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Abstract NPHO
A novel analytic-numerical method is proposed to
btain thermal constriction resistances of mulitiple PREF
realar microcontacts uniformily distributed over %
acro-eiliptical contour regions attached to half spaces q
 circular flux tubes. The aumerical resuits are in good ofi
greement with a recently published ellipsoidal model -
he accuracy of the proposed method is verified by %
mputation of the constriction resistance of s single t,,
reular contact on s flux tube, and a single elliptic Vi
mtact on & half space for which analytieal solutions
ist. Good agreement is also observed between the
imerical results of the method and some electric 5
1alog test results for muitiple cirenlar contacts on Ui
rcular contour regions on cirenlar flux tubes.
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number of radial positions used in
determining T, .,

polar radial heat flux -

imposed hesat flux on i th aanulus
heat {lux in the p direction

due to ith flux annulus

averace heat flnx

acting on the ith contact

heat flux in the p direction

due to the ith contact in its own
local coordinate system at the jth z
depth and the rth azimuth angle
PRHF due to the ith contact

at the jth z depth

and the rth szimuth angle
effective PRHF at the jth z depth

" total heat flow rate

Legendre polynomial of the

first kind of order 2n

the polar radial coordinate .

of the ith contact spot

surface element method

dimension used in calculating R
sverage temperature of a set of
contacts

sverage temperature rise along ==t
due to the imposed anndil

aversge temperature rise along za=t
due to the contact spots

thermal contact resistance
spherical radial coordinate

thermal constriction resistance
TCR of set of contacts on flux tube
TCR of set of contacts on half space
major axis of eiliptie contour region
minor axis of elliptic contour region
independent parameterin
Legendre’s equation (cos(4))

inner radius of ith imposed flux
annulus
outer radius of ith imposed {lux

¥ B 8 O

13 .2 %2 w4

L . Ew

o

VAV AR AN YU




aanujus

constriction ratio

angle from the 3-axis in spherical

coordinates
b asimuth angle in spherical coordinates
; aximuth angie of the ith contact spot
s,. rth azimuth sngie at which

the PRHF is to be calculated
| poiar radisl coordinate

Introduction

Engineering surfaces possess both micro-roughness
ad macro-out-of-{flatness. When two such surfaces are
rought into contact under s load, the mechanical
teraction is controlled by elastic properties, surface
yaracteristics, geometry and the surface micro-hardness
istribution. If both waviness and roughness are
resent, the result of this interaction is a set of
icrocontacts distributed over some contour region as
epicted in Fig. 1. The solution to this mechanical
roblem is complex sad is not dealt with here.

The presence of the edge of the body is important
| the determination of the thermal contact resistance.
or this reason the contacts are modeiled as being
ttached to a flux tube. Although the contact geometry
escribed above was the resuit of a mechanical
teraction, this type of modelling is not limited to
roblems where bodies are brought imto contact.
nother possible application can be found in
icroelectronics problems where an array of chips are

to a cirenit board. Each chip can be modelled
h y as a discrete heat source.

This thermal probiem is a complex 3-D problem
hich does not lend itseif to analytical solution due to
he complex nature of the boundary condition, nor to
jassical numerical techniques such as [inite elements
ue to the vastly different characteristic dimensions of
be micro-contacts and the contacting bodies.

Hence, a different approsch must be taken to
pproximate the thermal contact resistance of a set of
ontacts on an otherwise adisbatic cirenlar flux tube (1.
y using techniques des sloped for a system of contacts
2 a half space [2], in conjunction with other hall space
lutions, a system of contacts on a3 flux tube can be
muiated. The procedure followed was to first place a
it of contacts on a hall space. The size, distribution,
nd applied boundary condition (either isoflux or
othermal) of the contacts are assumed to be known.
Vithin the half space, 3 flux annuli were placed external
> the desired location of the flux tube (see Fig. 2a).
he inner radius of the ith annulus is located at a;, and
he outer radius is at J;. The uniform heat fluxes
cting on these annuli are unknown, but are chosen so
s to produce an adiabatic shell at p = b (ie a flux tube)
1 least squares semse when their temperature
‘ntions are superposed with that due to the set of
ontacts. By the uniqueness theorem [3], if the
uperposition solution satisfies Laplace’s equation and
natches the preseribed boundary conditions, the
emperature distribution obtained by superposition will
e the same as that of s set of contacts on » flux tube.

