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ABSTRACT

Expressions are developed for the thermal resistance of an
elemental heat flow tube with variable thermal conductivity
near the contact interface. This allows the application of the
theory of conforming rough surfaces to predict the thermal
contact resistance at the interface of dissimilar metals where
mass diffusion processes have produced a continuous alloy
distribution. The results are presented in the form of dimen-
sionless thermal and geometric constriction parameters which
are functions of contact geometry, boundary conditions and
thermal conductivity distributions. An example application
of a copper-nickel diffusion interface is given.

NOMENCLATURE

a — contact area radius

An — series coefficients for temperature solution
in the layer
b — radius of heat flux tube
B, — series coefficients for temperature solution
in the layer
C1,C: — constants in the expression for the conductivity
distribution within the layer
Dy -~ constant for substrate temperature solution
D, ~ series coefficients for temperature solution
in the substrate
Eo,E, - constant for the layer temperature solution
f(-) - flux distribution over the contact
F, — series coefficients for radial coordinate solution
IL(-) - Modified Bessel function of first kind, zero order
Ii() - Modified Bessel function of first kind, first order
Jo(-) - Bessel function of first kind, zero order
Ji(-) - Bessel function of first kind, first order
ky ~ variable thermal conductivity of the layer
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Tx=0

thermal conductivity of the substrate
thermal conductivity at the surface
Modified Bessel function of second kind,
zero order

Modified Bessel function of second kind,
first order

uniform heat flux over the contact

total heat flow rate into the contact
cylindrical coordinate system

unit vectors in the r and z direction
constriction resistance of the heat flux tube
layer thickness

temperature distribution in the layer
temperature distribution in the substrate
average contact temperature

average temperature of the z = 0 plane

Greek Symbols
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relative layer thickness (= t/a)

Gamma function

roots of J1(6,) =0, (8, = A,b)

dimensionless contact size (= a/b)

function defined in Egs. (46} and (55)
conductivity ratio (kg /kz)

roots for Jy(A,b) =0

parameter to describe flux distribution

over the contact

function defined by Egs. (34) and (54)
dimensionless constriction factor )
dimensionless constriction factor for uniform flux
dimensionless constriction factor for equivalent
isothermal flux

dimensionless constriction factor for uniform
flux (no layer)

dimensionless constriction factor for equivalent.
isothermal flux (no layer)




Subscripts

n - series coefficients

1 - regionl

2 -~ region2

sfc ~ surface

¢ — circular contact or constriction
INTRODUCTION

Much research has been devoted to examining the tem-
perature drop that occurs at the interface of two contacting
solids. Statistical modelling of the contact surface is used to
describe the surface topography and predict the contact ge-
ometry when two surfaces are held together under a normal
load. From the contact geometry an average contact spot
area and contact spot density are used to determine the di-
mensions of a fundamental contact cell or elemental heat flux
tube. The thermal constriction resistance of the elemental
heat flux tube is then used to predict the overall contact re-
sistance.

Under the assumptions of vacuum and negligible radiation
heat flows through discrete contact spots at the interface of
rough surfaces as shown in Fig. 1. However if an intersti-
tial fluid is present and if radiation effects are of concern,
then heat transfer in these modes can be modelled as acting
in parallel with conduction through the contact spots. For
many practical problems involving contact resistance conduc-
tion through the discrete contact spots is the predominant
mode of heat transfer.

Enhancement of heat transfer across the interface of two
contacting solids can be achieved by adding a thin conduc-
tive layer. Many techniques are used to add the conductive
layer such as the application of thermal greases, insertion of
soft foils, or metallic coatings on the surfaces. Antonetti and
Yovanovich (1985) developed expressions to predict the con-
tact resistance of two conforming rough surfaces with thin
metallic coatings. Negus et al. (1985) presented a solution
for circular contact on coated half-space. In both cases it was
assumed that the layer under the contact is of homogeneous
thermal conductivity.

For many applications where heat is transferred across the
interface between two different contacting solids the diffusion
of one solid into the other will occur over a sufficient period
of time. Figure 2 shows the percentage of a hypothetical ma-
terial A diffused into another material B in a diffusion zone
surrounding the contact interface. As the percentage of A
decreases from 100% on the left side of the interface to 0% on
the right side a continuous alloy distribution is created. Since
most different alloys of two materials are known to have dis-
similar thermal conductivities, a continuous distribution of
the thermal conductivity from some “bulk” value within ma-
terial A to some “bulk” value within material B must exist.
Branecki (1983) investigated this phenomenon for the spe-
cific case of a copper-nickel interface and observed a thermal
conductivity distribution as shown in Fig. 3. Such a thermal
conductivity distribution could be modelled approximately
as several layers of homogeneous materials but this becomes
impractical for large variations and represents an extremely
tedious problem to solve mathematically.

