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ABSTRACT

respectively
An approximate analytical solution to a funda- k ~ homogeneous thermal conductivity
mental basis problem for heat conduction in a convec- L - length of IC chip(s) into the circuit -
tively-cooled microelectronic circuit board has been board
derived by employing a novel approach for treating m,n ~ series solution indices
mixed boundary conditions. Results obtained with N - number of series coefficients )
this solution indicate that increasing the chip spac- q ~ uniform heat flux
ing decreases the thermal resistance of the circuit Q,.,Q - total heat flow rates across top and ;
‘oard for many cooling configurations only if accom- 1772 bottom surfaces of the IC chip
panied by an increased board thickness. Thus in many respectively
practical applications, little gain in thermal per- R - thermal resistance of heat flow path into -
formance of the board is realized for chip center- 2 the circuit board
to-center spacings greater than twice the chip t - thickness of the circuit board
width. In addition, the analytical solution has also T - temperature o
been used to estimate the accuracy of the compound- T - average temperature rise on contact
fin model for one-dimensional steady heat conduction ¢ between IC chip and circuit board
in a microelectronic circuit board. T, - free-stream cooling fluid temperature i
X,¥,2 ~ Cartesian coordinate system
NOMENCLATURE -
boa - half-width of IC chip Greek Symbols
i Ay - series coefficient. o - aspect ratio of the board (zt/b) . e
> ) }sl:]a-;gig; the IC chip center-tocenter Y3sY, ~ dimensionless constants defined by Eqs.
Bi,,Bi, - Biot numbers (Bizht/k) for the top and (14) and (a-4) respec?xvel(.y =0 f # -
12 bottom surfaces of the circuit board smn - Kronecker delta function Gmn or m#a,
respectively smn=1 for m=n) )
C - entries in coefficient matrix (Eqs. (25) A - function used to evaluate C (Eq. (A-2))
me or (A-1)) mn . P o
E - integral of errors squared in Eq. (17) € - relative contact s;?e (=a/b) (E=x/b _
g(E) - function for non-homogeneous boundary nE - :J-.r:}e:;lonless coordinate system (£2x/b,
condition (Eq. (19)) =207 .
G - entries in right-hand side vector (Egs. An = function of Bll and ¢ (Eq. (13)) -
° (26) or (A-5)) T - function used to evaluate Cm(Eq. (A-3))
hl’hZ - convective heat transfer coefflcmnts fox.' b () - functions for non-homogeneous boundary B
the top and bottom surfaces of the circuit a C s
board respectively c?ndltj:on (Eq. (H.;)) '
. . - f fundamental
h ,h - effective heat transfer coefficients for ¥ dungnswnless m-asl.stance b .
el’ e2 . basis problem (=k L R ) given by Eq. (31)
the top and bottom surfaces of the IC chip . - . .
¥ - dimensionless resistance estimated from
CF compound-fin model (Egs. (35) or (40)) i
[ - dimensionless resistance estimated from
CF R .
' modified compound-fin model (Eq. (43))
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Subscripts

- refers to the series solution

m,n

122 - refers to the top and bottom sur faces
respectively

INTRODUCT LON

The present trend towards increasing power den-
sities in modern integrated circuits requires a
greater emphasis on thermal considerations in micro-
electronics packaging. Lf the simple and relatively
economical air cooling scheme illustrated in Fig. 1
continues to be employed, it becomes imperative that
the thermal resistance of this configuration be mini-
mized. This goal can be achieved both by maximizing
the convective heat transfer rates and by optimizing
the circuit board layout for a given air cooling sit-
uation.

As shown in Fig. 2, the heat generated within a
typical integrated circuit chip on a printed circuit
board is removed through two main heat flow paths.
The thermal resiscance of the heat flow path Q;
through the top of the chip can be minimized both by
lowering the thermal resistance between the semicon-
ductor devices and the top surface of the chip and by
maximizing the effective heat transfer rates from the
top surface of the chip. This latter goal might be
achieved by the use of either extended surfaces
(i.e. external fins) or enhanced convective cooling
(i.e. turbulence generators). The thermal resistance
of the second major heat flow path Q_ shown in Fig. 2
can be minimized by lowering the ¢ ermal resistance
between the semiconductor devices and the bottom
casing of the chip, by providing a good contact or
heat conduction path between the bottom casing and
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Fig. 1 Air Cooling of Integrated Circuit Chips on a
Microelectronic Circuit Board
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Fig. 2 Main Heat Flow Paths from an Integrated
Circuit Chip