Fig 1 - Contact distribution

Ouce these hest fluxes are caiculated, the temperatures
inside the simulated flux tube can be ecslcuiated and
hence, the thermal contact resistance (TCR) can be
computed. '

The superposition method was then applied to three
test cases:
(1) One isoflux circular spot concentric on a flux tube
(2) Electric analog studies of Yip and Venart [8]

(3) A number of circular isoflux comtacts within an
elliptical contour
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Flg. 2a - Soiution space
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The solution space used is given in Fig. 2a. The
\lue of z,,, Was chosen to be large enough so that
iere would be no {urther constriction at that plane or
e temperature through the cross section would be
jiform. An exact match of the boundary condition of
2 adiabatic shell at » = b would require s match at an
fi number of points. Hence the boundary
ndition was approximated by dividing the 3
ordinate into NN equal area subdivisions, striking a
at balance at the mid point of each of these divisions,
d then minimizing the sum of the squares of the net
at fluxes (see Fig. 2b). In symbolic {form this is given

/= S{q,f - 1,} A} (1)

Je=i

ere 9,/ is the heat ﬂumthopohrndn.ldmetmu
e to the 3 applied flux annuli, ¢,; is the effective
lar radial heat flux (PRHF) dueto the set of contacts
d A; is the conduction area at the jth z depth. [ is
. snm of the square of the net heat fluxes.

q,7; is given by the sum of the polar radial heat
xes due to the spplied annuli, or

Qots ™ 2 85 (2)

is]

lere ¢, 5; is determined from the temperature soiution
spot on s hall space. That is the temperature
tion due to an annuius is given by the
mperature distribution due to a flux of <+g¢; over a
ot of radius J; and that due to & {lux of = ¢; over &
ot of radius a; (see Fig. 3). The heat flux (9,/) is
and by using Fourier’s Law and is givea by (1]

Flig. 2b - Detail of solution space

9;5"-’[2'&-2’"'"-!?2-(3)[,5;‘1 - Q;-n ]ﬂ'n(‘)

(2a)

am| ]

- Z Ah':‘—‘P"(z)[ﬂz-- - 02:-1 ] 2° a:n(ﬂ

where, r < a; and A,, are constants given by equation
3b.
A= %
3b
Aw = 113 (2n=3) (=1)** (3%)

248 2n

For a given r and 4, or & given 3 depth denoted by
subscript j, equation 3a becomes:

oA ™ 8 G (4)
where g;; is everything inside the large braces evaluated

at the jth z depth. Substituting equations 2 and 4 into
equation 1, one obtains -

2
/= E 2 %% = qn} A} (5)

Je1

/ is then minimized with respect to the g; 's as follows

iL- {§ =
. 0, i =133 (8)

This resuits in the following matrix equation:
NN
Z 85 {2 8% } = X455 i=123 (7)

J=1 Jet

Again, for s given set of contacts g,; is known (see
Appendix A). Therefore the only unknowns in equation

1
I
q
L
e A P
®
¢

2

Fig. 3 - Superposition for annular soures

| W B M A odP E _ ibbel




7 are the g;'s. These are solved for using Gaussian
elimination.

Having determined the fluxes acting on the imposed
sanuli, temperatures can be caiculated and hence, the
TCR can be computed. The resistance is defined as:

Teont = Tyae ot

R=
Q kxb*

(8

where Tcom is the average temperature rise of the set
of contacts and is given by an area weighted average of
the temperature rises of the individual contacts. The
temperature rise of each contact is given by the sum of
i) its average temperature rise due to its own flux
loading, ii) its average temperature rise due to the flux
loading on its neighbouring contacts, and iii) the
temperature rise due to the imposed annuii. The
temperature rise due to its own flux loading and due to
the neighbouring contacts’ flux loading is determined
using the SEM preseated in [2]. The temperature rise
due to an imposed annulus of flux ¢ is givea by equation
9. .

