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Thermal contact, gap and joint conductance
models developed for point and line contacts as
well as conforming rough surfaces are reviewed and
up~dated. The theory is compared with recently
obtained experimental values. The agreement be-
tween the model predictions and the experimental
results are very good to excellent for the point
contacts and the conforming rough models. The sig-
nificant discrepancies observed at light loads in
the line contacts are attributed to errors in form
{crowning). The differences in the conforming
rough model at light loads are due to several fac-
tors; the major one being high local strains due to
very large local temperature gradients.

1. INTRODUCTION

Steady-state heat transfer across interfaces
formed by two contacting solid bodies is usually
sccompanied by measurable temperature drops across
the joint because there is thermal resistance to
heat flow within the region of the interface. The
temperature drop (AT,) at the interface is ob-
tained by extrapolation of the steady-state one-
dimensional temperature distribution from regions
"far" from the interface.

The contact conductance or contact coefficient
of heat transfer is defined as:

h = (Q/A,)/AT, (1)
where (Q/A,) is the steady-state heat flux based
upon the apparent contact area. The thermal con-
tact resistance is defined as the temperature drop
at the interface divided by the total heat flow
rate. Thus

R = AT./Q 2)
and, therefore, we can write the following rela-
tionship between the thermal contact resistance and
the contact conductance:

R= 1/h A, (3)
resistance concept will be
this paper because this concept
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jtself to mathematical analysis. Whenever refer-
ence is made to thermal conductance, the reciprocal
of the product of the thermal resistance and appar-
ent contact area is implied. Real surfaces are not
perfectly smooth (specially prepared surfaces such
as those found in bearings can be considered to be
almost ideal surfaces) but consist of microscopic
peaks and valleys. Whenever two real surfaces are
placed in contact, intimate solid to solid contact
occurs only at discrete parts of the interface and
the real contact area will represent a very small
fraction (<5%) of the nominal contact area.

The real interface is characterized by several
important factors:

1) Intimate contact occurs at discrete parts
of the nominal interface.

2) The ratio of the real contact area to the
nominal contact area is usually much less than 5%.

3) The pressure at the real contact is much
greater than the apparent contact pressure. The
real contact pressure is related to the flow pres-
sure of the contacting peaks.

4) A very thin gap exists in the regions in
which there is no intimate contact, and it is us=-
ually occupied by a third substance.

5) The third substance can be air,
gases, liquid, grease or another metal.

6) The interface is idealized as a line but
the actual thickness of the interface ranges from
0.5 um for smooth surfaces to about 60 um for very
rough surfaces. .

7 Heat transfer across the interface can
take place by conduction through the real contact
area, by conduction through the substance in the
gap or by radiation across the gap if in vacuum.
It is possible that all three modes of heat trans-
fer occur simultaneously, but usually they occur in
pairs.

The process of heat transfer across am interface is

complex because the thermal resistance can depend

upon many parameters of which the following are

very important:

a) geometry of the contacting solids:
roughness and waviness

b) thickness of the gap (non-contact region)

¢) type of interstitial fluid: gas, liquid,
grease, vacuum

d) interstitial gas pressure

e) thermal conductivities of the contacting

‘ solids and the interstitial substance

£) hardness or flow pressure of the contacting
asperities: plastic deformation of the high-
est peaks

other

surface




g) wodulus of elasticity of the contacting sol-
ids: elastic deformation of the wavy parts of
the interface

h) average temperature of the interface:
tion effects as well as property effects
Because thermal contact resistance is such a

complex problem, it is necessary to develop simple

thermophysical wmodels which can be analysed and
experimentally verified. To achieve these goals
the following assumptions have been made in the

radia-

development of the several contact resistance

models:

a) contacting solids are isotropic: thermal
conductivity and physical parameters are
constant

b) contacting solids are thick relative to the
roughness or the waviness

c) surfaces are clean: no oxide effect

d) contact is static: mno vibration effects

e) first loading cycle only: no hysteresis
effects

£) apparent contact pressure is not too small nor
too large

very small or negligible
steady and not too large

made in & vacuum or the
fluid can be considered to be a
it is not & gas.
fluid perfectly wets both

g) radiation is
h) heat flux is
i) contact is
interstitial
continuum if
j) the interstitial
contacting solids

2. ELASTOCONSTRICTION AND GAP RESISTANCES

The elastoconstriction and elastogap resist-~
ance models are based upon the Boussinesq point
load model and the Hertz distributed load wmodel.
Both models assume the bodies have smooth surfaces,
they are perfectly elastic, and the applied load is
static and normal to the plane of the contact
area. In the general case the contact area will be
elliptical having semimajor and semiminor axes a,b
respectively. These dimensions are much smaller
than the dimensions of the contacting bodies. The
thermal resistance model is based upon the assump-
tion that both contacting bodies can be modelled as
hal f-spaces. The circular contact area produced
when two spheres or a sphere and a flat are in con-
tact are two special cases of the elliptical con-
tact. Also the rectangular contact area produced
when two ideal circular cylinders are in line con-
tact or an ideal cylinder and a flat are in contact
are also special cases of the elliptical contact
area [1,2].

