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1 Introduction

When two apparently flat surfaces are pressed into contact
it is well known that the actual contacting area is very small.
The contacting asperities are widely separated, and if heat is
to be passed through the interface there is a thermal con-
striction. In most cases of practical interest the contacting
spots are sufficiently far apart to treat them individually as
being an isolated spot on a half-plane. The constriction
resistance of a spot of radius g of a half-plane with thermal
conductivity & is equal to about 1/(4ka).

Often surfaces are coated with material having different
mechanical and thermal properties from the substrate. These
surface layers although apparently thin may cause large
changes in the constriction resistance. In many present-day
applications, such as laser annealing and microelectronics, it
is important to know quantitatively the effect of a surface
coating upon the constriction resistance. Recently, the effect
of the coating upon the steady-state constriction resistance,
for a particular specified flux, has been analyzed [1]. Here, a
more general analysis is undertaken. The effect of the coating
upon the short-time and also the steady-state constriction
resistance for any axisymmetric flux is analyzed.

Figure 1 shows a half-space of substrate material 2 with a
coating of material 1 having thickness 4. There is an
axisymmetric flux f(r), prescribed over a circular spot of
radius @ and outside this spot an adiabatic boundary con-
dition is imposed. Initially the temperatures in materials | and
2 are assumed to be zero. The aim of the analysis performed
in this paper is to find the effect of the coating upon the short
time and steady-state constriction resistance. (On the surface
z2=0, the average temperature of the circular spot, 0<r<a, is
equal to R x ). The mathematical details are discussed later.

The results of the analysis indicate that when Fo, <1/10 the
constriction resistance is controlled by one-dimensional heat
flow. The expression obtained for R is identical to that ob-
tained from the analysis of transient heat flow through a two-
layer wall. At steady-state

27r:1k, [l"(l"K)%+C3(%)3 +C5(%>5 o ]

The coefficients C,, Cs, . . . depend on f(r). If the coating is
thick enough so that the terms involving (a/8)?, @/d)°, ...
can be neglected, or if the coating is highly conductive relative
to the substrate so that In(l — K) is-large compared with C,,
Cs. .., then

R=Rlc—

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
Heat TrANSFER. Manuscript received by the Heat Transfer Division September
29, 1984.

Journal of Heat Transfer

transient heat flow through a two-layer wall. At steady-state, the results of the
analysis predict that the effect of the coating are mainly dependent on the relative
thermal properties of the coating and substrate. The limiting cases, where the
coating thickness approaches either zero or infinity, are discussed.
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Fig. 1 Half-space with coating of thickness § and axisymmetric flux
0 <r<a. Coating is material 1 and substrate is material 2.

1 a
R=R,,— —— In(1 - (—)
O e A
If the coating is very thin, so that 2/1 — K 8/a is somewhat less
than one, then

R=R,, — — —— —— —[1+0(1
“ wak, l—Kl—Ka[ ]
The higher-order terms of the thin film expansion cannot be
found unless f(r) is specified.

2 Problem and Analysis

A half-plane with a coating is to be analyzed to find the
effect of the coating upon the constriction resistance. The
transient axisymmetric problem is stated below. Referring to
Fig. 1, the temperatures T, (r, 2, t} and T(r, 2z, {) must satisfy
the heat conduction equation

aT,

i =0, V2T, r>0,0<z<8,t>0 (1)
aT,
at‘ =, V3T, r>0,2>6,t>0 2)
where
, 8 13 @
v +-—+

- o T ror 8z
Initially at t =0
T,(r,z,00=0 r>0,0<z<o 3)
Ty(r,z,0)=0 r>0,2>6 @
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At the interface, z=24 there is continuity of both tem-
perature and flux

T,(r,8,t)= T5(r,5,0) (5a)
2 ad
kl &Tl(r,ﬁ,t)z‘kzgz’rz(r,ﬁ,t) (Sb)
At z=0, an axisymmetric heat flow is prescribed

oT, (r,0,0
az IV

—f(rYH(t) r<a
(6a)
=0 r>a

where H(t) represents a Heaviside unit function and f(r) is
arbitrary except that

le " 2nrf(rydr=Q (t>0) 6d)
At this point the integral /, is defined as

! Q
P .
! x=0f(ax)x by =y
where the integral I, follows from (65) by a simple change of
variables.
And finally, as r? +z2 — o