A major improvement is to assume that the conductiv-
ity varies linearly from the interface to the substrate. The
adoption of a linearly varying region of thermal conductivity
should allow good engineering estimates of the actual thermal
contact resistance. By using conventional theory, an elemen-
tal tube flux with a layer of linearly varying thermal conduc-
tivity as shown in Fig. 4 is examined. Flux specified boundary
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Figure 4: Circular Elemental Heat Flux Tube

conditions are used over the circular contact to avoid solving a
mixed boundary value problem. Separability of this problem
with spatially varying thermal conductivity has been shown
to be possible in the recent work of Negus and Yovanovich
(1986). Results are presented for a uniform flux and equiv-
alent isothermal flux to provide upper and lower bounds on
the expected resistance.

. THEORETICAL DERIVATION

The elemental heat flux tube shown in Fig. 4 contains
two regions. Region 1 is a layer of thickness ¢ with a thermal
conductivity which varies linearly from a surface value kg, =
C\C; to some “bulk” value ky = C{t + C;) of the substra.te
The second region is a homogeneous substrate with constant
thermal conductivity k; = Cy(t + C3).

Under the assumption of steady state conduction, the gov-
erning partial differential equations and boundary conditions
are

div- (kigrad T}) =0 (1)
Vsz =0 (2)
M0, =220,5)=0 220 3)
T T
— = —= = >0 4
7 (6, 2) Or (b,2) =0 z2 (4)
0T, Q
—k26 (r,z—»oo)=7r—b2- 0<r<b (5)
LT =321 0<r<b (6)
Ti(r,t) =Ty(r,t) 0<r<b (M
oT;
stBI(r, 0)=f(r) 0<r<a (8)
Tiro)=0 a<rso ©)
where the vector operators are
19 9 .
== — 10
div = r8rr+ azz (10)

3, d '
grad = i 5;2: (11)

19 a o2 )
Vi=z—|r— —
rdr ('w) + 022 (12)
and f{r) represents the heat flux distribution over the circular
contact on the top surface of the flux tube.
In region 2 an expression for the temperature distribution

is determined by using the separation of variables technique
and considering the boundary conditions of Egs. (3-5) to give

Qz

Tg(T, Z) = Do —_ k bz

+ZD Jo(Anr)e % (13)

where A,.b are the roots of
Ji(Aab) =0 (14)

and Q is the total heat flow rate in the flux tube.
The governing partial differential equation in region 1 is
19 6T1 Ty
ror

-+ .l.a_k_:_l_@ — 0 (15)
8z ' ky 8z 9z

where k; = Ci(z + C;) is the thermal conductivity of the

layer for any axial position z. By assuming that the solution

is separable the temperature distribution has the form
Ti(r,z) = R(r) - Z(2) (16)

and then Eq. (15) becomes
1. 1d(dR 1 (d*Z
R rdr\ dr Z \ dz? '

Constriction Factor For A Resistive Layer

1 dk, dZ

_ 2
ky dz dz) =0,£3% (17)

Before solving Eq. (17) the behaviour of the ordinary dif-
ferential equation in z must be examined more closely. The
term dk,/dz in Eq. (17) represents the slope of the thermal
conductivity distribution in the layer. When the surface con-
ductivity is less than the substrate conductivity the slope is
positive and there is a resistive layer on top of the substrate.
A negative slope implies a conductive layer on top of the sub-
strate and thus 1 dk

ldk 1 (18)
kl dz z+ Cz
has a sign change. The axial coordinate z is always a pos-
itive number and therefore the value of C; is negative and
larger than z for a conductive layer. Due to this sign change,
solutions are developed for the separate cases of either a con-
ductive or a resistive layer on the substrate.

For the case where region 1 represents a resistive layer the
value of C; is positive and therefore the solution is obtained
in a straightforward manner as follows. If the constant in Eq.
(17) is chosen to be +AZ, a trivial solution results. However,
both —A? and zero give non-trivial solutions and the true
solution is obtained by superposition of both.