2.1 The Hertz Contact Parameters

Contact srea shape and size. Whenever a sol-~
id, denoted as body T, 1s brought into contact with

another solid, denoted as body 2, the Hertzian
theory predicts an elliptical contact whose semi-
axes sre related to the mechanical load, physical
properties and geometry as follows [3-7]:
1/3
a®= n{i—l—é— (b)
2(A + B)
and 1/3
b = of—tb (5)
2(A + B)

In Eqs. (4) and (5), N is the total normal load

acting upon the contact area, and & is a physical
parameter defined as

s = 1=y 2)/E] + (1-v,)/E,1/2 (6)
when dissimilar materials form the contact. The
physical parasmeters appearing in Eq. (6) are

Young's modulus,
vy and vj3.
The geometric parameter in Egs.
1 1 1 1 1

200+ B) = — Pt "
01 Dl 92 Dz [+
and the local radii of curvature of the contacting

sclids are denoted as ol,o'.o and p!.

An additional relationship between A and B required
in the Hertzian theory is

E; and Ej, and Poisson's ratio

(4) and (5) is
N

2 = (= -2 - ?
1 A °y P2
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The parameter ¢ is the angle between the principal
planes which pass through the contacting solids.

The dimensionless parameters m and n which
appear in Eqs. (4) and (5) are called the Hertz
elastic parameters. They are determined by wmeans
of the following Hertz relationships [3-7):

2,1/3

m= [(2/m)E(k')/k"] (9)

and
n= [(2/1)k£(k')]1/3 1o

vhere E(k') is the complete elliptic integral of
the second kind of modulus k', and

ke (1 - kD2 an
and k= 2a2<,
m a

The additional pafameters k and k' are solu-
tions of the transcendental equation [3-7):

(/R DER') - K(K')
Xk') - E(k)

where K(k') and E(k') are complete elliptic inte-
grfé; of the first and second kind of modulus
k' .

The Hertz solution requires the calculation of
k, the ellipticity, K(k') and E(k'). This calls
for the solution of Eq. (12) which relates k, K(kx")
and E(k') to the local geometry of the contacting
solids. This is usually done by some iterative
numerical procedure [5,6] or with the aid of tables

[4].

3. (12)
A

To this end, additional parameters have been
defined:

cost = (i-A)/(B*A (13)

and

w=A/BSL (14)
and computed values of m and u, or (m/n) and n, are
presented with T or w as the independent parameter.
Table 1 shows how k, m and n depend upon the para-
meter w over a range of values which should cover
most contact problems.

Blahey [22] has shown that k' vhich is the
solution of Eq. (12) can be computed accurately and
efficiently by means of the Newton-Raphson itera~
tion method applied to the following expression:
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Table | Hertz Contact Parameters and
Elastoconstriction Parameter
*

w k m n ¥
0.001 0.0147 14.316 0.2109 0.2492
0.002 0.0218 11.036 0.2403 0.3008
0.004 0.0323 8.483 0.2743 0.3616
0.006 0.0408 7.262 0.2966 0.4020
0.008 0.0483 6.499 0.3137 0.4329
0.010 0.0550 5.961 0.3277 0.458l
0.020 0.0828 4.544 0.3765 0.5438
0.040 0.1259 3.452 0.4345 0.6397
0.060 0.1615 2.935 0.4740 0.699
0.080 0.1932 2.615 0.5051 0.7426
0.100 0.2223 2.391 0.5313 0.7761
0.200 0.3460 1.813 0.6273 0.8757
0.300 0.4504 1.547 ~0.6969 0.9261
0.400 0.544) 1.386 0.7544 0.9557
0.500 0.6306 1.276  0.8045 0.9741
0.600 0.7117 1.1939 0.8497 0.9857
0.700 0.7885 1.130f 0.8911 0.9930
0.800 0.8618 1.0787 0.9296 0.9972
0.900 0.9322 1.0361 0.9658 0.999%
1.000 1.0000 1.0000 1.0000 1.0000

' ' N(kx')

Klew =K' * ) (15)
where
1
N = k2 EED p2aA e A e
R(k') B B
and
aun

L

p(kt) = B e - e )+ (A ke
R(k') B B

I1f the initial guess for k' is based upon the

following correlation of the results given in Table

1, the convergence will occur within 2 to 3

iterations:

R [0.9“6(_:_)0.613512}1/2

(18)
Polynomial approximations [8] of the complete el-
liptic integrals appearing in Eqs. (15-17) can be
used to evaluate them with an absolute error less
than 10”7 over the full range of k'.

Local gap thickness. The local gap thickness
is required for the development of the elastogap
resistance model.

The general expression for the gap thickness
can be determined by means of geometric arguments:

8(x,y) = 8 (x,y) + wix,y) - w, (19)
where 5°(x,y) is the local gap thickness uader zero
load conditions, w(x,y) is the total local dis-
placement of the surfaces of the bodies outside the
loaded area, and w, is the approach of the con-
tact bodies due to loading.

The total local displacement of the two bodies
is given by

wix,y) =
- 2 2
[}
3;; fa-2—-2o — = (20)
" a‘+t  boet {(a%+t) (b *t)t}l/z
where U is the positive root of the equation
2/ + y2 o) = 1 (21)

When u>0, lies outside the

elliptical contact area

the point of interest
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x2/a? + 32/ = 1 (22)
When u=0, the point of interest lies inside the
contact area, and when x*y=0, w(0,0)=w, the total
approach of the contacting bodies is:

i -
. =M dt
[+ 2n ° {
. M
xa

(23a)

(12¢t)(b2+t)t}1/2

R(k') (23b)

2.2.1 Sphere-Flat Hertz Contact Parameters

The previously developed Hertz contact parame-
ters reduce to simple expressions for the case of a
sphere (pl' LI D/2) in contact with a flat

(02' p;' ®). In this instance the parameters A and

B are determined by (A+B) = 2/D and (B-A) = 0 to be
B =A = |/D. When B/A = 1, Eq. (12) gives k = |
and Egs. (9) and (10) give m = n = 1. The contact
area is circular with radius a determined by means
of the following dimensionless expression:
2 /3
2a/D = [3NA/D ]

The local gap thickness is axisymmetric, and can be
determined by the following dimensionless expres-
sion:

Xay-qa
)

(24)

Py NY

v W2xDsin~t/ + 2=V 2wkl @2s)
where L = D/2a, x = r/a and 1 {x < L.