Tl (rrz!t)= TZ(rvz9t)=0 (7)

A double transformation technique is used. A Laplace
transformation and then a Hankel transformation are ap-
plied. Using equations (3) and (4), equations (1) and (2) are
transformed to

(6¢)

d? N
a,(Ei—)\)wl=swl ®)
2
a, (;—zz— - )\2) Wy =SW, )]
The solutions to (8) and (9) are
w,=Ae"1*+Be~"1* §>z>0 (10)
wy,=Ce Mm% z>06 (11)

The coefficients A, B, and C are found from the double
transforms of equations (5a), (5b), and (6a). After some
algebraic manipulation
F(\
A= _(2 _d’- 12)
sm 1-¢

Nomenclature

Fn 1
B=——r —— 13
sm 1-¢ 13)
FN 2k 1
C=—— —————exp(—8(n; —12)) . (14
o1, Kom ko p(—&(n; —12) —% (14)
On the planez=0
w, = A+B
FN 1+
= L_.__? 15)
sm 1-¢
and since ¢! <1 this can be expanded as
F\ =
w, = T [1 2} ¢’] (16)
S i+1

3 Laplace Transformation of Constriction Resistance
On the planez=0

Uy = S)\=0 w, )\Jo(x")d)\

and using the formula for w, in (15)

w=| FV 148, ronan 17
1= Yoo 3y 1=g 0 17
The Laplace transformation of the constriction resistance is
1 a
L[R) = o= Sr=0 2aru,dr/Q
2 (® F(N1+9¢
0a sho oy l_¢.ll()\a)d)\ (18)
If the following substitutions are made
A=E/a
and } (19)
Iolf (r);¢/al=a*3olf(ar) ;£
then
= G 1+¢
L{R}=2/ S —_ ——
(RI=2/Q) _ <= {2 /10t 20
where
1
G@)={ _ faxendx ey

Expressions for R which are valid for steady-state (¢ = o)

a = contact spot radius

2k,
= in( ) =mn@i -
Cl n k|+k2 n( K)

1( I;)“K"
= — 1 —— —
(of T +21| 2;3

1 I 15) K
C; =5 (1+61l +31l ; i5
E(x) = complete elliptic integral (see equation
(24b))
f(ry = radial distribution of axial flux
F(N = 3o (f(r);N])
Fo,,Fo, = Fourier numbers a,t/a?, a,t/a*
G(§) = 3o {f(ar);¢} (see equation (21))
H(t) = Heavy side function
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JCo {¥(x); A}

S;o V(xS o (Ax)dx

(Hankel transform of zeroth order)

1
I = S | f(@x)x"dx (see equation (26))
x=
Jo( )J,( ) = Bessel functions
K = (ky—ky)/ (ki +k3)
ky,k, = thermal conductivity of materials 1 and 2
ey} = | winesax
x=
Q = flux passing through contact spot (see
equation (6b))
R = constriction resistance of coated material
R,. = constriction resistance of half space of
material 1 )
R,. = constriction resistance of half space of
material 2
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and for very short times (o¢/a@* <0.1) are found by con-
sidering the behavior of £[R] as s—0and s— oo,

4 Steady-State Constriction Resistance

In the theory of Laplace transformations it is well known
that the limits s£[R} as s—O0 will yield the steady-state
solution, see, for example, Doetsch [2]. Thus from equation
(20)

R= 2a S“’ 1+¢ J,(§) S'

T Q0 1-9¢ £ Jx
At steady-state ¢ =K exp( — o£) which will always be less than
unity. Since lo! <1, (1 + ¢)/(1 — ¢) can be exapnded using the
binomial theorem to obtain

e loEaxd;  (22)

R=R,. + ta Y Kia) (23)
Q i=1
where
_2ar* -’1 &
ro= 2 TR eosea )
and after integrating over 0 <§ < o
4a (!
R,.= -3 Sx:of(ax)xE(x)dx (24b)

In equation (23), the term R, represents the constriction
resistance of a spot on a half-space of material 1. The
presence of the substrate is accounted for by the summation |
=1,2,...00.