T = 2ely - L2 ly

The sbove expression is valid only for values of p < a.
p is the polar radial coordinate value of the centroid of
the contact in question (s;).

T,.‘ is the average temperature rise at the plane

(see Fig. 2), where it is sssumed that the

ure throughout the cross section is uniform. It

given by the superposition_of the temperature rises

due to the comtact_spots (T, )and that due to the
mposed {lux annuii (T,, ).

Tzﬂt - Ta + rfu (10)

The temperature rise due to one annulus of inner radius
@, and outer radius 3 is given by equation 11. T, is
given by the sum of the temperaturs rises due to each
annulas.

T = £~ P+ £ rntG P} -
nwl
| (11
wh-Zree Er(EPue) <

The method used to caleulate T, is presented in
Appendix B.

Q is the total heat flow rate through the system
and is given by the sum of the heat flux scting on esch

muitiplied by the contact area. { T is the
mitu-ial resistance of a cylinder of length ¢ and thermal
conductivity k. Finally the resistance is non-

dimensionalized with respect to the thermal conductirity
and the square root of the contour ares.

R* = kVA R (12)

Results

The superposition solution discussed above was applied
to three test cases.

Comparison vith Exact Solution for One Spot

. Coneeatrie on a Cireular Flux Tube

For the case of one spot on a circular flux tube, the
exact solution (R ) is determined by soiving Laplace's
equation in circular cylinder coordinates. The
eigenvalue solution is given in [4]. The following table
presents TCR resuits for different coanstriction ratios

(%) where ¢ is the radius of the contact spot and b is
the radins of the flux tube. The resistance obtained
using the superposition solution is subseripted ft. The
sgreement between the exact soiution and the
superposition solution is good.

+ | Ra | Rawe | % Ditr

0.1 | 0.417 | 0.418 0.43

03 | 0.295 | 0296 | -0.19

0.5 | 0.182 | 0.181 0.44

0.8 | 0.131 | 0.130 0.61

0.7 | 0.085 | 0.084 0.39

Table 1 Constriction resistances for
ane spot an . aflux tube

The above table was determined by setting
bae],que] NNax20,NAZ==1 NPHOm10,NCONT =1,
kmla =308 = a = 3.2,0,m= aym3.3882,
By 2=3.5685,2,,,=2 and ta=l. ¢} was determined using
the foilowing 2-D equation:

a1

;= 08 | T Ane S5 (2n=1)Pouf2)ein(s) +

N sl 2%sin(
B i)

This equation is used rather than the expressions given
in Appendix A, as the expressions given in Appendix A
assume that the spot is at s distance of st least seven
spot radii from the flux tube. This assumption is not

valid for large values of %. The % Diil in the above

table is defined as the flux tube resistance minus the
exact resistance all divided by the exact resistance.




omparison with electrie analog tests of Yip and
enart [8]
An electric analog study permits the comparison of
muiticontact problem to a thermal model without
yving to solve a mechanical problem. The contacts in
i Venart's study [6] are isopotential. Comparison
r licable results are given in Table 2. The
iperposition solution compares favourably to the
cperimental resuits.

Test | kR | 2kR, | % Dilf
#
6] | Expt

3 | 0.832 | 0.923 -0.93

16 | 0300 | 0.293 | -23

23 | 0.504 | 0.514 1.97

Table 3 Comparison with electric
analog tests [8]

The test number given corresponds to the test
imber referenced in [6]. In test #3 nine circular
ictocontacts of radius 0.050 inches were distributed
side a circular contour region of radius 0.58 inches.

ntact was located at the centre of the flux tube
it®he other eight spaced at one quarter inch intervals
ong the x and y axes. In test # 18 there were nine
)ntacts of radius 0.12 inches, eight of which were
jually spaced along the perimeter of a contour region
 radius 0.62 inches. The remaining contact was at the
mtre of the flux tube. Test 18 saw sixteen contacts of
\dius 0.08 inches equaily spaced about the perimeter of
contour region of radius 0.50 inches. In all cases the
ux tube radius was 0.9 inches. The superposition
slution only considers ome half of the total problem.
onsequently whea comparing to experimental resuits it
rust be mulitiplied by a factor of 2.

