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ABSTRACT

A thermal analysis procedure for a semiconductor die has been developed by utilizing fundamen-
tal solutions obtained with surface element methods and arrays of images to satisly the required
boundary conditions. Non-linear thermal conductivity effects are accounted for exactly through
an integral transformation. A complex example problem shows the ability of the method to solve
real semiconductor problems with relatively little computational effort. The example problem also
indicates that silicon may be thermally more desirable than gallium arsenide for very high power
applications. . .

INTRODUCTION

The importance of thermal management in modern microelectronic equipment has become increas-
ingly recognized in recent years. In some systems which employ relatively few high performance
components with substantial heat dissipation, excellent external cooling systems have been de-
signed to minimize thermal resistance. In these systems the dies are often attached to beryllia or
copper-tungsten packages which can be contacted to copper bus bara that are connected to large
external cooling systems. Thus, in many aerospace, telecommunication, and high-power switch-
ing applications the total thermal resistance from the semiconductor die to ambient can be fairly
small. In these applications though the thermal resistance within a silicon or gallium arsenide
die now becomes the limiting factor to achieving lower overall thermal resistance. In addition to
representing a significant thermal resistance, non-uniform heat conduction within the die can also
lead to substantially different temperatures at different active circuits which can create a variety
of electrical performance problems.

Analysis of heat conduction within a semiconductor die is complicated by the three-dimensional
nature of the problem and the temperature sensitivity of the thermal conductivity of silicon and
gallium arsenide. For some small-scale systems numerical techniques such as the finite element
method or the finite volume method can be used to predict the temperature distribution. How-
ever, the complexity of many modern large-scale discrete or integrated devices restricts numerical
solutions to only “characteristic” geometries because of the excessive computational requirements
associated with the full problem.
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In this work an alternative method is developed to evaluate even large-scale systems with relatively
little computational requirements (i.e. on a microcomputer). The method combines a variety of
exact and approximate analytical techniques developed in recent years and takes advantage of phys-
ical assumptions commonly used for thermal characterization of a semiconductor die.

THEORETICAL BACKGROUND

An idealized system for heat conduction for high-power microelectronic components is shown in

Fig. 1 where a semiconductor die is attached to the base of a package which is in intimate contact

with a large heat sink (often copper). The goal of this work is to analyse conduction within

the die specifically although the resultant procedures may be applicable to a varicty of thermal
problems in microelectronics and aerospace. Heat conduction within the die is governed by the

partial differential equation

V- (KT)VT) +3§ = pep(T) o ()

rature sensitivity of the thermal properties for silicon and gallium
d ¢,(T). The internal heat gener 5 is an extremely complex

where the significant tempe
ation ¢
found in theory by solving fol

arsenide is noted by k(T') an
function of space and time and is
entire system simultaneously with
approximate ¢ by a heat flux applied at specific regions to t
in Fig. 2. This approximation is reasonable since most hea
typically 200 pm thick occurs within a few pm of the top surface.
remaijnder of the top surface is essentially adiabatic. The base of the die is mo
in this work to reflect that in high-power applications the die ia usually attached to very conductive
materials. This approximation is better for gallium arsenide which has a thermal conductivity about

r the electrical behaviour of the
the thermal analysis. In practise though it is convenient to
he top of the semiconductor as shown
t generation in a semiconductor die
Outside the heat flux regions the

one-third that of silicon. By further assuming that the sides of die are adiabatic and considering,

steady-state operation only, the governing partial differential equations and boundary conditions

for heat conduction within the die are
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FIGURE 1. Die attachment for thermal model
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delled as isothermal

Si or GaAs Die

FIGURE 2. Surface heat generation regions on die
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where g(z, y) is the heat flux distribution applied to the top surface of the die. The base temperature

T; is related to the total heat dissipati
N X .
T secording t0 ssipation Q and the thermal resistance R, from base to ambient

where
: . L w
Q= \uuo .\eua q(=z,y)dydz ™

© *At thi i
’ a_m-h”““uv“:w A”m no_:_m attempt to solve Eqs. (2)-(7) with a numerical method such as finite
Slements of _m_ e volumes for a given system. However, the computational problem associated
n-linearity of the thermal conductivity can be removed entirely by applying the Kir

choff transformation as described by Ozisi is i
e e e y Ozisik (1980). In this integral transformation, a transformed
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where T,y is some arbitrary reference temperature. In this work T,/ is assumed to be the ambient
temperature To,. In addition since excellent correlations of thermal conductivity versus temperature
exiat in the form of power laws for silicon and gallium arsenide, the thermal conductivity is assumed

to be of the form

A 0
m=ta (7) @
where ko, is the thermal conductivity of the die at ambient temperature and p is the power law

exponent for the temperature range of interest.