circuit board, and by optimizing the circuit board
configuration for a given air cooliag arrangement.
These two main heat flow paths are, in reality,
coupled both by the interaction with the thermal-
fluid boundary layer above the circuit board and by
heat conduction within the integrated circuit chip.
If, however, the physical approximation of modelling
the two heat flow paths Q  and Q_ as thermal resist-—
ances acting in parallel 1s made, then with the meth-
ods developed in this paper it can be shown that as
much as 50% or even more of the total heat generation
will flow through the bottom heat flow path Q for
typical circuit board layouts and little “contact
resistance (for example, surface-mount packaging) .
Therefore a tremendous motivation exists to optimize
the circuit board configuration in an effort to re-
duce the overall thermal resistance of the cooling
system and hence allow higher power densities for a
given maximum device operating temperature. The
development of an approximate analytical tool which
can permit such an optimization for a given cooling
scheme is then the first major goal of this work.
Accurate analysis of heat transfer due to air-
cooling of a microelectronic circuit board is a com-
plex task. In this paper only a fundamental basis
problem for heat conduction in the circuit board is
examined. This basis problem then allows relative
comparisons of the thermal resistances for different
circuit board layouts so that a designer can quickly
select a configuration which best compromises the
goals of minimal cost and minimal thermal resist-
ance. The fundamental basis problem used to model
circuit board heat conduction in this paper is shown
in Fig. 3 where a uniform heat flux q enters a two-
dimensional rectangular region with adiabatic ends
and uniform heat transfer coefficients h, and h
on the top and bottom surfaces respectively. For
convenience the free—stream temperature of the cool~
ing air is taken as T = 0. The assumption of
uniform heat transfer coefficients reflects both the
fact that in most cases h and h, can only be esti-
mated roughly beforehand and thag this selection sim-
plifies the analysis. By assuming that a "large"
number of similar integrated circuit chips are evenly
distributed over the circuit board the conservative
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Fig. 3 Basis Problem for the Study of Thermal
Resistance in a Microelectromnic Circuit Board

(in terms of maximum temperature) assumption of adia-
batic ends is chosen. Finally, prescribing a uniform
heat flux into the circuit board allows objective
comparisons of thermal resistance to be made only in
terms of the parameters over which the designer has
some direct control. Recent papers by Yovanovich
(1976) and WNegus and Yovanovich (1985) have also
shown the relative insensitivity of thermal resist-
ance to the exact form of the flux-specified boundary
condition for complex heat conduction systems and
that a uniform heat flux should give an upper bound
on the true resistance of the board.

A more thorough analysis of heat transfer from
integrated circuit chips on a printed circuit board
requires a consideration of the coupling between the
heat conduction in the circuit board and the behav-
iour of the thermal-fluid boundary layers surrounding
the board (also known as the conjugate problem). Ia
theory this entails a simultaneous solution of the
momentum and energy equations in the cooling fluid
and Laplace's equation in the board with potentially
significant computational costs using standard numer-
ical methods. However, a good approximate solution
can be developed by combining integral boundary layer
analysis with a one-dimensional or compound-fin model
of heat conduction in the board as proposed by Culham
(1985). Thus a second major goal of this paper is to
examine the limits of the one-dimensional or com-
pound-fin model for heat conduction under typical
air-cooling conditions.

THEORETICAL DERIVATION . .