. Set of Contacts in an Elliptical Contour

The superposition solution was then used to
etermine the TCR of 3 set of contacts of radius a,
istributed in an elliptical contour regions and attached
o a circular {lux tube as depicted in Fig. 4.

The object of this exercise was to put emough
ontacts inside the elliptical contour region so that the
resuits obtained could be interpreted as the
k al constriction resistance of an isoflux elliptical
pot on a circuiar {lux tube. The definition of enough
pots was the number of spots required within the
{liptical contour region to make it behave like an
{liptical spot on a halfl space. Behaviour is defined as

baving equal contact resistances. That is the TCR of
the set of contacts is within one percent of the
resistance of a coatinuous eiliptical contact, whose
constriction resistance is known analytically (3| and is
given in equation 13.

' »
84 v
41:-8-3—’;-1{ [1-(7)’] (13)

where k is the thermal conductivity, v is the minor axis
of the ellipse, ¥ is the major axis of the ellipse and K{-)
is the complete elliptic integral of the first kind. The
SEM developed in (2] can be used to determine the TCR
of an arbitrary set of contacts on an otherwise adiabatic
half space (subscripted As). The first step in the
analysis is to place a number of circular contacts in an
elliptical contour region on an otherwise adiabatic half
space so that 10% of the contour region is covered. The
theory presented in (2] is then used to predict the TCR.
Note, that due to the discrete nature of the contacts,
the resistance obtained in this analysis will be greater
than the value obtained using equation 13. The number
of contacts within the contour region is thea incressed,
and the computations repeated. The resistance obtained
using the increased number of contacts is less than the
value obtained when only 10% of the contour region
was covered. This procedurs is repeated unmtil the
resistance of the set of contacts is within 1% of the
value obtained using equation 13. Equation 13 yields
the lower bound on the resistance for a set of contacts
within an elliptical region of axes & and 9.

Fig. 4 - Clrealar microcontacts on
eiliptical contours on flux tabe
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"The same combinations of contact spots were then
used to determine the resistance of a set of contacts in
an dolliptical contour region on a circular flux tube.
These values were obtained using the superposition
solution and will oow be referred to as the flux tube
mﬁ: (subscripted f1). As an exact solution of
con resistance does not exist for the case of 3
general continuous efliptical spot on a cireunlar {lux tube,
the only case where s direct comparison to an exact flux

tube solution exists is for the special case of & cirenlar
contact [4].

A typical set of resuits of R‘ = kVzuvR versus
N, the number of contacts, is given in Tables 3 to § for
rarying elliptical contours. For each elliptical contour
he contact distribution was also changed. The radius
f the circular contacts (¢) which are distributed inside
he elliptical contour are given at the bottom of the
able along with the value of the minor axis of the
ilipse (v). u was set to 100. The other parameters
vere baw1000,a; == 3000,5, = oy == 3200, S, = ay =
388, J; == 3557, NAZm=5, NPHO=8, NN=20.

Haif Space Flux Tube
2
3
N |%Area [ Ry | = | N | Barea R,
]

' R,

48 92 0.806 | 1.47 40 92 |'0.580
102 20.4 0.460 | 1.12 | 102 20.4 0.433
160 329 0.425 | 1.03 } 160 320 0397

218 438 0.412 | 100 ] 218 438 0.334

Table 3 The effect of incressing Noa R" for v = 20
and a== 3

The results shown in Tables 3-5 demonstrate that
as the number of contacts within s contour region
ncreases ( or as more of the contour region is covered
with contact spots), the set of contacts starts to bebave
like a continuous coatact. Assuming that il the set of
contacts behaves like a continuous contact on a half
space they will also behave as such on a flux tube; the
[lux tube resistance obtained using the largest number
of contact spots is a good estimate of the resistance of
an elliptical spot on a circular flux tube.

e above procedure of increasing the number.of
contacts within the elliptical contour until the set of
contacts behaved as a continuous contact was repeated
for various elliptical contours. The results presented in
Table 8 are the resistance values of the contact
distributions containing the largest number of contacts
used for each eiliptical contour.