The transformed temperature U is thus related to the actual temperature T according to the
relationships

T="Te Tii:rm_ur (a :

where p # —1 has been assumed. The problem can be further simplified for analysis purposes by ::
introducing B

%a Aﬁ vi.
HQIQHQIII.!I I
¢ , p+1 [\Te ! . (1)

Eqs. (2)-(5) now become in terma of the transformed variable ¢
V=0 , " (13)

Ikoowwﬁﬂ-e-cv = QAH. tv A:v

2 2 a P A
2 o) = 2 (vr) = mm?.o.& = mﬂu?s\. 2)=0 (19) -

#(z,y,t) =0 (16)

This linear three-dimensional problem governed by Laplace’s equation can now be solved by s
variety of analytical and numerical techniques. For example, Fourier’s method can be used to
construct an eigenfunction solution in terms of a double-infinite series. Unfortunately though, the
computation associated with this exact solution can be tremendous since many thousands of terms
are required especially with increasing complexity of the heat flux distribution g(z,y). In practise, :
the heat flux can usually be visualized as a series of rectangular contact areas as shown in Fig. .
2. For each contact the heat flux is usually fairly uniform and certainly can be approximated a
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uniform for lack of better information. This assumption combined with the linearity of Laplace’s
equation allows analysis of this problem by combining the Surface Element Method (Yovanovich et
al., 1983) and the Method of Infinite Images (Negus et al., 1985).

To construct the solution to Eqs. (13)-(16) with this approach, the temperature rise due to a single
planar contact in an infinite space (or full space) must be evaluated. In Fig. 3 an arbitrary planar
contact area of infinitesimal thickness and heat dissipation rate 2g, per unit area is located in &
plane a distance h directly below some point P. The temperature rise ¢ at P can be written as
(Yovanovich et al., 1983)

_ 2q dA.-
&Imﬂ.ﬂ A p ' (17}

In terms of & ~onv_ polar coordinate system with origin at the centroid this becomes

g 'r\? 2rR, -1/
tl!na»8w.\~¢-+AMv -3 cos @ dA (18)

Expansion by the binomial theorem (assuming P is located far from the contact) gives

oG _ R, 1 -
&Iwaw%k .\»»k>..wwmﬂ.\>..oggk>lmﬂ.\..»qu&>+»hn\»»w»co%?&\»+... (19)

”Hro mwuo integral in Eq. (19) is simply the aresa of the contact A, and the second integral is zero
identically by the definition of the centroid. Thus Eq. (19) can be written as

. _ a
t=so |RY 2@ 2R

“

A 3cos’w-—1 3 cos?
o .\. A - 208 [ frein’ 0dA+ - (20)
A A

The remaining two integrals shown in Eq. (20) are recognizable from basic calculus as

a,u..\.ﬁ.mm - (21)

RR

Centroid, C(u,v,w)

Heat Input, 2q

V=0

FIGURE 3. Temperature rise at point exterior to arbitrary planar contact
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Ipp = \ r?sin? 0dA (22)
Pl

where I, is the polar second moment of area about the centroid of the contact and Igp is the radial
second moment of area about the axis formed by the projection of PC onto the plane z = w. After
truncating all higher-order terms, Eq. (20) can be written as

3cos?w(I, Ibaw,LlN o
mxu ” - (23)
|
|

where accuracy decreases rapidly for R/VA < 2.
t

w [A,

¢ 2xkos | R

For common shapes such as ~anoT=m_ou. simple algebraic expressions for I, and Ipp are readily
available as discussed in Negus et al. (1985). In this application all contacts are rectangular in
shape and in the simple examples to follow only square contacts are used. With this restriction it ia
easy to evaluate the temperature rise at pointa close to the contact simply by macro-discretization
into smaller square or rectangular contacts as required (increased effective 1t/v/A for the smaller
contacts). This is extremely simple to implement in a computer code and simple empirical formulae
have been developed to ensure that errors much less than 1% are achieved. If the point P at which
the temperature rise is sought lies within the rectangular planar contact, then the straightforward
algebraic expressions for the exact solution developed by Yovanovich (1976) are utilized.