2.2.2 Cylinder-Flat Hertz Contact Parameters

When an ideal circular cylinder (01. D/2,pl'°)

is in elastic contact with a flat (pz= pé- =), the

contact width 2b of the rectangular area can be
determined by the dimensionless expression:

2b/D = 4(N&/w2D) /2 (26

where % is the cylinder length.
The local gap thickness is obtained from the
following dimensionless expression {7):

28/p = (1 - 1Yo -e2nd
v ece? - DY o) - g2 4 1/ @2
where L = D/2b, £ = x/L and 1 < § < L.
3.1,

1/2

Ellipsoidal Constriction Resistance

Yovanovich has developed a general constric-
tion resistance model [l] which is based upon the
assumption that each body forming an elliptical
contact area can be taken to be a conducting hal f-
space. This approximation of actual bodies is
reasonable because the dimensions of the contact
area are very small relative to the characteristic
dimensions of the contact bodies.

When the free surfaces of the contacting
bodies are adiabstic, the total ellipsoidal con-
striction resistance of an isothermal elliptical
contact area (a > b) is [1]

Re - ve/Z ksa
where a is the semimajor axis, kg is the "harmonic
mean thermal conductivity,

ka =2 kxkz/(kz + kz)

(28)

(29}




and Vo is the isothermal elliptical comstriction

parameter [3]:

v, = (2/%)R(k") (30)

in which K(k') is the complete elliptic integral of
the first kind of modulus k', and it is related to
the axes:

k' = [l - (b/a) (31
The complete elliptic integral can be computed
accurately by means of Chebyshev polynomial approx-
imations [8] or by means of the Arithmetic-Geomet-
ric-Mean (AGM){8]. This important special function
can also be approximated by means of the fol lowing
simple expressions:

K(k') = ta(ba/b)

Z]l/2

0 < k< 1736 (32a)

K(k') = 20/[1 + /(b/a)1®  .1736 <k < 1 (32b)

This epproximation has a maximum error less than
0.8% and it occurs at k = 0.1736. The ellipsoidal
constriction parameter reduces to the value of one
when a = b, a circular contact area.

3.2.1. Elastocomstriction Resistance of Point

Contacts

When the results of the Hertz elastic defor-
mation snalysis are substituted into the results of
the Yovanovich ellipsoidal constriction analysis,

one obtains the elastoconstriction resistance
expression [3]:

* *
x, [26880 113 3= 2/mRK" /Al = ¥ (33)

where the effective radius of the ellipsoidal com-

tact is defined as p = [2(A+B)] ! The left hand
side of Eq. (33) is a dimensionless group consist-
ing of the known total mechanical load N, the ther-
mal conductivity k., the physical parameter 4 and
the isothermal, elliptical constriction resist-
ance Re. The right hand side is defined to be
v* which is called the thermal elastoconstriction
parameter [3]. Typical values of v* for a range
of values of w are given in Table l. The elasto-
constriction parameter Y*© reduces to unity when k
= b/a = 1, the case of the circular contact area.
The elastoconstriction resistance of a
sphere-flat contact can be derived from the ellip-
soidal constriction resistance, Eq. (33), by put-

ting %= |, p*= D/4 and employing the sphere
diameter to nondimensionalize the result:
k DR = L (34)
s ¢
3.2.2. Elastoconstriction Resistance of Line

Contacts

The thermal constriction resistance of a joint
consisting of an ideal smooth circular ¢ylinder in
contact with a smooth flat was developed by McGee,
Schankula and Yovanovich [12}. This model is based
upon the constriction resistance of an isothermal
strip contact, of width 2b, placed on the surface
of a half-cylinder of diameter D, denoted as
body 1. This model also uses the result for the
constriction resistance of an isothermal strip, of
width 2b, on a flat of width D, denoted as body 2
{9,10].

The comstriction resistance of body 1 is

R, = (lllwkl)ln(ZD/b) - 122 (35

38

and that of body 2,

R 2 " (I/kaz)ln(b/ﬂb)

c (36)

The total elastoconstriction resistance is the sum
which when multiplied by kg and & becomes {12]

kR =281 gty -5 2231 w37
s C 2n Zkl kz 2%

where kg is the harmonic mean thermal conductiv-
ity defined by Eq. (29) and N* is the dimension-
less mechanical load {12]:

N* = N&/2D (38)
When k;® k, , Eq. (37) reduces to the following
expression:

R = (1/m) ta(1/8") - 0.7206 (39)

3.3. Elastogap Resistance Model

The thermal resistance of the gas-filled gap
depends upon three local quantities: the local gap
thickness, the thermal conductivity of the gas, and
the temperature difference between the solid bound-
ing surfaces. .

The gap model is based upon the subdivision of
the gap into elemental heat flow channels (flux
tubes) having isothermal upper and lower boundar-
ies, and adiabatic sides. The heat flow lines in
each channel are assumed to be straight and perpen-
dicular to the plane of contact.