Consider the case where the separation constant is zero.
The boundary conditions of Eqs. (3) and (4) require R(r) =
constant, but in the z—direction

2 (k,fi) 0 (19)

dZ
Cl(z + Cz)'&'z— = Eo (20)




E
Z(z) = ZIn(z + Co) + By (21)
1
For the case of the separation constant being —A?, the
result is two ordinary differential equations with respect to r
and z

1d [ dR

e MR=0 22

rdr ( dr) + (22)
&z 1 dZ
- -AZ=0 23
dz?  z+C, dz (23)

After considering the boundary conditions of Egs. (3) and (4)
the solution to Eq. (22) is

= 3 Fado(Aur) (24)

A change of variable is introduced by letting z = A(z + C3)
which results in a Modified Bessel’ s Equation with the solu-

o Z(z) = A Ko(AMz + C2)) + B'I(A(z + C2)) (25)

From the superposition of Eq. (21) and the combination of
Eqgs. (24) and (25), the temperature distribution in region 1
is given by

Ty(r,z) = —E—ln(z+ Ca) + Ey + Z [AnKo(An(z + C2))

n=1

+Bplo(Mn(z + C2))] Jo(Anr) (26)

Before applying the non-homogeneous boundary condi-
tion on the z = 0 plane, B, must be eliminated by invoking
the perfect contact conditions of Eqgs. (6) and (7). The con-
dition of Eq. (7) gives

Qt

k iy + E [A Ko(Aﬂ(t + Cz))

Eo e+ o) + By - Do+ 25
Cy

+ Balo(An(t + C2)) =D Jo(Aar) =0 (27)
Since Jo(Anr) is generally non-zero and varyingover0 < r < b
then ot

=0
273

g-‘l Int+Ca) + By = Do+ s (28)
1

AnKo(An(t + C2)) + Balo(An(t + C’z)) — D™ =0 (29)

Similarly the condition of Eq. (6) gives
Z An
B.Li(Ana(t + C3)) + Dae|Jp(Aar) =0 (30)

and again since Jo(A,7) is generally non-zero and varying over
0<r <bthen

Eo

Ci(t + C,) k,vrbz + [=AaKn(t + Ca))+
1

Ep
Cy (t + Cz)

Q@ _
+ kamb?

(31)

— ALK (An(t + C2)) + Baly(An(t + C2)) + Dne™** =0 (32)
From the addition of Eqs. (29) and (32):

B, = ¢nAn (33)

where K (An(t + C3)) = Ko{Aa{t + C2))

L(Aa(t + C2)) + L(Aa(t + C2))

On = (34)
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and the temperature distribution of region 1 can be expressed
as

E o0
Ty(r,2) = C_‘: In(z + C;) + Ey + 3_ An [Ko(An(z + C3))
n=1

+¢nIo(A,.(Z + Cg))] JO(A,.") (35)

The temperature distribution of Eq. (35) is substituted in
the flux boundary condition of Egs. (8) and (9), multiplied
by rJo(Amr)dr and integrated from r = 0 to r = b to give the
left hand of Eq. (8) as

) 0
‘—EO/; rJO(Amr)dr + C,C, Z An’\n[Kl(’\"Cz)
n=1

= ¢ad1(AnC)] /ob rdo(Anr)Jo(Amr)dr

Since J;(0) = Ji{Anb) = O the first term of Eq. (36) sim-
ply integrates to zero. By using the orthogonality of Bessel
functions the second term is zero for A\, # A, and after sub-
stituting the right hand side of Eq. (8) the expression is

(36)

b
C1C2AnAn [K1(AnC3) — $nT1(AaCy)] /0 rJ2(Anr)dr =

/o * rJo(Anr) £ (r)dr (37)

which gives
2/ rJo(Aar) f(r)dr
C1CaAnb2 I (Anb)[K1(AnC2) — 9ali(AnC2)]

The thermal resistance for the heat flux tube is given by
the definition

An =

(38)

Tc - Tx=0
Q
where Q is the heat flow crossing the top surface, T, the aver-
age temperature over the contact spot and, T,=o, the average

temperature over the top of the flux tube. A dimensionless
constriction factor is defined as

R, = (39)

Y = dkg.aR, (40)
The average contact temperature is
_ 1 L

= ;E/; 27”’T1(7',0)d1' (41)

or after substituting for T(r,0) and integrating

T‘c = & ln(Cz) + E1+
G
2J:(Ana

3 4n[Ko(ACa) + 6ula2Ca) 2222 (g5

n=1 n

The average temperature over the top surface of the flux tube
is

Tyo = ———/ 27Ty (r,0)dr (43)
or after substituting for Ty(r,0) and integrating
. E
Tomo = == 1n(Cs) + Ey (44)
195}