Under the assumptions of homogeneous, 1sotropic
thermal conductivity k and steady-state coanditions,
heat conduction in the basis problem shown in Fig. 3
is governed by the following partial differential
equation and boundary conditions:

2 2
..a__I + _3__'_1_‘ = 0 (1)
axz 322
2o, = o0 (2)
9x
T b,2) = 0 3
3x

(%)

k2T (x,e) + h, Tx,0) = 0
3z
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3T
-k 5 (x,0) + h(x)T(x,0) = q(x) (s}
z
where
0 , 0<{x<a
h(x) = (8)
h1 , a<x<b
s 0<x<a
q(x) = (7
0 , a<x<b
The solution to this problem governed by

Laplace's equation with consideration of the three
homogeneous boundary conditions of Eqs. (2), (3) and
(4) is determined in a straightforward manner using
the separation of variables technique to yield

Bi_n

T(x,2) = 3E{p[1 - —2
k a(B12+ 1)

o«
+ Z A cosarmf [coshamn - Q sinhnwn]} (8)
as1 B n
where £ = x/b and n = z/b represent dimensionless

coordinates, the factor qt/k which has dimensioms of
temperature permits dimensionless constants D and A ,
and the Biot number on the bottom surface and aspegt
ratio of the board are defined respectively as

i = (9)
812 hzt/k
a I t/b (10)
onT tanhnma + Biz
In addition, Q = ) (1D
a  anm + 312 tanhana

Unfortunately though, the classical method of
separation of variables can not account for the mixed
boundary condition of Eq. (5) which arises when h(x)
of Eq. (6) varies on z=0 for 0 { x { b, To overcome
this restriction a special approximate analytical
technique must be developed to determine the unknown
series coefficients A, in Eq. (8) from the non-hom-
ogeneous boundary condition of Eq. (5). This proce-
dure is initiated by relating the constant D in Eq.
(8) to the series coefficients by substituting Eq.
(8) into Eq. (5) and simply integrating from x=0 to
x=b to give

D=[e- } AN 1Y, 12)
a=l
where A = - pi, 31MOTE (13)
o 1 nw
(14)

Yy = BiZ/(Biz+l) + Bxl(l-e)

and the Biot number for the top surface and the rela-
tive contact size of the chip on the circuit board
are defined respectively as

Bi (15)

1

hlt/k

= a/b (16)




The unknown series coefficients An must now be
determined by substituting Eqs. (12) and (8) into
Eq. (5) and rearranging terms such that the non-homo-
geneous boundary condition is expressed by the rela-
tionship

= < < 17
nzl A o (8) g(&) 0<EXL1 (17
where the functions @n(E) and g(&) are
Bi2

¢n(E)=cosnwE [nﬂﬂnaY3+Bi(E)Y3]-An[§?;_:_T+Bi(E)] (18)
g(E) = v,B(8) - €Bi(E) - ¢ Bi,/(Bi,+1) (19)

where 0 , 0<¢Eg<ce
Bi(E) = (20)

Bil s e<g<L1

1, 0<E<ce
B(E) = (21)

o , e<gg1

In a classical separation of variables problem,
the unknown series coefficients A would now be det-
n

mined by invoking an orthogonality property of eigen—
functions ¢ (E) over the interval of the non-homogen-

eous boundary condition (Fourier's Method). However
in this case the functions & (£) of Eq. (18) are not

orthogonal over the range 0 < & < 1 because of the
mixed boundary condition imposed on the top sur face.
Thus Fourier's Method cannot be applied to this prob-
lem and it would appear that a solution technique
other than separation of variables should be util-
ized.

This is particularly frustrating because the
solution obtained thus far satisfies both the govern-—
ing partial differential equation and all of the hom-
geneous boundary conditions. A recent paper by Negus
and Yovanovich (1984) has shown, at least for image
methods applied to heat conduction, that excellent
approximate solutions can be obtained by satisfying
one or more boundary conditions only in a least-
squares sense. This suggests that a finite number,
N, of unknown series coefficients An might be de-

termined by minimizing the continuous integral of
errors squared in Eq. (17) defined as
1 ¥ 2
E=/ [g&) - } A (£)]7dE (22)
o a=1

Minimization of E is effected by requiring that

3E

JA
m

m=1,2,3, ..., N (23)

which then creates the system of linear algebraic
equations

Hal = (26)

mn n

{e }

fc o

from which the unknown series coefficients A can be

determined. The entries in the coefficient matrix
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[Cmn] and right-hand side vector {Gn} are defined as

1

c = £ o (£)4 (£)dE (25)
1

¢ = & (B) (26)

o
and exact expressions for ¢ and G are contained in
Appendix I. ma n

An approximate solution for the temperature
throughout the circuit board section of Fig. 3 is now
available by combining Eq. (8) with the coefficients
An found by solving the linear system of Eq. (24).
Furthermore, Negus (1985) has recently proven mathe-
matically that as E + O (or the number of coeffi-
cients, N,becomes arbitrarily large) the approximate
solution obtained uniformly approaches the exact sol-
ution everywhere in the solution domain. Thus any
desired degree of accuracy for this approximate solu-
tion can be achieved, at least in theory, by increas-
ing the number of series coefficients in the solu-
tion.