At this point a simple solution approach exists to determine the transformed temperature rise of
any rectangular contact. With the linearity of Eq. (13) the temperature rises due to all contacts
in the system can be superposed. to satisfy Eqs. (13) and (14). To satisfy Eq. (15) and (16) a
theoretically infinite number of identical rectangular contacts are needed. -

Consider first the images required to satisefy Eq. (16): As shown in Fig. 4 it is thus desired to
obtain the solution for a contact releasing heat into a domain bounded by an adiabatic plane and
an isothermal plane. A single starting source denoted as number O in Fig. 4 and assumed to
have positive heat flux applied to it satisfics the adiabatic plane criterion but not the isothermal
plane. If an image with negative heat flux is assumed to be located directly below the starting
source as shown by image number 1 in Fig. 4, then the superposition of both contacts gives the
isothermal plane as desired. However the adiabatic plane no longer exists. Thus a second image
(number 2) also of negative heat flux must be placed above the starting source as shown in Fig. 4
to restore the adiabatic plane but unfortunately also destroy the isothermal plane. This procedure
of alternating images above and below the source must then be repeated to form an exact solution
for ¢(z,y,z) in the solution region shown in Fig. 4 in the form of an infinite series of images. In
practise the series obtained is extremely slow to converge and often requires several thousand terms
to obtain error less than 1%. However, this problem can be completely avoided by applying the
Euler transformation to the series (Olver, 1974) which reduces the required number of terms down
to 8-10 typically. The Euler transformation is excellent from a computational viewpoint because
it not only reduces the number of terms to be evaluated substantially, but also accomplishes this
goal with virtually no extra multiplications (mainly subtractions).

Superposition of all contacts and required images now satisfies Eqs. (13), (14) and (16). The final
boundary condition of adiabatic sides on the die (Eq. (15)) can also be satisfied with the infinite
image approach. The required distribution of images is shown in plan view in Fig. 5. Note that
each image of the starting source has identical heat flux applied to it and each consists of a series
of infinite images in the z direction as previously described for the starting source. In practise even
the first row of images shown in Fig. 5 rarely makes any significant contribution for the points of
maximum temperature rise within the die due to the relative thinness of a typical semiconductor
die. Thus these images, though available in the computer program associated with this work, are
needed only occasionally.
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FIGURE 4. Images required above and below die
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FIGURE 6. Images required along sides of die

With the images described an exact solution for the transformed temperature rise ¢ ..r-.o:wr.o:«
the die is now available since Eqs. (13)-(16) are all satisfied. This solution can be visualized

conceptually as having the form
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In summary, $ija(-) quaaa:ol the temperature rise contribution due to an individual source. By

assuming that square contacts are used, ¢i;x in then o function only of the coordinates of the desired
point P(z,y,2), the coordinates of the centroid of the source or image contact Q?...,.fc..;_s.g.b.
the width a; of the i*h square ¢ontact and the heat flux g; applied to the {*A contact in the system.
N represents the number of contact areas on the surface of the semiconductor die and can poten-
tially range from one to several thousand. The first infinite summation (j = 1 to o0 ) represents
the images above and below the die and the practical upper bound on the sum is typically 8-10 as
discussed previously. The second infinite summation {k = 1 to o0o) refera to the images shown in
Fig. 5 which are usually either not required at all or only contribute significantly from a few in the
first row. Each evaluation of ¢;;x is given by simple algebraic expressions derived either from Eq.
(23) for pointa P(z,y, z) exterior to the contacts or from the work of Yovanovich {1976) for points
within a rectangular planar contact. After the transformed temperature at any point is determined
by applying Eq. (24), the real temperature rise can be readily calculated from Eqs. (10) - (12).

EXAMPLE RESULTS

t conduction problem can be demon-

The application of the preceding methodology to an actual hea
<t distribution of this semiconductor

strated by considering the geometry shown in Fig. 6. The conta:
die has not been derived from any real application in particular but is indicative of the complexity

possible in practise. Quantitative results for the temperature rise in the die shown in Fig. 6 have
been computed for the dimensions shown with die thicknesses of 250 pm and 150 gm and die ma-

L = 1500 um _

1000 um —-—-———"’\

I

X

FIGURE 6. Surface contact distribution of die for example problem

{
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terials of silicon and mL::m: arsenid
| ) e. The thermal conductiviti ili i i
are 515& to be given by the power laws (Maycock, ucmq.w fities of silicon and gallium areenide

w.wm = N@OOH.I-.?« As\osxv Awm.v

kGaas = 1707108 w
(W/emK) )