Thus a general expression for the constriction factor after
substituting Egs. (39), (42), and (44) into Eq. (40) is given
by

16 @ 0T1(A0) [ rdo(Aar) 1(r)dr

D W LN E[EW) (#2)
where
_ Ko(AnC2) + n1o(AnC3)
I = R (nCa) =l () (46)
Q= Ab 2nrf(r)dr (47)

Constriction Factor For A Conductive Layer

As mentioned previously a different solution is obtained
for the resistive or conductive layer on top of the substrate.
For the conductive layer case, the ordinary differential equa-
tion with respect to r does not change but the differential
equation with respect to z changes because the slope of the
conductivity distribution k; becomes negative. The quantity
z+ Cy will become negative for the conductive layer case be-
cause C; is a negative quantity with a magnitude greater than
z in region 1. Since the logarithmic and Bessel functions of
Eq. (35) are only valid for positive arguments then a different
solution must exist for the case of a conductive layer on the
substrate .

Consider the differential equation for the case of the sep-
aration constant being equal to zero. By starting with Eq.
(20), a new solution is derived as follows:

dzZ —Eo
dz ~ Ci(~z-Cy) (48)
_ Eod(—z)
[z = R (49)
Z= % In(~(z + C2)) + By (50)

The next case to consider is when the separation is equal
to —A%, An approach similar to the one for a zero separation
constant is used. A first step is to use a change of variable
by letting v = —z and using the fact that

dZ _-dZ &2 _d'z

(51)

dz dv ' dz? T dv?
then Eq. (23) is changed to
&z 1 dZ
— e Z = 52
dvi  v—C,dv A2 =0 (52)

The solution used previously is applied except that for this
case z = A(z+C,) is replaced by z = A(v—C,) which results in
the same Modified Bessel’ s Equation and solution as before .
After substituting the expressions for z and v and superposing
the solutions as above, the temperature distribution in region
1 becomes

Eo
Ti(r,2) = C. In(—(z+ C3)) + £y
f: An [KO(-An(Z + Cz)) + ¢,.Io(—/\,.(z + Cz))] Jo()\,.r)

! (53)
but for the conductive layer case
b = Ki(=Aa(t + C2)) + Ko(=An(t + C2))
" L(=2a(t + C2)) — L(=2a(t + C3))

(54)
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An expression for the constriction factor is developed using

the procedure discussed earlier. The expression for the con-

ductive layer case is the same as the resistive layer case given

by Eq. (45) except

= KO(—AnCZ) + ¢nI0(—AnC‘.')
$ndi(—AnC2) — K1 (—AnCy)

Constriction Factor for f(r) = (1 — (r/a)?)#

On

(55)

Another general expression for the constriction factor ¥
defined by Eq. (45) is obtained for the case of
r

f()=eo1-())* px-1 (56)

Yovanovich (1975) presented an expression for the constric-
tion factor of an unlayered flux tube with the same fux distri-
bution given by Eq. (56) which has the same integrals as Eq.
(45). By using the integrals evaluated by Yovanovich (1975)

the constriction factor for the flux distribution in Eq. (56) is
given by

X «9,,.71 (5,,,6) J“+1 (6,,5)

16
= “
¥ “(/z+1)2 T{u+1) 53512 (6,)

(57)
n=1
where I'(u + 1) is the Gamma function, ¢, the dimension-
less contact size a/b, 6, = Anb, the roots of Jy(5,) = 0, and
Ju+1(6n€) the Bessel function of the first kind of order u + 1.
Two particular cases are of interest because these provide
the upper and lower bounds of the constriction factor. If m
is chosen to be zero then there will be a uniform flux applied
over the contact and the expression for the constriction factor
is
b = 16 i 0,J2%(6,€)
17 me I 83J2(5,)
By letting u = —1/2, the special case of an equivalent isother-
ma] flux applied over the contact exists which is the exact
flux distribution for an isothermal contact on a homogeneous
half-space. This flux distribution is used to approximate an
isothermal boundary condition over the contact to avoid the
solution of a mixed boundary problem. The expression for
the constriction factor when p = —1 /2 is

_ 8 X 0,.J1(bn€)sin(bn¢€)
G PR AN

(8)

(59)

PRESENTATION AND DISCUSSION OF
RESULTS

The dimensionless constriction factors %4 Or tr are a func-
tion of six independent parameters