It is interesting to note that in the limiting
case where the functions ¢ (&) are orthogonal on the
range 0 C £ < 1 (i.e. no mixed boundary condition),
the off-diagonal entries in [C_] are zero and the

series coefficients determinég by this formulation
are thus identical to those found by direct applica-~
tion of Fourier's Method. In practise it even ap-
pears that some "residual orthogonality" remains for
the actual ¢n(5) functions in this problem as inspec-

tions of the matrices [Cmn] produced by Eq. (25)

clearly indicate significant diagonal dominance.
Furthermore, it is also interesting to observe that
the system of linear equations produced by this meth-
od of minimizing the integral of errors squared is
identical to that which would result from direct
application of Galerkin's Method in approximating the
boundary condition of Eq. (17).

The thermal resistance, R_, of the basis problem

illustrated in Fig. 3 is given by the definition

T -T
< = 270

where in this problem T = 0 and Q2 is the total heat
flow rate crossing the contact portion of the circuit

board, or

Qz=qLa (28)

where L is the length of the chip into the plane of
the paper in Fig. 3. The average temperature rise on

the contact portion of the circuit board is defined
as

a
T =1 [ T(x,00dx N ¢1)
¢ a
o
Finally, a dimensionless thermal resistance
parameter is introduced as
v kLR, (30)
The combination of Eqs. (8), (27), (28), (29)




and (30) then leads to the following approximate ex-
pression for ¥ with N coefficients An determined by
solving Eq. (24)

N 1 N Ansinnwe
) LA += )y — 1} D

a
veo e b >

n=}

OPTIMIZATION FOR SPECIFIC COOLING ARRANGEMENTS

The computation of the dimensionless thermal
resistance as given by Eq. (31) requires the solution
of Eq. (24) for some finite number of series coeffi-
cients An. Formulation of the system of equatiomns is

accomplished using the expressions given in Appendix
I. These exact expressions for the matrix coeffi~
cients Cmn and Gn might appear somewhat formidable

but are actually quite simple to implement in BASIC
on a personal computer. An extremely efficient de-
composition process is used to solve the resultant
system of equations which are diagonal dominant. The
symmetric property of [Cmn] is also exploited to re-

duce both storage requirements and execution time.
Up to 110 coefficients can be found by direct solu-
tion with compiled Microsoft BASIC on an IBM-PC with
this limitation arising only from the 64 Kbyte maxi-
mum array space of this compiler.

Practical problems with convectively-cooled mic-
roelectronic circuit boards usually require anywhere
from 10 to 200 coefficients to obtain accuracy better
than 1% for ¢ and typical execution times are under
one minute. A somewhat larger number of coefficients
are required to accurately compute the temperatures
on the top surface although substantially fewer are
needed to compute temperatures elsewhere. As might
be expected from physical intuition, the case requir-
ing the greatest number of coefficients occurs when
the aspect ratio « is very small (a2 relatively thin
board), the bottom surface is insulated (h, = 0), and

the top surface has a high convective heat transfer
coefficient hl' When greater than 110 coefficients
are required, the solution is still obtained using
the IBM-PC but the coefficients are determined by
block iteration. The system of equations given by
Eq. (24) is ideally suited for block iterative tech-
niques because of the diagonal dominance of [Cmn] and
because the An decrease in value as n increases (us-

ually only 1 iteration is required).

The dimensionless thermal resistance parameter ¥
derived in the previous section is a function of four
dimensionless parameters or
Bi

V=1 (a, €, Bi (32)

1’ 2)
The aspect ratio a and the relative contact size
€ describe the geometry of the board while the Biot

numbers Bi1 and Bi2 reflect a combination of the con-

vective-cooling arrangement, the thermal conductivity
of the board, and the geometry. Ths use of these
dimensionless groups reduces the number of unknowns
in the basis problem of Fig. 3 from six (a, b, t, k,
hl’ hz) to four. Nonetheless, these four independent
parameters can vary over wide ranges of values which
makes it simply unfeasible to present extensive re-
sults in a paper of finite length.