M...”u_nu—m MM” ”ﬂMMMOMOWQHv%;»:; within ora.:o::w_ operating range of these materials (300 < T <
beryllia bass 5w thick Ar.moo K .no_.. wa.::.:— argenide). The die is assumed to be attached to a
beryllia ! m.mm. o ick which is in intimate contact with a large copper heat sink as originally
hown. in Fi ..5&..5 E%-..u:wo-:o:n has an estimated external resistance of R, = 2(K/W) for
e e oixs and s ’._,:n ient 3532&.»:3 of Too == 300 K has been assurned. The actual results
of the therrm nalysis for the _..oE. different cases are given in Table 1 for a total heat dissipati
assumed to be uniformly distributed over all the contact areas shown in Fig ﬂ Mm

Oom_.”wommv_ Contact Temperature (K)

ilicon i i

Contact Number || t=250 sem | t=150 um oHMm.M_““”. >MMM=«.%¢ m
1 400 388 566 m-at
2 402 300 678 521
3 401 389 571 518
4 404 391 584 525
5 409 394 606 538
8 408 392 601 531
7 407 391 597 526
8 407 391 597 627
9 408 393 603 537
10 410 393 608 637
11 410 393 611 535
12 421 400 663 565
13 419 398 651 556
i4 418 308 649 558
15 413 394 822 542
18 427 404 692 583
17 427 403 691 6578
18 432 408 716 6594
19 414 395 628 544
20 424 402 675 573
21 431 407 709 595
22 431 407 Ti4 695
23 429 405 700 589
24 415 398 632 548
25 439 412 756 620
26 439 412 755 618
27 424 401 676 571
28 433 408 721 601
29 441 413 765 626
30 441 413 765 625
31 435 409 732 607

TA . .
BLE 1a. Centroidal contact temperature distribution for example problem {contacts 1-31)
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Centroidal Contact Temperature (K)
. Silicon Gallium Arsenide
Contact Number || t=250 um | t=150 pgm || t=250 pm | t=150 pm

3z 429 405 701 588
33 435 409 132 605
34 437 ' 410 743 611
35 435 ! 408 732 601
36 431 ., 405 714 589
37 ar 7| 308 643 550
38 410 392 611 530
39 414 © 395 631 544
40 414 395 631 545
41 427 404 602 583
42 430 i 408 707 591
43 427 , 402 690 576
44 421 i 399 660 560
15 424 I 401 677 571
16 420 I 399 656 561 X
47 413 , 395 623 544
48 406 390 502 523
49 407 111 599 528
50 414 . 3986 629 549
51 421 400 662 567
52 416 ©397 639 553
53 14 | 398 630 547
54 115 397 633 552
55 411 395 615 543
56 408 394 603 538 ,
57 405 . 301 590 526
58 395 385 545 501
59 398 387 557 509
60 401 © 388 571 515
61 399 | 388 560 513
62 306 385 548 504

TABLE 1b. Centroidal contact nuoava;::o distribution for example problem (contacts 32-62)

results reported in Table 1 represent centroidal temperatures in K corresponding to the contact
numbering scheme shown in Fig. 6.

These results indicate a tremendous dilference in the thermal response of silicon and gallium ar-
senide for a high-power application. The temperature rises on the silicon die are obviously much
lower than those on the gallium arsenide die of same thickness. This can be attributed first to the
higher thermal conductivity of silicon (ks; ~ 2.5kgaa, for same T) and second to the non-linear
conductivity effect of decreasing thermal conductivity with increasing temperature. As a result of
these effccts the peak internal thormal resistance for the die alone (based on maximum die temper-
ature rise divided by total heat dissipation rate) is approximately 21 (K /W) for gallium arsenide
and only 5 (K/W) for silicon when a 250 pm thick die is used. When a thinner die of 150 uym
is considered, this resistance is reduced substantially to 14 (K/W) and 3.7 (K/W) respectively.
Thicker dies are generally favoured for ease of manufacture but these results clearly show that they
are thermally undesirable for high-power applications.

s

Finally, all aoiv:;omcun associated with Table 1 were performed in BASIC on an IBM-PC with
a total execution time of approximately one hour. With the new CAE workstations under devel-
opment, execittion times 2 orders of magnitude lower than that of the IBM-PC are possible which

would make thermal analysis of this type very attractive as a CAD tool for semiconductor design
engineers.