¢ = w(as b,t, kaC’ k2,“) (60)
Three dimensionless parameters are defined as
€ = afb (61)
8 = t/a (62)
K = kaC/kz (63)

to reduce the number of independent parameters from six
to four. In the presentation of the results, a value of ¢ =
0.1 is chosen while the conductivity ratio, the relative layer
thickness, and the contact boundary conditions are varied.
The expressions for the constriction factors in Egs. (58)
and (59) have only been partially non-dimensionalized be-
cause the arguments of the expressions for 4, and subse-
quently ¢, are still in dimensional form. By using the di-
mensionless parameters defined in Eqs (61-63) the arguments




.form as

of the Modified Bessel's functions are given in dimensionless

6.0¢
/\n(t'i-Cz) = l—f; (64)
bn
ACy = lf 6: (65)

for the case of a resistive layer, and for the case of a conductive
layer,

n
“A(t+Cp) = n_ﬁel (66)
-Gy = i_’i - (67)

In order to evaluate the effect of the layer, the relative
constriction factors v¥,/v,. and wr/yr. are plotted against
the relative layer thickness 3. The constriction factors g,
and tp,. represent the constriction factor with no layer when
there is a uniform flux and equivalent isothermal flux ap-
plied over the contact. The numerical results for the plots
were computed quickly and efficiently using a program writ-
ten with Microsoft Fortran on an IBM-PC. Results for the
uniform flux case are presented in Fig. 5 and the results for
the equivalent isothermal flux are presented in Fig. 6.

From Figs. 5 and 6, it is obvious that the constriction
factor decreases for a resistive layer while the opposite effect
occurs for a conductive layer. For thin layers, as x — oo
the constriction factor becomes infinite because the substrate
appears as an insulated boundary condition for a conductive
layer. The constriction factor decreases for £ < 1 because
the heat does not spread out as much as in the unlayered
flux tube. Therefore the effective heat path length is reduced
which causes a reduction in the constriction factor. Even
though the constriction factor decreases when a resistive layer
is added to the flux tube, the thermal resistance R, increases
as expected. This can be easily seen from the definition of
the constriction factor in Eq. (40). For a fixed geometry, as
the surface conductivity is decreased the constriction factors
decrease, but not as quickly as the surface conductivity. Since
a decrease in the surface conductivity is more significant than
the decrease in the constriction factor, then the thermal re-
sistance R, must increase.

The results presented in Figs. 5 and 6 are for two differ-
ent flux specified boundary conditions over the contact, yet
the plots show the same trends. To investigate these results
further the percentage difference between the relative con-
striction factor ,/1,. and ¥r/yr. are presented in Table 1
for various values of x and 8. The maximum percentage dif-
ference is 3.6% for k = 100 and 8 = 0.1. With such a small
error the conclusion is that boundary conditions have little
effect on the primary effect of adding a layer to the flux tube.
The expression for the constriction factor 7 in Eq. (59) re-
quires thousands of terms to obtain a converged result for
€ < 0.1. The values of 7, and ¥, are easily computed using
the correlations presented by Negus and Yovanovich (1985).
Since the value of 1, requires typically 200 terms, an approx-
imate value of 1y is quickly evaluated by computing ¥, from
a simple correlation and multiplying by the ratio ¥,/v,..

A hypothetical problem is presented to show the effect
of a resistive layer on the constriction factor. The case of
a copper-nickel diffusion zone is analyzed where the surface
of the contact is assumed to be 20% nickel and 80% copper.
From the Metals Handbook (1979), the thermal conductivity
of the surface is 36 W/(m- K), the conductivity of pure copper
is 391 W/(m - K) and the conductivity of pure nickel is 90
W/.m - K). This gives a conductivity ratio x = 0.092 for
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. B | ¥r/ur. | ¥i/e | Percentage
Difference