. Presentation of graphical results is greatly
simplified by considering only the often-eacountered
case for forced-air cooling where top and bottom heat
transfer coefficients are approximately identical, or
Bll = Biz. Example graphical results are shown in
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Figs. 4 and 5 where the dimensionless resistance Y is
plotted against a and ¢ for the fixed Biot numbers
Bi = Biz = .01 and Biz =Bi = .1,

1

A comparison of Figs. 4 and 5 shows that for
similar geometry, an increase in the Biot number from
.01 to .1 causes a substantial reduction in the ther~-
mal resistance of the board. However, changes in
thermal resistance which result from different geo~
metrical configurations are much more difficult to
interpret from plots such as Figs. 4 and 5. For ex-
ample, consider a case where a = .05, ¢ = .4 and Bi
= Bi, = .01 (see Fig. 4). If the aspect ratio (or
thickness of the board) is increased to o = .5, then
Fig. 4 seems to indicate an increase in the thermal
resistance for Bi = .01, In comparing practical
problems in microelectronics packaging, though, the
increase in board thickness is usually intended for
fixed values of the convective heat transfer coeffi-
cients and the thermal conductivity. Thus a factor
of 10 increase ian thickness not only raises a from
-05 to .5 but also the Biot numbers from .0l to .1.
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Q&rmal resistance.
anges ia €. For example,

examination of Fig. S now shows a decrease in
Similar ambiguity results with
if one wishes to iovesti~
gate the effect of halving the spacing between IC
chips on the board then not valy will ¢ increase by a
factor of 2 but also a for a fixed board thickness.
Therefore preseatation of extensive results in the
form of the four dimensionless parameters is not just
snfeasible bur also potentially confusing.

A specific example problem is now examined €O
better illustrate the impact of different convective
¢cooling and geo rirical configurations on the thermal
per formance of a microelectronic circuit board. In
this example problem an integrated circuit chip 15 mm
in width is placed on a circuit board with thermal

conductivity of 1 W/mK at center-to-center spacings

of 20, 30, and 60 mm and heat transfer coefficients
typical of both free and forced air cooling are pre-
scribed. With reference to the basis problem illu~
strated in Fig. 3, the appropriate parameters are
then

a = 7.5 om

k = 1 WK

b = 10, 15, 30 mm )

55h1=h25_100 W/m"K

5 <t <20 mm

With the exception of the board thickness t,
these values are believed to be indicative of poten—
tial situations encountered in sur face-mount packag-
ing of integrated circuit chips. The unrealistic
range board thicknesses from the very thin (.5 mm) to
the extremely thick (20 mm) is considered so that a
complete range of thermal responses due to the chip
spacing-board thickness interaction can be illustra-
red. For integrated circuit chips of widths other
than 15 mm and board conductivities different from
k=1 W/mK, the "thin-board" or "rhick-board" effects
shown in this example problem may become important
even for typical board thicknesses. On this note the
reader is cautioned that extrapolations from the
results to follow should be made very carefully.
Implementation of the expressioas for thermal resist-
ance derived in this work is fairly straight forward
and is encouraged so that approximate thermal optimi-
zation of microelectronic circuit boards can be
accomplished on an individual case basis.

The values of the dimensionless thermal resis-

20 [ﬁi

b=10 mm
16 +
= 12F
p} b=15 mm
X
"
=
4L n=s W/miK
- h,=S W/meK
O L 1 1 1
5 1 2 S 10 20

t (mm)

Fig. 6 Dimensionless Resistance of Example Problem
for hy=hy=> W/m2g
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lll = kLRZ

- h, =20 W/m?K

ny=20 W/miK

D 1 L il H
.5 1 2 10 20

t (mm)