CONCLUSIONS

An efficient methodology to compute temperatures within a semiconductor die has been devel-
oped. This method takes advantage of the surface heating nature of the problem and the usual
rectangular shape of the heat generation zones. The approach is based on fundamental solutions
to Laplace’s equation obtained by surface element methods. The boundary conditions describing
the finite geometry of the die are then satisfied by a theoretically infinite series of images. The
extreme temperature dependency of common semiconductors is also accounted for exactly through
‘an integral transformation:

The utility of the method has been illustrated by examining an example problem with a complex
surface contact distribution. The results obtained show superior performance for silicon over gal-
lium arsenide for high power applications even with the higher temperature capabilities of gallium
arsenide devices. Therefore the most important application for this method at this time may be
in the layout of gallium arsenide circuits since the internal resistance is extremely significant and

the assumption of an isothermal base for the die is more valid for a lower thermal conductivity
semiconductor.

The computational efficiency of this method makes it ideal as a CAD tool for designers involved
in the circuit layout of semiconductor dies. In addition, thermal analysis can be coupled with
electrical CAD tools as demonstrated by Negus et al. (1987) to provide capability for complete
thermal-electrical analysis of semiconductor devices.
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NOMENCLATURE

o — width of *» square contact

A — area of arbitrary planar contact

I, — polar second moment of area of arbitrary planar contact

Inn — radial second moment of area of arbitrary planar contact
k ~ thermal conductivity

koo — thermal conductivity at ambient temperature

L ~ length of die

P ~ power law parameter for thermal conductivity correlation




q — heat flux at surfacé
g - uniform heat flux applied to i** aquare contact
Q - total heat dissipation rate of die
R ~ distance to centroid of arbitrary planar contact
Reo — thermal resistance from base of die to ambient
t — thickness of die
T — temperature (always in K)
T ~ base temperature of die
Too —~ ambient temperature
U - transformed temperature
w - width of die
z,y,2z - Cartesian coordinate system
I
Greek Symbols |
P - distance to elemental area on arbitrary contact
¢ — transformed temperature for homogeneous problem
w ~ projection angle from arbitrary planar contact to point of
temperature calculation
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A’ numerical finfte-difference study has been carried out for laminar natural

convection cooling of an array of chips mounted on a vertical wall of a
three-dimensional rectangular enclosure filled with Fluorinert FC 75, a
dielectric 1iquid. A1l enclosure vertical surfaces are insulated except those

locations occupied by the thips, while the top and bottom horizonta) surfaces
are maintained constant at the room temperature. The enclosure is taken to be
144 mm Tong and 120 mm high, and the width is allowed to vary between 9 mm and
30 mm. Nine protruding chips, each 24 mm in height, 8 mm in width, and 6 mrm in
protrusfon thickness and dissipating 0.4 w are uniformly placed on a vertical
wall, The finfte-difference calcualtions are based on primitive variable,
micro-control volume, staggered cell, and non-uniform grid algorithm with
implementation of the QUICK scheme to minimize false diffusfon. Full property
variation effects are accounted for, Results are given in terms of chip surface
temperatures, flow patterns, and isotherms, and are then used to asses the
physical mechanisms responsible for the effects of varying enclosure width.

~ INTRODUCTION
Immersion cooling of electronic packages with dielectric fluids by smmam.ow
natural convection has received much attention recently because of its

potentially high-dissipation capabilities, together with such added advantages
as no noise and high reliability. In many applications, the electronic devices
being cooled are mounted on walls and encased in closed enclosures filled with
dielectric Viquids, and the cooling is essentially by natural convection. Much
more basic data than currently exists are needed as inputs to the design of such
cooling systems for optimum thermal performance. The primary reason for ﬁ:*m.*m
that several physical features unique to the natural-convection immersion
cooling problem have not been addressed in the vast literature on the phenomena
of buoyancy-driven enclosure flow and heat transfer according to the recent
reviews by Hoogendoorn (1986), deVahl Davis {1986), and Yang (1986), nor
adequately by recent research 1in the field of electronic cooling (Bar-Cohen
1986). These unique features include mounting microelectronic chips on vertical
walls which often protrude into the enclosure in the form of regular arrays.

K. V. Liu is currently at the Argonne National Laboratory, Agronne, 1L 60439.
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