1f the local gas conductivity, kg{x,¥), in
each elemental channel is assumed to %e uniform
across the local gap thickness 8&(x,y), then the
differential gap heat flow rate is
k_(x,y)aT_(x,y)
aq = & L dxdy (40)
8 8(x,y)

The total gap heat flow rate is given by the
double integral

%" {9

g

where the integration is performed over the entire
effective gap area.

The thermal resistance of the gap, Ry, is
defined in terms of the overall joint temperature
drop, AT::

1)

k (x,y)AT (x,y}
Lok oqpls 8 07" iy
Rg AT, Ag 8(x,y)8T,

The local gap thickness in the general case of two
bodies in elastic contact forming an elliptical
contact area is given by Eq. (19).

The local gas conductivity is- based upon a
model suggested by Kaganer [13] for the effective
thermal conductivity of a gaseous layer bounded by
two infinite, isothermal, parallel plates. There-
fore for each heat flow channel the comductivity is

- L)

kg(x,y) ks'./[l G(x,y)] (43)
vhere kg = is the 'gas conductivity under contin-
uum conditions at STP. The accommodation para=
meter, &, is defined as

as= (2-a1)/u1 + (2 - az)/a2

(42)

(446)

where a) and Gy are the accommodation coefficients
at the solid-gas interfaces. The fluid property
parameter, 8, is defined by

8 = (2v)/(y+1)/Pr (45)




where Y is the ratio of the specific heats, and Pr
is the Prandtl number. The mean free path, A, of
the gas molecules is given in terms of Ag'., the
mean free path at STP, as follows:

. A
A=A (T T, DRy /R (46)

Two models for determining the local tempera-
ture difference, ATg(x,y). are proposed. In the
first model it is assumed that the bounding solid
surfaces are isothermal at their respective contact
temperatures; hence

ATg(x.y) = AT, (47)

This is called the thermally decoupled model, since
it assumes that the surface temperature at the
solid-gas interface is independent of the tempera-
ture field within each solid.

In the second model, it is assumed that the
temperature distribution of the solid-gas interface
is induced by the conduction through the solid-
solid contact, under vacuum conditioms [l]. This
temperature distribution is approximated by the
temperature distribution immediately below the sur-
face of an insulated half-space that receives heat
from an isothermal elliptical contact. Solving for
this temperature distribution, using ellipsoidal
coordinates, Yovanovich [l] found that

AT (x,y)/8T = L - Pk, ¥) /R(k") (48)

where F(k,¥) is the incomplete elliptic integral of
the first kind of modulus k' and amplitude angle

¥. The modulus, k', is defined Eq. (l11) and the
smplitude angle by
b= uin-l[azl(lz*u)lllz (49)

where the parameter u is defined by Eq. (21). It
ranges between u = 0, the edge of the elliptical
contact area, to ¥4 = =, the distant points within
the half-space.

Since the solid-gas interface temperature is
coupled to the interior temperature distribution,
Eq. (48) is called the coupled half-space model
temperature drop.

The general elastogap model, Eq. (42), has not
been solved. Two spacial cases of the general mod-
el have been considered by Yovanovich and co-work-
ers {3,12,16,19].

Elastogap model for point contacts. This mod-
el was developed for the sphere-flat contact, and
the gap resistance defined by Eq. (42) was found to
be

1I/R = (D/L)k 1 (50)
g 2:" P
The point contact gap integral, I, is defined as

f19]

L -1,.2_,,1/2
I (LM = 2xtan (x°-1) dx (51)
4 1 (26/D) + M

where the gas parameter, M, is defined to be

M = 2agA/D (52)
The dimensionless local gap thickness is determined
by Eq. (25).

The point contact gap resistance, Eq. (50),

can be made dimensionless using kg and D as was
done in Eq. (34) for the constriction resistance.
Thus Eq. (50) becomes

/RS = (/D)1 (53)
4 P

where x = k8 /ks, the thermal conductivity ratio.
3
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Elastogap model for line contacts. This model
was developed for the ideal cylinder-flat contact,
and the gap resistance defined by Eq. (42) was
found to be [i2]

1/R_ = (4b2/D)k 1

IR = (4bL/DYe, o 1y

(54)

The line contact gap integral, defined as

(12}

Il’ is

cosh-l(E)dE
26(£)/D + M

The gas parameter M is defined in Eq. (52) and the
dimensionless local gap thickness is given by
Bq. (27).

The line contact gap resistance, Eq. (54), can
also be made dimensionless by multiplying Rg by the
k'D product to give

* 2
1/R8 (4b2/D )Kll

(53)

, L
Iy ==
L

(56)
3.4. Radiative Gap Resistance

The radiative resistance is a complex para-
meter depending upon the geometry of the gap, the
emissivities of the contacting solids and the side
walls forming the enclosure, as well as the temper-
ature distribution of the bounding surfaces.

The radiative heat transfer rate across the
gap formed by a hemisphere (or a portion of a larg-
er hemisphere) and a circular disk of the samc
diameter enclosed by insulation has been modelled
as a grey enclosure. The emissivities of the henm-
isphere, disk and sidwalls are denoted as €, €2,
and €3 respectively. Assuming isothermal hemis-
phere and flat at temperastures T and Ty respec-
tively, the net radiative heat transfer rate is

- 4 4
Q = A fyy0lT) - T,

where the effective radiative heat transfer area is

Ay = (ﬂDZ/A)(l - 1/L°) and o is the Stefan-
Boltzmann constant. The grey-body view factor 512
for the enclosure is [16]:

¥ —1- - -
(% (1= €/e) + (A /AU

(57)

2! e )e

N ! (58)

3 = = -l
Fpy ¢ {1/Fyy + (/A IF 4}
When the view factors are evaluated and using the

appropriate reciprocity relationship one obtains
[16]:

{f
For moderate temperature drops across the gap, the

radiative resistance defined as Rp= (T} - T2)/Q¢
can be approximated by

R = 1/AF, 4o 3 (60)

b e e e, ¢ - e)/2e) 1106 (59

2721 n
where Tm- (T1 + Tz)/2, the mean absolute tempera-
ture of the gap. - "

The dimensionless radiative resistance R =
kDR, with EZI determined by means of Eq. (59) can
now be expressed as

*
R_=k {1 - e))/e,

+ (1= e)/2e) + 1.104}/%0, T (61)
m




3.5. Dimensionless Joint Resistance

The overall joint resistance will depend upon
the solid-solid resistance called the constriction
resistance, the gap resistance and the radiative
resistance across the gap when & non-participating
gas is present.

In the simplest model it is assumed that the
three resistances (or heat flows) are independent
so that the dimensionless resistances can be summed
in parallel as

* * * *
I/Rj = l/Rc + I/Rg + I/Rr (62)

to give the dimensionless joint resistance.

4.1. Experimental Verification of Elasto-
constriction and Elastogap Models

Experimental data have been obtained for the
elastoconstriction resistance of point contacts
{15) and tine contacts [12] for a range of sphere
and cylinder diameters, material properties and
mechanical loads. Data have also been obtained for
the verification of the elastogap model for the
point [15] and line contacts [l12]. The elastogap
models have been tested against air, argon, and
helium at gas pressures between 10"° Torr and
atmospheric.

Some representative test data for the elasto-
constriction and elastogap resistances compared
with the theoretical values are given in the fol-
lowing sections.

4.1.1.

Kitscha [14] performed experiments on steady
heat conduction through 25.4 and 50.8 mm sphere-
flat contacts in an air and argon enviromment at
pressures between 1077 Torr and atmospheric. He
obtained vacuum data for the 25.4 mm diameter
smooth sphere in contact with a polished flat hav-
ing a surface roughness of approximately 0.13 um
rms. The mechanical load varied from 16 to 46~
Newtons. The mean contact temperature ranged be-
tween 32! and 316 K. The harmonic mesn thermal
conductivity of the sphere-flat contact was found
to be 51.5 W/mk. The emissivities of the sphere
and flat were estimated to be £;= 0.2 and €3 = 0.8
thus giving the dimensionless radiative resistance:

R = 3.82¢10:0/73 (63.
T m

Sphere-Flat Test Results

The dimensionless constriction resistance is R:'L,
therefore the dimensionless joint resistance is

* *
lle = 1/L + I/Rt (64)

Tue model predictions and the experimental results
ar= compared in Table 2.

It can be seen that the radiative resistance
was not negligible; it was approximately 10 times
the constriction resistance at the lightest load
and 30 times at the highest load. The largest dif-
ference between the theory and experiments occurs
at the second lightest load where it is approxi-
mately -4.7%, within the probable experimental
error. These and other vacuum tests [14] have ver-
ified the accuracy of the elastoconstriction and
the radiation models.

The elastogap model for & point contact was
verified by Kitscha [14] and Ogniewicz {18]. For
air the gas parameter of Eq. (52) depends upon TIp,
Pz and D as follows:

40

Table 2 Dimensionless load, constriction,
radiative and joint resistances of
Ritscha [14]

N LT R R, R,
m 4 3
(Newtons) (D/2a) (K) Eq. (63) Eq. (64) (Test)
16.0 115.1 321 1155 106.7  107.0
22.2 103.2 321 1155 94.7 99.4
55.6 76.0 321 1155 71.3 70.9
87.2 65.4 320 1164 61.9 61.9
195.7 50.0 319 1177 48.0 48.8
266.9 45.1 318 1188 43.4 42.6
467.0 37.4 ilé 1211 36.4 35.4
-4 T
.37
M 12373x10 | m (63)
D Pg
where D is in cm, Tyin K and Pz in mm Hy. The nun-

erical value of Eq. (65) is based upon air proper-
ties at Tg m = 288 K and Pg = = 760 mm Hg.

The elastogap model and the experimental re~-
sults are compared over a range of gas pressures in
Table 3. Although tests were conducted at smaller
values of the dimensionless parameter L over a
range of gas pressures, sphere diameters and gases,
the results given in Table 3 are representative of
the other data and they also correspond to the case
which challenges the validity of the proposed
elastoconstriction and elastogap models. First
note that the radiative resistance is approximately
10 times the constriction resistance. Second,
observe that the gap resistance 1is approximately
2/3 of the constrictiom resistance at the highest
gas presure, approximately equal to the constric-
tion resistance at a gas pressure between 4 and 40
mm H , and finally 3 times the constriction resist-
ance at P_ = 0.2 mm H_ . The agreement between the

theory anﬁ the tests %s very good to excellent.

Table 3 Elastogap Resistance Predictions and
Measurements [14] for D = 25.4 mm and Air

at L = 115.1
T P R* R. R* R* h
m g 8 T J ]
(K) (mm Hg) Eq. (53) Eq. (61) (Theory) (Test)
309 400.0 76.9 1293 44.5 46.8
310 100.0 87.4 1280 47.8 49.6
311 40.0 97.1 1268 50.6 52.3
316 4.4 137.2 1209 59.5 59.0
318 1.8 167.2 1186 64.5 65.7
321 0.6 227.9 1153 71.7 73.1
322 0.5 246.6 1143 73.4 74.3
325 0.2 345.4 1111 80.1 80.3
321 vacuum - 1155 104.7 107.0

The largest difference occurs at the highest gas
pressures where the theory predicts lower Jjoint
resistances by approximately 5Z. The agreement
between theory and experiment improves with
decreasing gas pressure.