Dimensionless Resistance of Example Problem

Fig. 7
for hy=h,=20 W/m2g

tance, ¥ZkLRg, computed for this example problem
are summarized graphically in Figs. 6-9. The results
for convective coefficients typical of natural con~
vection cooling are shown in Figs. 6 and 7. For h1 =
h2 = § W/m‘K, Fig. 6 shows clearly that major reduc-—
tions in thermal resistance arise by increasing the
chip spacing (i.e. larger b) but board thickness has
little effect especially for small b(or large eza/b).
When h1 = h, = 20 W/mzK as shown in Fig. 7 though,
the influence of board thickness is far more signifi-
cant. In fact, in this situation substantial reduc-—
tions in thermal resistance due to increased chip
spacing are realized only when sufficiently thick
boards are available to allow heat flow to the exten=
ded surface area with minimal constriction resist-
ance. However, it is now possible to have a board
which is too thick for a given chip spacing because a
substantial fraction of the total heat flow exits via
the bottom surface and an increased thickness also
iacreases the solid resistance between the chip and
this surface.

The results shown in Figs. 8 and 9 are more in-
dicative of situations encountered in forced-air
cooling of microelectrounic circuit boards. From
Fig. 8 where h1 = h, =50 W/w2K, the effect of in-

2

creased chip spacing is seen to be minimal for b > 15
mm and typical board thicknesses on the order of t =
2 mm. Furthermore, an "optimized" thickness for

convective cooling with h, = h, 20 W/mzK and b = 30

mm gives a thermal resistance nearly identical to
that of h1 = h2 = 50 Wm K with b = 30 mm and t = 2
When the coavective heat transfer coefficients
= 100 W/m K as shown in

Fig. 9,.chip spacing has almost no effect except for
very thick boards and the thinner boards are general-
ly seen to be less resistive.

A special case which may occasionally occur, for
exam?le, due to an enclosure of the bottom surface of
a microelectromnic circuit board, is considered in
10. In this problem h1
much higher heat transfer coefficient to the top sur—
face than that of the bottom where h, = 5 W/m K. In

below some given value at
"choke-off" the heat flow

mm .

are increased to h1 = h

Fig. = 50 W/m K provides a

this case board thicknesses
each chip spacing tend to




for hy=50 W/mZK and hy=5 W/m2K
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Fig. 8 Dimensionless Resistance of Example Problem
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Fig. 10 Dimensionless Resistance of Example Problem
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from the chip to the top surface of the board and
thus increase the thermal resistance. Finally, Fig.
11 summarizes another special case in which the addi-
tion of a high thermal conductivity, water-cooled
cold plate attached to the bottom surface of the
board with negligible contact resistance is simula-
ted. For this situation it is desirable to keep the
board as thin as possible and chip spacing has almost
no effect. This allows dense packaging of integrated
circuit chips to be used with little thermal penalty.

The relative importance of convective cooling by
the heat flow path through the bottom surface of the
integrated circuit chip can be illustrated by consid-
ering the effective heat transfer coefficients on the
top and bottom surfaces ofthe chip, or hel and heZ
respectively, The heat transfer coefficient on the
top surface of the chip can be approximated as being
the same as that on the top surface of the circuit
board, or

h  =h

el 1 (33)

The bottom coefficient h , can be found by in-
terpreting the thermal resistance RZ as an effective

coefficient on the bottom surface of
circuit chip, or

heat transfer
the iantegrated

(34)

By using values of ¢ computed for the example
problem where a = 7.5 mm and k = 1 W/m K, comparitive
values of hel and hez have been compiled in Table i

and hz

and chip spacings b. Note that a board thickness of
t = 2 mm is assumed for all results shown in Table

1. Note further that the values of hel reported in

for a variety of convective coefficients h1

Table 1 are probably too low relative to h and h2 as
the work of Culham (1985) shows that heat transfer
coefficients on a chip are usually around 50% higher
than that of the top surface of the circuit board.
In addition the values of he2 reported in Table 1l are
and h, due to the

neglect of contact resistance between the integrated
circuit chip and the circuit board. Nonetheless, the

probably too high relative to h

2

b=10 mm

- b=1S mm—
by =5 W/mPK

h,=1000 ¥/m?K

20

t (mm)