Equation (6.626) on page 715 of [3] gives

[ dteriunten 252

_ 1 _emnm o om
20 E rmen ol m,l,x)(—;—)

Using this equation and integrating over 0<x<1, Q(g;) is
found to be

1 /1 Ly 1 I I
oere s~ 25) 2+ (i
d=I|3-=\g* a5,/ o7 " \1m1, " 6ar,

I

1
1,,-=.Sx=0x"f(ax)dx (26)

The integral I, has been previously defined in equation (6¢)
and the only restriction on f(ax) is that I, be constant. The
integrals I, and I5 will have the same units as /, since x is
dimensionless. The integrals /, are similar to moments of
f(ax) about x=0.

The expansion given in (25) is useful when ¢>1 and can be
used in (23) to give

21r:1k1 [l“("K)<%>+C3(%)3 +CS(%)S " ]
27)

This expression shows the effect of the coating upon the
constriction resistance. It is useful for small values of a/6 that
correspond to thick coatings. In the next section an asymp-
totic form that shows the thin film behavior is found.

R=Rlc_

Effect of a Thin Coating—8/a—0. After integrating by
parts equation (22) may be reexpressed as

2a 2K
R=Ryc= 5 =g ¥ (28a)
and
i ® J of
o=, axtenx]” a2 nen] T ] e

where R,.=R,. k,/k,. In this section the behavior of the
integral given in (28b) is considered as ¢—0.
Within the interval 0< (<1 —-K/o

—e-k 2
[ )= (%) (%))
1—-Ke % 1-K 1-K
and results I, II, and III are obtained.
1-K

0| aerenn] 7 e t®ueo( %)

g
L 0( )
1—1< O\ Tk

(See integral #3 on page 667 of {3].)

(242 0(( 1))

=o((lT°1—<)z_zp)(0<p<x/2)

o | a7 al@

x=

. 1 24 ] @5)
384/ g5
where
Nomenclature (cont.)
r = radial coordinate
s = transformed time variable
T,,T, = temperaturein materials I and 2
T = average temperature of contact spot
t = time
u,,u; = Laplacetransformsof T, and T,
v,,v, = Hankeltransformsof T, and 7,
w,,w, = doubletransformsof T, and T,
= (8/a)/~Fo,
z = axial coordinate
Greek Symbols
ay,, = thermal diffusivities of materials 1 and 2
v = (ky/Nay —ky/Nag)/ kN ay + ky/N o)
6 = coating thickness
A= Ea
7 = VAN +s/a, =V(¢/a)? +5/a,

M = \/)\2 +S/a2 =\/(E/a)z +S/az
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_ - Ji(&)
wor = |, dxftan] ar =2
1—ec
A
¢ = fﬁ‘———ﬂ@( 28m,); lpt <1
kyn +kamp
A = Hankel transform of radial coordinate
p = R/R,
o = 26/a
o; = 2ib/a
a0 = | aeftanx| et g0
x=0 £=0 £ 0
p = X2 ™
ky
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1-K

1
11 SFO dxf(ax)xSE=(1_K )pd&

%) )=o(Z)e= ()
=O — =
((I—K 1-K ; I
See Lemma 1 on page 304 of Sneddon [4].
Fortheinterval 1 - K/o<f<

v S'::def(ax)xg BE: dgﬁjo(z- )[—l—ie—i]

Ke %
g
;%)
1-K

See Lemma ! on page 304 of Sneddon [4].
Using the results I, II, III, and 1V the asymptotic behavior
of Y(o) is

Ji(§)
3

Jo(£x)0

Wo)= K1'+0<1—K>

The only restrictions of f(ax) are that it is piecewise con-
tinuous and that the integrated flux is Q. The 0 symbol gives
no information about the next series term, which will depend
on f(r). At this point all that can be stated is that

1 2K 6

2 2 s
R~Ry— ° 1+0(1)] as —— 20
“ ek, 1=K) g i—g U0 as i 2

(29)

Equation (29) compliments (27). In (29) if 6/a = O then R =
R, as expected. For a small value of ¢/(1 — K) the effect of
the coating upon R will be as shown in (29).

5 Effect of Surface Coating on the Constriction
Resistance at Short Times

By considering the behavior of £{R] as s— o0, an expression
for R is found which is valid for very short times.

If the flux over the contact spot is uniform, then it is ex-
pected that for extremely short times the average temperature
of the spot would be the same as if there were a continuous
planar source distributed on the surface z = 0. In fact, Beck
{51 has shown that for uncoated surfaces this is true. It is
shown below that for any axisymmetric flux (0<r<a) the
constriction resistance is behaving in this manner.