It can also be seen in Table 3, that -the air
within the sphere-flat gap significantly decreases
the joint resistance when compared with the vacuum
result.




4.1.2 Cylinder-Flat Test Results

McGee [11] obtained vacuum test data for
Zircaloy-4, Keewatin tool steel and Type 304 stain-
less steel cylinders of diameters 25.4 and 20 mm of
lengths 25.4 and 40 mm. The stainless steel cylin-
der was 20 mm by 40 mm long. The vacuum tests were
conducted at 10~ Torr and the total mechanical
load was between 80 N and 8000 N.

At light loads (N* < 5x10~6), agreement be-
tween the line contact model and the test results
was poor. The higher resistances measured at light
loads are due to errors of form (crowning). The
actual contact area was elliptical rather than the
ideal rectangular contact. This contact area gives
a much greater constriction resistance.

As the load increased, the error-of-form
effects became negligible because the elliptical
contact area grew into a long rectangular contact.
For N* 2> 5xl0'6, the measured resistances were ob-
served to be in good agreement with the line con-
tact model predictions. The good agreement was
noted for all metals up to the maximum N~ 1074,

The dependence of joint line contact resist-
ance with fluid pressure was investigated for both
helium and argon gas, using the stainless-steel
cylinder-flat. Fluid pressure was varied from vac-
uum where M ~ 109- 106 to atmospheric pressure
where M = 10‘3, while a constant load of 2700 N
(N*= 1.8x107%) was maintained across the contact.
The dimensionless joint resistance decreased from
2.5 to 1.5 as the helium pressure increased from
vacuum to atmospheric., Very little change in joint
resistance occurred until the fluid parameter M
approached 1, corresponding to & pressure of 10™3
Torr. The resistance decreased significantly
between M = ] and M = 10-2 then levelled out below
M = 102 as the helium pressure approached atmos-
pheric. The agreement between the line contact gap
model snd the test results is very good provided
M > 10~2. The model significantly underpredicts
the joint resistance when M < 10"2. corresponding
to gas pressures approaching atmogpheric.

Similar tests were conducted in argon which
has a lower thermal conductivity than helium. The

. test results indicate that the joint resistance is
a weak function of gas pressure variations over the
observed range of the fluid parameter M. This
result is also predicted by the line contact gap
model, for fluids having low thermal conductivity,
gince a large fraction of the heat is conducted
through the solid-solid contact area. The theoret-
{cal and experimental joint resistances are in good
agreement at lower gas pressures (lO’?g M<1)e.
Near one atmosphere, the difference is again sig-
nificant.

5.1. CONFORMING ROUGH SURFACE MODELS

The problem of predicting and measuring con-
tact, gap, and joint thermal conductances has re-
ceived considerable attention during the past two
decades because of the importance of the topic in
many heat-transfer systems. Comprehensive surveys
of literature on this subject can be found in sev-
eral references. Significant progress hag been
amsde in our understanding and ability to predict
thermal contact conductance. The study of thermal

contact conductance in a vacuum is fundamental to

our understanding of thermal gap conductance when
{nterstitial fluids are present. The present state
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of knowledge has reached a point where sinmple,
explicit correlations can be developed for the con-
tact, gap, and joint conductances.

The purpose of this section is to establish
correlations for conforming rough surfaces when
interstitial fluids such as gases are present in
the gap. The proposed correlations will be com-
pared with recently obtained empirical data to
demonstrate the validity of the assumptions used to
develop the models.

S.1.1.

The total constriction resistance of the {ith
contact spot 1is
Roy = Woqy/0kpag + begpl/bkosy (66)

Contact Conductance Correlation

where ycq] and Yeq2 are the thermal constriction
(or spreading) parameters which depend upon the
relative size of the contact spot. Because of
geometric and thermal symmetry about the contact
plane we can put

= = =[] - 1.5 [
LT by =V i1 (ai/bi)] (&

ci
provided 0 < ai/bi £ 0.3.

If we let kg = 2kykq/(ky + ky), the harmonic

mean thermal conductivity, then Egq. (66) can be
written as
Rci = Wci/stli (68)
The total contact resistance of N contact
spots thermally connected in parailel is therefore,
1 N 1 N s,
—e ) — =2, — (69)
Rc i=1 Rci i=l wci

The contact conductance can be derived by
means of the following definition:

Q = h A AT = AT /R (70)
c ca ¢ ¢ ¢
Therefore,
2k N a,
L -l = (71)
Al i=l wci

Noting that a;/b; £ 0.3 and 0.85 < .4 < 1, the
specific constriction parameter Wgj appropriate
to each contact spot can be replaced by the mean
value of the constriction parameter y. based upon
the total set of contact spots.

Therefore, we have

1.5 -

LR (1-e (72)
vhere a/b = ¢ = YA /A;. The mean value of the
constriction parameter depends upon a and b, the
contact spot and associated flux tube radii,
respectively, determined by the total real and
apparent areas.