Fig. 11 Dimensionless Resistance of Example Problem

for hy=5 W/mZK and hy=1000 W/mZK
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10 8.1
5 5 15 5 13.3
30 19.6
10 30.2
20 20 15 20 41.4
30 45.8
10 67.0
50 50 15 50 78.9
30 80.7
10 115
100 100 15 100 124
30 125
10 19.4
50 5 15 50 3L.2
30 35.3
10 371
5 1000 15 5 373
30 373
Table l. Effective heat tramsfer coefficients for

an integrated circuit chip with a = 7.5 wm,
k = | WmK, and t = 2 om.

results in Table 1 still indicate clearly that a sig-
aificant portion of the total heat flow from an inte-
grated circuit chip can exit via the bottom heat flow
path Q2 in Fig. 2 for practical applications with

surface-mount packaging. Thus analysis and optimiza-
tion of the heat flow path into the circuit board is
seen to be an important step towards a final goal of
allowing maximum power density for a given maximum
device operating temperature with minimum cost.

A ONE~DIMENSIONAL MODEL: THE COMPOUND-FIN

As mentioned previously, an accurate prediction
of the thermal performance of microelectronic circuit
boards really requires consideration of the iater-
action between the thermal-fluid boundary layer and
heat conduction in the circuit board. To achieve
this goal with a minimum of computational effort,
Culham (1985) has coupled a boundary layer analysis
with a one-dimensional heat conduction model, the
compound—fin. In this approximate heat conduction
model the temperature is assumed to vary only along
the length of the board, or T=T(x) only in Fig. 3.
Physically, this approximation indicates that temper—
ature changes in the x-direction of Fig. 3 are much
greater than those in the z-direction or that the
temperature drop in the z-direction of the solid is
much less than the temperature drop across the ther-
mal boundary layer.
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In a compound-fin approximation, the prescribed
heat flux and convective cooling on the top and bot-
tom surfaces of the fundamental basis problem shown
in Fig. 3 are modelled as sources and sianks respec-
tively in a one-dimensional heat balance equation.
By solving the simple constant-coefficient ordinary
differential equation which results and applyving the
boundary conditions of adiabatic ends at x = 0 and x
= b, the dimensionless thermal resistance of the com~
pound-fin approximation of Fig. 3 can easily be de-
rived as

(o}
bop = =l * L1 - M) (3%)
€ Blz mle
where m = /EIZ /o (36)
m, = /Bil + Bi, /a (37)
l/Biz
and Cl = (38)
mjo] (emz(e—Z) b o m2Ey | THIE QM1E
m2
mie _ _-mE
o, = ? 5 Z (39)
emz €~ - e moe

These expressions are not valid when the bottom
gurface is insulated, or Biz = 0, In this case a

similar one-dimensional analysis can show that

1 = = g - Em
bop(Bi,=0) = €, 2 - = (40)
where ¢, = C3(e_m2€ + emz(e-Z)) + 62/201.2 (41)
€y = s/mzcnz(enmze - emz(e_Z)) (42)

In Fig. 12 the ratio of the compound-fin resist-

ance to the exact two-dimen-sional resistance, ¢CFIW,
is plotted against Bi=Bi1=Bi2 for the case of €=.5
and a=.2. Examination of extensive numerical results
has shown that errors in ycp relative to ¢ of Eq.
(31) generally decrease as € increases and a decreas—
es. Furthermore when Bil*Bi2 the ervor in wCF is

usually less than that shown in Fig. 12 for Bi=max
(Bil,Biz).

From Fig. 12 the compound-fin model is found to
underpredict the true thermal resistance. This is
expected since its derivation assumes that internal
solid resistances are small relative to film resist-
ances and thus neglects their contribution. The re-
lative error in wCF for the case shown in Fig. 12

is generally on the order of the Biot aumber for Bi ¢
.5. Therefore, if errors in resistance greater than
10Z are not tolerable, then the one-dimensional ap—
proximation given by the compound-fin model is of
limited utility for Bi > .l1. In fact, the actual
surface temperatures (which are required in a model
that couples heat conduction and boundary-layer amal-
yses) may be significantly more in error for a given
Biot number than the resistance which is based on an
average temperature.

