A solder with 97.5% lead and 2.5% silver
with a tensile strength of about 30M Pa was assumed to
be used. A bolt force of F = 200 N was chosen as it
is well below the failure force of about 1500 N for a 4
mm diameter stud. Values for the outside radius of the
bottom contact area were chosen to be 6, 9, and 12 mm
respectively.

The thermal resistance of the carrier versus thickness
is plotted in Figs. 5-8 for the different materials and the
values d of discussed previously. For all of the materials,
there is an optimum thickness which gives the minimum
resistance of the carrier for a given contact area. Note
that there is little difference in the optimum thicknesses
and minimum resistances for the different contact areas
or different amounts of lift-off being considered. Thus
with a carrier designed to optimum thickness, the thermal
designer does not have to be concerned with the effect of
lift-off.

An interesting point is that for thicknesses less than
the optimum value the resistance is actually lower for in-
creased lift-off. When the carrier is thin, lift-off is desire-
able feature which is easily attained because is not very
stiff. The thermal benefit occurs because there are two
competing effects which greatly influence the overall re-
sistance for thin carriers. The first effect is the resistance
to heat flow due to contact resistance on the bottom sur-
face. The second effect represents the potentially large
resistance to heat transfer in the radial direction when a
thin carrier behaves as a one dimensional fin. The contact

.75
.7 — d=12 mm COPPER
- 4=3 mm a=4 mm
h e a4 b=12 mm
.BS "- d=6 mm cx4 mm

CARRIER RESISTANCE (K/W)

CARRIER THICKNESS (mm)

Figure 5: Thermal Resistance of a Copper Die Carrier
for Various Thickenesses and Contact Areas

resistance is often approximated by the one dimensional
form R, ~ 1/h.A.. For given h., the contact resistance
should increase as A, decreases. However, in this case
where the total load is fixed, a smaller contact area has
increased contact pressure which causes the contact con-
ductance to rise. The net effect of increasing contact
conductance and decreasing area has little effect on the
contact resistance. However, by increasing the amount
of lift-off, the effective conduction length in the radial di-
rection is decreased and therefore the overall resistance
decreases for sufficiently thin carriers.

At thicknesses above the optimum value, the overall
resistance increases with increasing thickness but the in-
crease is small for the working range of thicknesses being
investigated. Also, the effect of lift-off becomes more pre-
dominant as the thickness is increased. Even though the
effects of lift-off become important to the resistance, it
still might be negligible because the thicker carriers are
much stiffer and do not readily lift-off.

A final consideration is the effect of the type of mate-
rial chosen for the construction of the carrier. For copper
the maximum resistance is computed as 0.75K/W while
for Kovar it is 21K/W. The maximum resistance for
aluminum oxide is 9.5K/W and for beryllium oxide it
is 1.25K/W. Thus from a thermal standpoint, copper
is the obvious material to choose. Unfortunately copper
has a much different thermal expansion coefficient than
that of the silicon die and this can lead to fatigue failure
due to stress problems. Also, if the die is to be electri-
cally isolated, copper is eliminated. Ironically, Kovar is
the optimum choice to relieve expansion problems but it
is the worst for a thermal design. Aluminum oxide and
beryllium oxide have similar expansion coefficients to sil-
icon which are not as good as Kovar but are much better
than copper. Aluminum oxide has a much smaller ther-
mal conductivity than beryllium oxide and thus beryllium
oxide is an excellent choice for high power applications.

Summary and Conclusions

In this work an approximate model to predict the
thermal resistance of a semiconductor die carrier has been
developed by considering a fundamental basis problem for
heat conduction in the carrier. An approximate analyt-
ical solution for the basis problem was derived by using
a technique for handling the mixed boundary condition.
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Figure 6: Thermal Resistance of Kovar Die Carrier for
Various Thickenesses and Contact Areas
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Figure 7: Thermal Resistance of the Aluminum Oxide
Die Carrier for Various Thickenesses and Contact Areas
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Figure 8: Thermal Resistance of the Beryllium Oxide Die
Carrier for Various Thickenesses and Contact Areas

The solution allows the thermal designer to choose opti-
mal geometric and loading criteria for obtaining the low-
est possible thermal reistance.

There is range of optimum thicknesses for different
amounts of lift-off which give the minimum reistance of
the carrier. The minimum resistance for a carrier de-
signed with the optimum thickness is not a strong func-
tion of the amount of lift-off of the carrier. Carriers with
a thickness much less than the optimum value often have
a lower resistance for increased amounts of lift-off. A
thickness well above the optimum value does not usually
increase the overall resistance substantially.
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