Half Space Flux Tabe

: = | Ry, N
N%AnaR‘,—.N%AmRﬁ
*
R

62 14.0 0.538 | 1.13 62 140 | 0.498
108 39 0.480 | 108 | 106 239 0.441
150 | 3338 0.461 | 1.01 ] 150 33 0.422

130 40.5 0.456 | 1.00 | 130 40.5 0.417

*
Table 4 The effect of increasing Noa R forv = 40

and am= 3
Half Space Flax Tube
Y
* | Ry, =
N | BArea | Ry, | = | N | % Area R,
. 3
R,

64 2.9 0.513 | 1.07 o4 3.0 0.452
80 283 0.498 | 1.04 80 283 0.434
112 403 0.434 | 101 § 112 403 0.422

12| <61 o483 101 129! 461 | o421

-
Table § The effect of increasing Noa R for v = 100
and amm 9§

The column of Table 8 that preseats the ratio of
the baif space resistance (as determined using the SEM)
to the exact resistance (equation 13) demonstrates that
s set of contacts can behave as s continuous comtact.

The eatries in the column of R—. for the flux tube

resuits given in Table 8 demonstrate that the
assumption of the set of contacts acting as a continuous
contact on & {lux tube il they act as such on a hall
space is valid.

As there is no analytical solution for a continuous
elliptical contact on a circular flux tube, direct
comparison of the resuits presented in Table 6 to an
“exact® expression is not possible However the
ellipsoidal model of Yovanovich et al [5] predicts the

m\a A‘a‘ n‘n -‘4 n...‘

L




-
‘Is’ . o R: & R;
. g:

P, |2,

0.412 | 1.00 § 0.334

218 § 2 100
0.458 | 1.00 | 0.417

3

180 | 3 100
136 | § 100 { 80 | 0.479 | 1.00 | 0.424

128 1 6 100 | 100 | 0.483 | 1.01 | 0.421 | 1.01

144 | 11 20| 20} 0.484 | 1.01 | 0.472 | 1.01
144 | 3 200 | 20 | 0357 - 1.00 } 0319

222 | 4 300 | 20 ) 0330 | 1.02 } 0282

Table 6 Change in resistance with
contour area geomstry

nstriction resistance of sn isothermal eilipse on &
qare flux tube (RZ) It can be modified to the isoflux

,ndition and compared against the proposed method.
@ R 7= £ VAORL = — s {%xm

i Ve
(14
_ ':"“"'[% . -;-m.,-,.-;-,] -
rhere,
.= {x - (%)’}‘ (15)
ad,
Y= {1 + ("7')’}‘ (18)

ince the constriction ratios used are small, s correction
{ 1.0808 was used to bring the resuits in line with the
soflux resuits. Heace,

Re = 1.0808 R.T (17)

For small constriction ratios the shape of the flux tube
"g‘:t important, but rather its area. The resuits

nted in Table 7 are for a square flux tube whose
1% (467) is set equal to 133, Hencs b’ is given by:

M- (-:-)‘ b (18)

where b is set to 1000 for computational purposes.

Eqm 17 | Flax Tube
. v = R: Ry % Dift
9

100| 20| s 0381 | oas« | os7
00| 40 25 | oann | oa7r | 132
00| s0| 125 | o416 | a2« | 198
100 | 100 | 1 0410 | 042t | 25

20| 20| 1 0485 | o042 | 151
200 | 2010 0313 | 0319 | 172
20 | 20|15 0270 | 0282 | 44

Table 7 Comparison of superposition method
to equation 17

The % Diff is defined as follows:

 J -
. Rﬂ-R“
% Dilt =

(19)
 J

R,

The values obtained using equation 17 is consistently
less than the value obtained using superposition. This
can best be explained by the fact that s square {lux tube
of area 7b3 is closer to the contact spot than a cireular
flux tube of the same area.