Physically the Biot aumber should reflect the
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Fig. 12 Ratio of 1-D to 2-D Resistances for the
Compound~Fin Model (¢ /%) and the

Modified Compound~Fin Model (w; /%) Versus
Biot Number B; for top and bottom surfaces

ratio of the solid resistance, R

ss to the fluid-
film resistance, Rf

, in a system or BiHRS/Rf. For
"small" Biot numbers one might approximate the total
thermal resistance, Rt’ as the sum of the solid and

fluid-film resistances acting in series, or
R~ R+ R = Rf(l + Bi)

which suggests that a better estimation of the ther-
mal resistance of the basis problem of Fig. 3 can be
made using a compound-fin model if the factor (1+Bi)
is applied to wCF to give

uﬂéF = (1+B1) (43)

wCF

A plot of wEF/w is also shown in Fig. 12 and the
increase in accuracy of this “modified" compound~-fin
model is substantial. Thus an important future im-
provement to the compound-fin model would be the dev-
elopment of similar correction factors which can bet-
ter estimate actual surface temperatures while still
using only a one~dimensional heat conduction model .

CONCLUSIONS

In this work an approximate model to predict the
thermal resistance of convectively-cooled microelec—
tronic circuit boards has been developed by consider-
ing a fundamental basis problem for heat conduction
in the board. An approximate analytical solution to
this basis problem which can provide any desired
accuracy was derived by employing a novel approach
for treating mixed boundary conditions. An individ-
ual problem of this type could be readily solved us-
ing standard numerical methods, However this approx-—
imate solution allows interactive evaluations of the
thermal advantages or disadvantages for different
circuit board configurations or convective cooling
arrangements to be made rapidly on a personal comput-
er.

The results obtained for a practical
problem indicate that either a "thin" or
cuit board can be desirable depending on

example
"thick" cir-
the interac-

tion of the different variables which contribute to
the thermal resistance. In particular, a decrease in
the thermal resistance of the board due to increased
chip spacing oftea occurs only when accompanied by a
similar increase in the board thickness (which ig
often not feasible). Thus increasing the chip cen-
ter-to-center spacing to a distance greater than
twice the chip width anormally produces little benefit
in decreased thermal resistance for the penalty of
decreased packaging density except when the convec-
tive coefficients are fairly low (i.e. free convec—
tion). In some cases where the convective heat
transfer coefficients arve very high, it is desirable
to make the board as thin as possible and the inte-
grated circuit chips can be placed close together
without increasing the thermal resistance of the cir-
cuit board.

Finally, the accuracy of the compound-fin model
for one~dimensional steady heat conduction in a mic-
roelectronic circuit board has also been

investiga-
ted. The compound-fin model underpredicts the actual
thermal resistance with a relative error generally

exceeding 10Z for Bi > .l where Bi is the maximum of
the top and bottom surface Biot numbers. A substan-
tial increase in the accuracy of the compound-fin
model was observed when a simple correction factor
derived from physical considerations was applied.
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APPENDIX I
The solution of Eq. (24) for the series

' coefficients A, requires the evaluation of the
matrix coefficients C and G . The coefficients C *
mm n mn

are determined by exact integration of Eq. (25) to
give _

2 .
Cm“ = A, Y3(1 - smn)[nmﬂn + mﬂuﬂm + 811]

2 .
+ Gmn[(mrﬂnuy3) /12 + THYB(ZYBﬂann + 1311)]
+ A A [2v,Bi (l-€)+Y2+Biz(l-e)-nﬂﬂaY
nm 41 4 1 n '3

- mﬁﬂmaY3 - 2Y3(Y4 + Bll)] (A-1)

where 6m is the familiar Kronecker delta function,
Qn’ An’ and Y, are defined by Egqs. (11), (13) and
(14) respectively, and

sin(n-m)me sin(n+m)1re] (a-2) |

A = (-Bi /2 +

mn ( 11/ " (n-m)™® (n+m) ™

¢ = BiL[(1 - e)/2 - Sin2nTe (a-3)
n 1 4nm

¥, = Bi,/Bi, +1 (A=4)

The coefficients G, are determined similarly
by exact integration of Eq. (26) to give

2 .
‘ Gn = Y3 Qna sin amwe +

.2 2 .
eAn[B13(1 - €) - Y, "~ Y3 (Bll+ nﬂﬂna)] (A-5)
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