Equation (20) can be written as

gSsl G(®) 1+¢>

SIRT = QJe=0 sy

J, (§)dE

212 G 1+¢
2], Sexe = Ji(bat (30)
QJe=g sm 1-

We can choose £, large enough so that the second integral is

negligible.

For a fixed value of £, we can take s sufficiently large so
that the minimum of (s/«,, s/a;) > > £,2/a*. Under these
conditions

= ‘/ral M2 = ‘/57;:
and
¢ =vexp[—28Vs/a,]
and then (30) can be written as
2 Vo, Vo 1+ ¢>
Q 53/2 1 - ¢ S\
For large £, the integral in (31) is equal to Q/2ma? k,, so that

£[R]= G(&J(HHdE €)))

Va, 1 146 Vo [ ]
- _ E 2
LIR] kyra® s 1—¢  k,wa* 53/’ A (32)

This can be inverted to give

ket (T [ 22)
<¢a,)e rfe («fl )]} (33)

This is identical to the surface temperature on a two-layer wall
with a prescribed flux density [(Q/7a*)/Q]} being imposed
on the surface, see Griffith and Horton {6].

Equation (33) can be rewritten

R 2 Fo1+ 4 & {,Fo,ex (_iz(é/a)z)
=k a Foma =Y WN o\~

SORED)

For the case of a uniform flux for r<a on a half-space of
material 1, Beck [5] shows that R behaves as the first term in
(34) for values of Fo,<0.1. The effect of the substrate
material 2 is represented by the summed quantity. In (34) if
&/a = 0, then after some simple algebra it follows that

2 FO‘,

R=R —
%= ko (35

On the other hand, if {(8/a)/VFo,} is greater than about 2

Table 1 Values of R\, C,, C; and Cs in equation (27)

.G G
f(r) Ric ol (E(1)'i 73 =1.202) (E(1)'i7% =1.037)
(E(=1{i 3 =-0.902) E(—1)i73=~0.972)

1 = K — K

() Point source In(l1-k)y 0.0625 E =5 —0.00782 =
at center mak, = =i
0 8 = K > K

i ———  In(l- 0.1250 ), — -0.0391 ), —
@ ky ma? 3nlak, n(1 -£) ; I I=E| I
0 1 = K o K

i — in(l - 0.1458 ), — ~0.0516 ), —
@@ 2k mad® —r*  4ak -5 ; i? ,; i
2 > K = K

(iv) Ring Source . In(1-K) 0.1878), = -0.0781 ), =
atr=a T ak; i=1 ! i=1 !
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i(6/a) Fo, 1 (a) ( iz(é/a)2>
e‘f‘:(\/ﬁ N 7 i\s/ P\ T, 36)
then
2 F
R=R, = —— =2 a7
k,ma T

6 Results and Discussion

6.1 Steady-State.

6.1.1 Effect of Coating. 1f 6/a=o0 then R=R,.. The
effect of a coating can be found using equation (27) which is

R ! [c (“)+c (“)3+c (a)5+ ]
R=Re= orak, L5\ *\s *\s

@n

The coefficients C;, Cs, . . . depend on k,, k, and f(r) while
the leading term C, is only dependent on k, and k,. In Table 1
values of R,., C;, C3, and C; are given for

(i) f(r) as a point source at the center of the contact

(i) uniform flux over the contact
(iif) flux which causes an isothermal contact spot
(iv) f(r) asaring source located at the periphery r=a
Cases (i) and (iv) represent the two extreme cases. (The values
C., Cs, etc., corresponding to (/) will be smaller than any
other flux and the values C;, Cs, etc. corresponding to (iv)
will be larger than any other flux.)

From the values in Table 1, it is apparent that if a/6<1/2
(say) then the effect of the coating can be predicted from the
leading term of the series which is [—In(1 — K)/2mak (a/d)].
For thinner coatings the terms involving C;, Cs, etc., which
depend on f(r), become increasingly important.

If the coating is highly conductive relative to the substrate,
then K—1, and there is a logarithmic singularity that arises
because of the adiabatic boundary condition at z=4. In this
case, even for large values of a/6 the leading series term will
be dominant.