A detailed geometric analysis of interacting

conforming, rough surfaces yields the following
important geometric results:
1) Contact conductance parameter
N a, 2
(m/g) exp (=x€) (73)

| == ooy
i=} Aa 4 (21'
2) Relative real contact area

2

e = A_/A --l erfc(x) (74)
r'a g




3) Contact spot density

n= 1_ (m/a)2 .e_xP__(-_Z’.S__). (75)
erfc (x)
4) Mean contact spot radius
a = 7(8/%)(o/m) exp(x?) erfe(x) (76)

where x = Y/v20 and Y/o 1s called the relative mean
plane separation. The gsurface parameters ¢ and m
the effective rms surface roughness and the

are
effective absolute surface slope, respectively.
They are determined as follows:
o= (o 2, & 2)1/2 an
1 2
and
2 2,1/2
n (nl + LY ) (78)

Assuming plastic deformation of the contacting
asperities during the first loading cycle leads to
a relationship between the relative real contact
area and the relative contact pressure. A force
balance on the real and apparent contact areas
gives

P/H = A_JA, = €& = (1/2)erfc (x) (79)

This relationship between € and x allows one to
compute the other gsurface parameters. After
substiturion of the contact conductance parameter,
Eq. (73), into the comtact conductance expression,
Eq. (71), we obtain after multiplying by o/mkg the
nondimensional contact conductance,

1 exp(-xz)
1.5
2/(2%) (1 - ¢€)

(80)

(o/m)(h /k) =

with x = erfc-l(ZP/H) and ¢ = YP/H. The complex
the

expression of Eq. (BO) was correlated by
following simple expression:
(ala)n_fk,) = 1.25 (2/0)°"% (81)

which agrees with the exact expression to within
+1.5% for 2 £ Y/o £ 4.75.

5.1.2. Alternate Development of Contact Conductance

Here we assume N microcontact spots all having
the same mean radius a and agsociated circular flux
tube of mean radius b. The total contact resist-
ance is as above

Rc = wc/ZNksa (82)
and the contact conductance is

hc - Znakslwc (83)
where n is the contact spot density.

The product of Egs. (75) and (76) yields

= 1 (m/o) exp(—xz) (84)
4/ (2m)

substitution of Eq. (84) into Eg. (83) gives Eq.
(80). To simplify further calculations, two

additional correlations for Y/o and a are derived.

From Eq. (79) we obtain
0.547

Y2x = Y/o = 1.184[-1n(3.132P/H)] (85)
Multiplying Eq. (76) through by x gives
(n/0)ax = /(B/n)xexp(xz)erfc(x) (86)
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In the range of interest 1.41 < x £ 3.16, we
can write [8] - -

xexp(xz)erfc(x) = 0.52 (87)

Substitution of Eqs. (85) and (86) into Eq. (87)
yields

ma/g = 0.99{-1n(3.132P/R)] (88)

Knowing the surface characteristics m and o as
well as the relative contact pressure P/H, one can
compute the mean contact spot radius by means of
Ea. (88).

-0.547

6.1. Gap Conductance Integral

Heat transfer across the gap formed by the
contact of conforming rough surfaces is difficult
to analyze because of the complexity of the local
geometry which determines whether the local heat

transfer can be modelled as continuum, slip or
rarefied. To overcome these difficulties it is
necessary to model the gap conductance from an

overall point of view. To this end it s assum=2d
that the local gap conductance can be modelled as
heat conduction between two isothermal parallel
plates which are separated by an effective thick-
ness

t + M (89)

where t is the local gap thickness and M = aBi.
The gas parameters a,8 and A are defined by Egs.
(44), (45) and (46) respectively. The modelling of
the conforming rough surface gap is similar to that
of the elastogap model.

The total gap heat flow rate, Qg, and the
overall gap conductance, hg, are determined by
integration over the effective gap area, Ag,

k_ AT dA
q = [/ -BZ 8 _% = [[h (x,y)AT_ dA
8 3 t+M A g g 8

(90)

is localized
ATg - ATC

Assuming that the variation of AT
around each contact spot, and theretore
over the major portion of the gap, we have

TN Tl
h = — IS AN 9on
A T
g g
where
1
h & — h ,¥)dA 92
n {f g(x y)da, (92)
g 8

{s the mean value of the gap conductance over the
effective gap area which is given by

2
Ag Aa(l £°) = A, (93)
because £ < 0.3,
For gaps formed by two conforming rough

gurfaces having Gaussian height distributions, an
expression for the fraction of the projected gap
area, dAg, is given by

aa, = (A, //Zmyexpl =¥/ - t/a)2/21d(t/a) (9%

where t is the local gap thickness and o is the

effective Tms surface roughness.
Combining Eq. (93) and (94) leads to the gap

conductance and its integral:

: (95)

hy = (kg o/ g




where

- 2
1 = (van) | exp(-(¥/g = t/0) /2] 4(r/q) (96)
o

(t/o + M/a)
For computational purposes the gap conductance
integral can be transformed to
" expl=tn - uH%/2)
1 = /(2/m [ &R S udu (97

(2 + Wa)

by setting u2 = t/g. The upper limit can be put to
a value of 3 for numerical computational purposes
because the area under the curve becomes negligible

o

for u > 2.5, Regazy [21] has shown that the
approximation of Yovanovich [20]
LD - (Yo + Mol (98)

is accurate provided the gap parameter YH = (Y/0)/
(M/o) < 1 for all values of M/o. The difference
between Eqs. (97) and (98) increases for values of
YH > 1 and M/o + 0.1.

To minimize the difference between the simple
approximation, Eq. (98), and the exact integral,
Eq. (97), Negus [23] developed the following more
accurate approximation:

Ig(N) = Yn/(Y/d + M/ o) (99)
which is based upon Eq. (98) and the tabulated
values [20].