The superposition technique can be used to
determine the TCR of an elliptical spot on a circuiar
flux tube. The soiution has been checked against the
limiting case of s circle on s circular flux tube, and to
the theory of [5] for smail constriction ratios. It is
believed that the results obtained for the TCR of s set
of contacts within an elliptical contour on a circular flux

Conclusions

The superposition technique presented in this paper is
an approximates technique for determining the TCR of a
set of contacts on a {lux tube. Comparison of the
limiting case of one spot concentric on a circular flux
tube was f{avourable, as was the comparison to some
experimental values. Finally the superposition solution
was used to determine the TCR of eiliptical isoflux spots
on circular flux tubes. The agreement was good for the
limiting case of circles and matched well with a modified
modei for an elliptical spot on a square {lux tube. -
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Appeadix A - The Calcuiation of q;,-

A muilti contact problem is a three dimeasional
roblem. That is the hest flux is dependent on the
zimuth angle (¢) as well as r and 9 as shown in Fig. 5.

Fig. § - Coordinats system
Jut the technique developed considers the case where

) Yovanovich, J.C. Thompson aad K.J. Negus,

the PRHF is independeat of the azimuth angle.
Consequently, the PRHF distribution was averaged over
the azimuth sagle as depicted in Fig. 8.

PRHF IS AVERAGED OVER ¢,, 65 - - - G, ,

Fig. 8 - Discretization of polar piane

It is believed that this approach is valid if one is trying
to determine an integrated parameter such as the TCR,
but wouid introduce error if one was trying to determine
s temperature distribution. Although the superposition
solution deals with the system of contacts by
considering an effective PRHF (g¢,;), the detail of the
contact distribution is considered mn the calculation of
this number.

In the determination of ¢,;, the solution space is
again divided up into NN 3 sub divisions but also NAZ
azimuth angles as shown in Fig. 6. The solution
procedure is as follows:

(1) the polar radial hest flux due to the ith contact is
calculated at the jth z depth and the rth azimuth
angle in the coordinates local coordinata system as
seen in Fig. 7

(2) as the local polar radial direction is not in the same
direction as the flux tube’s polar radial coordinate a
eorrection of cos ( );, ) is introduced shown in Fig.
8. -

(3) the PRHF is summed up for all the contacts and all
the azimuth angles at each z depth, and then
averaged over the equally space azimuth angles.
This results in the following expression for ¢;,:

1 NAZ NCONT

%™
v mE

gy coa(X;,) (A1)

im}




wviers She ‘ocal £ALAE CUG T SR WA et A
jth 3 depth and the rth azimuth angle (¢,;) is
givea by:

Qi ™ ;qii? ain(8;;) (A2)

'm ; is the average heat flux acting on the ith
contact as determined by a surface element
method, A; is the area of the ith contact, aad d;;
and 4;; are defined in the contact’s local coordinate
system (see Fig. 7). This expression is valid if d;;
divided by the characteristic dimension of the

h.d oy

ART JEFINED 1N
LOCAL COORDMATE

Fig. 8 - The asimuth correction

contact spot is greater than seven. It is at this
point that the 1-D solution presented in equation
A.2 can replace the complete 2-D solution.

Appendix B - The determination of T,

T,, is the aversge temperature rise on the plane
sm=t due to to the contact spots. It is found by
averaging over the polar radial coordinate and the
azimuth angle over the points shown in Fig. 9.

Fig. 9 - The plane smmt

- 1 NCONT NPHO NAZ
moﬁz' 2 X STac'a-(B.l)

<whers NPHO 3 the tramber of radial positions used in
the averaging and NAZ is the number of azimuth angles
used. T, i3 the temperature rise at the point
(Pmi9s) due to the ith contact on the plane z==t and is
givea by: .
A
2k xd;,

Tai--

(B32)

where d;,,, is the distance from the ith contact to the
point (p,,4,) on the plane zamt. Again A; is the ares of
the ith contact. This expression also assumes that d;,,
divided by the characteristic dimension of the contact
spot is greater than seven.