Recently, the steady-state temperature distribution in a
large circular plate heated by a disk heat source has been
studied by Mehta and Bose {7]. In their analysis they specify
uniform flux over 0 <r<a with an adiabatic condition outside
the spot and at z=§6 they set 7,=0. These conditions
correspond to case (i) with K= — 1. Their expression for the
average contact spot temperature, (their equation (13)),
contains a minor error. (The 4 preceding the summation
should be replaced with 2.) Their results are valid for ¢>1.

6.1.2 Effect of a Thin Coating. If 6/a=0 then R=R,,
and for very thin coatings R can be found using equation (29)
which is

R~Ry - 29)

1 4K & 2 8
-————— — as — — —0
nak, (1-K)? a 1-K a
To find the higher-order terms in the thin coating expansion,
f(r) must be given. For example, if f(r)= Q/2wakNa* —r?
then (o) in (28D) is
2 [+ ((Z) ]
= | —— +0
W= ook, Ltk 1-K
and if f(r) = Q/wa’k, then y(o) is
2[5 5 ~o((Z%) m(:%)]
= - +0 1 _—
o= e L2 12k i—x/ "\iZkx
The higher-order terms in the thin film asymptotic expansion
cannot be found unless f(r) is given. This is in contrast to
equation (27), which gives the effect of the coating as a power
series in (a/8), the coefficients of which depend on f{(r).
If there is a thin layer of a poor conductor it is reasonable to
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6 9 =041 W3
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i 2 3 4

w
Fig.2 Short-time values of p as a functionof W = (8/a)NFOq for a re-
sistive layer kqlky =aqlap =0.01 (#=10) and for a conductive layer
kylky =aqiay = 100.(9=0.1)
expect that the heat flow through the coating will be mainly in
the z=direction. The extra resistance due to the coating will
be a one-dimensional effect and

1 671 1
romatises oo i)
1 2

The total constriction resistance is
R = ch + R t—-d
and if k£, < <k, then

1 4
R=R2c+ -

— 38
waky a (38a)

This is the same result as predicted by equation (29) and is
valid when

On the other hand, when there is a thin coating of highly
conductive material, then it is reasonable to assume that the
temperature within the coating does not vary across its
thickness 8. If T,(r,8,t)= T,(r,5,1) and if continuity of flux is
mountained, then at steady-state the appropriate boundary
condition at z = §=0 becomes

9T, 1 [ k, 0T,

azz sl k, oz
This is discussed on pages 23-24 of Carslaw and Jaeger [8].
Using this boundary condition

_ 2a kl 2 ) Sm
R—_RZC——Q—(E> 7 E=0dxf(ax)x

+f(r)] =0 at z=0

J1(§)Jo(6x)
df ——M88 ——

and from an analysis similar to that in section 4.2

1 k‘[k, ] (kl 6)]

R=R,, — — — | — — +0{ — —

* rak, k, Lk, a k, a
When k, > >k, equation (29) gives the same result and is
valid only when 2/1—-K 8/a=k,/k, 8/a< <1. Apparently as

k,/k, becomes large 6/a must be very small if (29) is to be
valid.

(38b)
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In summary, the effect of a thin surface coating is given in
equation (29). If the surface coating is a poor conductor of
heat, then the extra resistance caused by the coating is a one-
dimensional effect and is given in equation (38a), which is
valid when 6/a is somewhat less than 1. On the other hand, if
the film is highly conductive, then the flow within the surface
layer is in the radial direction and the decrease in the con-
striction resistance is given in equation (384), which is valid
when &/a is somewhat less than k,/k,. This shortcoming is
offset by the fact that as k,/k, becomes very small, euation
(27) becomes useful for smaller values of 6/a.

6.2 Short Time Constriction Resistance. To investigate
the effect of a coating at short time, a dimensionless con-
striction resistance p = R/R,. is defined. Using (34) and (35)

SWARIAY
p=0[l +2), (TTe) {exp(—2W2)~VmpW erfc(iW)]]
i=|
(39)
where
kz (o 4] (6/0)
= "= | — d W= _—
kl Q& an ;Fol
In (39) if W—0 then p—1 and for large values of W (about
W=>2) p—6. In other words, for a given 6/a, at small values
of Fo, the coating controls p and at large values of Fo, the

substrate dominates.
In Fig. 2 this effect is shown for a resistive layer =10 and a

38/ Vol. 107, FEBRUARY 1985

conductive layer 8=1/10. If we assume that k,/k; =a;/ay,
then it can be seen that the effect of the coating on the short
time values of p are about equal to the square root of the
steady-state maximum.
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