The parameter Y, in Eq. (99) is defined as
.68 .84
v, = 1.063 + 0095k - ¥/0) " P -tog 0 * (100
"for 2 < ¥/o { 4 and 0.01 < M < 1.0, and
0.8 (101)

Yo * 1 + 0.06/M
C M=,

for 2 Y/o 4 and 1.0 £

Negus reports the maximum difference between
the exact values based upon a numerical quadrature
of Eq. (97) and those ‘of the new approximations
appears to be about 22 for Y/c¢ close to 2 and 4.

6.1.1.

The contact and gap heat transfer rates are
approximately independent for most practical con-
tact problems. If the radiative heat transfer rate
across the gap is assumed to be negligible, the
total or joint coductance, h,, for conforming

Dimensionless Joint Conductance Correlation

he sum of the contact
Therefore,

(102}

rough surfaces is equal to
and gap conductances developed sbove.

h.=h +h
J < g

Multiplying by (a/u)k’ to non~dimensionalize gives

(a/m)Ch./k ) = (o/m)(h /k ) + (o/m)(h /k ) (103)
i s Y | g 8
or for convenience
C.=C +¢C (104)
) c g
7.1. Experimental Verification of Contact, Gap

and Joint Conductances

Experimental data have been recently obtained
by Hegazy [21] which provide ample evidence that
the conforming, rough surface contact and gap con-
ductance models are very accurate. Data were
obtained under vacuum conditions, P < 105 Torr,
f..r Nicke! 200. tvpe 304 stainless steel, Zircalov
-4 and Zr-2.5 wt% M. alloys. Each interface con-
sisted of a relatively smooth, lapped surface and a
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rough, bead-blasted surface of identical material.
The surface parameter (o/m) was 8.20 um to 12.4 um
for the smoothest interfaces and it was 38.3 um to
$9.8 um for the very rough interfaces. The mean
interface temperature, Tp, ranged from 372K to
451K. The bulk hardness of the metals, Hy, ranged
from 1010 MPa to 1727 MPa and the contact hardness,
R., was determined to be 1972 MPa for the very
rough Zirconium-4 interface at the highest load and
4113 MPa for the smooth $S304 interface at the
lightest load.

The contact hardness, H., was determined by
means of a mechanical model recently developed by
Yovanovich and co-workers [21] for bead-blasted
surfaces. The model is based upon a least squares
fit of Vickers microhardness measurements obtained
at several loads, and a geometric-mechanical model
which is based upon a force balance applied to a
contact formed by a typical asperity produced by
bead~blasting. Begazy [21] reports that the effec-
tive contact hardness can be determined by means of
the following expression bssed upon a relative con-
tact pressure of P/H = 1073

B = cl(o.950/m)°2' (105"

where c| and ¢y are Vickers microhardness corre-
lation coefficients,

H =c.d°©2 (106
v lv

and d The mic~-
trohardness values are GPa and the Vickers diagonal
is in um. The correlation coefficients are given

in Table 4.

Table 4 Hegazy Vickers Microhardness
Correlations, Hv-cldv2

is the measured Vickers diagonal.

Max X RMS %

Material H ,GPa c c Diff. Diff.
m 1 2

2r=-4 1.913 5.677 =0.278 3.4 1.7

Zr=2.5wtZNb  1.727 5.884 ~0.267 10.2 2.7

Ni200 1.668 6.304 =0.264 4.8 1.8

$S304 1.472 6.271 -=0.229 4.2 1.4

Hegazy also developed the following approximate,
semi-general microhardness correlation of the
metals given in Table 4:

B = (12.2 - 3.56 B )(o/m) 026
c b

(107)

where H., the contact hardness, and Hy, the bulk
hardness are in GPa, and the effective surface par-
ameter (o/m) is in um. This relationship shows
clearly how H. depends upon Hy and the surface
roughness.

Thermal contact conductance values were meas
ured for five different interfaces for the metals
listed in Table 4. For apparent contact pressur-s
ranging between approximately 0.45 MPa to 8.90 MP.
T e measured conract conductance for all metals =
in very good to excellent agreement with the new

model predictions. Typical results are presented
in Figure 1 for two stainless steel interfaces, the
smoothest and the roughest. The solid lines are
the theoretical values based upon the appropriate
values of the contact microhardness which Hegazy
[21] reports are approximately 4100 MPa and 2510
MPa respectively, and the measured bulk hardncss

(o]
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Figure 1

was 1470 MPa. The dashed line represents the model
predictions based upon the bulk hardness. The
differences observed at light contact pressures P <
2 MPa is attributed to several factors which are
not accounted for in the present model. One of the
major factors may be thermal strains induced at the
microcontacts due to very large temperature drops
and local temperature gradients.

The gap and joint conductance models were also
verified by Hegazy [21] who measured contact and
joint conductances for a stainless steel interface
with nitrogen gas at a gas pressure of approximate-

"1y 40 Torr. The surface parameter o/m = 32.3 um,
the gap parameter YH was approximately 2.4. The
dimensionless conductances are plotted versus the
dimensionless contact pressure in Figure 2 where it
can be seen that the vacuum results are in excel-
lent agreement over the full load range and the
joint conductances are in very good agreement over
a limited range of the contact pressure.

To verify the joint conductance model at a
higher gas pressure, Hegazy measured joint conduct-
tances only for nitrogen gas at a pressure of
approximately 570 Torr between stainless steel
surfaces having o/m = 36.9 um. The gap parameter
YH was approximately 29 to 38 over the entire load
range. The measured results are compared with the
model results in Figure 3.

The measured values are above the predictions
over the entire load range. The model clearly
predicts the effect of increasing load, but
underpredicts the joint conductance by
approximately 10 to 15X.
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