0.01 0.01{ 0.0106 0.0105 0.3

0.10 | 0.0156 0.0154 1.4

1.00 | 0.0564 0.0567 -0.5

10.00 | 0.2586 | 0.2642 -2.2

100.00 | 0.6827 0.6913 -1.3

1000.00 | 0.9437 0.9459 -0.2

0.04 0.01 { 0.0416 0.0415 0.3

0.10 | 0.0550 0.0546 0.7

1.00 | 0.1554 0.1578 -1.5

10.00 | 0.5122 0.5216 -1.8

100.00 | 0.8803 0.8847 -0.5

1000.00 | 0.9851 0.9857 -0.1

25.00 0.01 | 21.7284 | 21.6610 0.3

0.10 | 11.3402 | 11.0676 24

1.00 | 2.4820 | 2.4059 3.1

10.00 | 1.0716 1.0684 0.3

100.00 | 1.0062 1.0059 0.0

1000.00 | 1.0006 1.0006 0.0

100.00 0.01 | 65.7028 | 64.7848 1.4

0.10 | 19.0476 | 18.3760 3.5

1.00 | 2.7219 2.6302 3.4

10.00 | 1.0744 1.0710 0.3

100.00 | 1.0064 1.0061 0.0

1000.00 | 1.0006 1.0006 0.0

Table 1: Percentage Difference Between yr/¥r. and g/t
for e = 0.1

the copper side of the interface and & = 0.40 on the nickel
side. A typical interface was investigated by Branecki (1983)
where the diffusion zone extended approximately 100 um into
the nickel side and approximately 300 um into the copper
side. For a typical contact radius of 5 um the relative layer
thickness for the copper side is 3 = 60 and for the nickel side
B = 20. The relative contact size is rarely larger than 0.3
therefore a value of 0.1 is assumed which gives constriction
factors for the unlayered case of ¥, = 0.9401 and 7. =
0.8549. The constriction factors for the nickel side are ¥, =
0.9006 and wr = 0.8217 and the relative constriction factors
are /% = 0.9580 and ¥r/9r. = 0.9561. For the copper
side of the interface, ¥, = 0.8608 and yr = 0.7840 which
gives values of the relative constriction factors of /¥, =
0.9156 and r/¢r. = 0.9123. In this case of a relatively
thick layer, there is only a 5-10% reduction in the constriction
factor even though the conductivity ratios are quite small. If
a large enough diffusion zone exists it has little effect on the
constriction factor even for large differences in the surface and
substrate conductivities.

However, if the diffusion zone is very thin, there is a signifi-
cant effect on the constriction factor. Consider a case similar
to the previous one except that the relative layer thickness
is not as large as before because the time allowed for the
diffusion process has been shortened significantly. For exam-
ple, consider a problem where the diffusion time is shortened
to give a diffusion zone on the nickel side of only 5 um or
B =1 and 14 um or 8 = 2.8 on the copper side. The con-
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ductivity ratios do not change because it is assumed that —
there is an alloy of 20% nickel and 80% copper at the in-
terface and a value of ¢ = 0.1 is still assumed. After car-
rying out the same computations as before except for a dif-
ferent g, the constriction factors for the nickel side of the
interface are 1, = 0.6077 and ¥r = 0.5495 and for the cop- —
per side ¢, = 0.4205 and ¥ = 0.3769. The relative con-
striction factors for the nickel side of the interface are now
Yq/tqe = 0.6464 and ¥r/¢¥r. = 0.6394 and for the copper
side 1 /1e. = 0.4473 and 7 /1. = 0.4486. From the rela-
tive constriction factors given above it is obvious that there —
is a significant drop in the constriction factor for thin resis-
tive diffusion zones but an increase in dimensional thermal
resistance.

SUMMARY AND CONCLUSIONS —

A general expression for the thermal constriction factor of
a circular flux tube with a layer of linearly varying thermal
conductivity has been determined for a circular contact with
flux specified boundary conditions by using the separation of —
variables technique. Another general expression was devel-
oped for a heat flux distribution ¢ = (1 — (r/a)?)* over the
contact. Expressions for the uniform flux (¢ = 0) and equiv-
alent isothermal flux (4 = —1/2) boundary conditions were
presented.

The values of the constriction factor could be obtained
by using a finite difference or finite elements method but it
would be very costly to perform a parametric study. By using
analytical techniques, values for constriction factors can be
obtained quickly and efficiently even on a microcomputer.
Thus the effects of contact geometry, boundary conditions
and the thermal conductivity ratio can be studied effectively
by the thermal designer. o

A layer created by the diffusion process can raise or lower
the constriction factor depending on whether it is a conduc-
tive or resistive layer on top of the flux tube. By having a
resistive layer on top of the flux tube, the constriction fac-
tor decreases and the opposite effect occurs for a conductive —
layer. For a given conductivity ratio, a thick layer will raise
or lower the constriction factor, but the effect is small com-
pared to a thin layer, which causes a substantial increase or
decrease in the constriction factor. A very thick layer causes
the constriction factor to approach the value for an unlayered —
flux tube. The relative effect of adding a layer with linearly
varying thermal conductivity is independent of the flux dis-
tribution applied over the contact.
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