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ABSTRACT

For many real contacting surfaces which posasess
anigotropic roughness, better predictions of the
thermal contact resistance can be made by using an
elemental heat flux tube consisting of an elliptical
coutact on a semi-infinite adiabatic rod of nominally
rectangular cross-section. The constriction resist-
ance of this elemental heat flux tube has been showm
to be a perturbation of the half-space resistance for
relatively small contact sizes. By combining the
Surface Element Method and the novel Method of Infi-
nite Images, useful approximate expressions for the
two low—order perturbations have been developed.

The first-order perturbation is remarkably
simple and independent of the contact shape, orienta-
tion and boundary condition. The second perturbation
is much more complex. After comparing with limited
previous data, the approximate expressions derived
are expected to provide an adequate estimate of the
constriction resistance of the complex three-dimen-
sional elemental heat flux tube encountered with most
practical problems of contacting anisotropic rough
surfaces,

NOMENCLATURE

a - gsemi-major axis length of elliptical
contact

A - area

Ae - contact area .

Ap - nominal flux tube area, Ap = 4cd

b - gsemi-minor axis length of elliptical
contact

c - half-length of rectangular flux tube

d - half-width of rectangular flux tube

£1(8) - function of rectangle aspect ratio
(Eqs.(33) or (36))
£4(8) - function of rectangle aspect ratio
(Eqs. (34) or (37))
F(u) - function of flux distribution (Eq. (53))
g(8) - function of rectangle aspect ratio (Egs.
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(31) or (35))

I -~ second moment of area or “moment of
inertia”

Io - polar second moment of area about cen-
troid of contact

Igr - radial second moment of area about axis
joining centroids of starting and image
sources

k - homogeneous thermal conductivity

R(+) - complete elliptic integral of the first
kind

L - arbitrary length into the flux tube

N - number of image rows treated as discrete

sources

- heat flux over contact

effective heat flux outside region of

discrete sources

- total heat flux over contact

- polar coordinate

distance between centroids of contacts

- thermal constriction resistance of ele-
mental heat flux tube
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]
]
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t - time heat flux has been applied to the
contact

T - temperature rise

T - average temperature rise

e - average temperature rise over contact

T(z=L) -~ average temperature rise in flux tube plane
2=y,

X,y - Cartesian coordinate system aligned with
principal axes of contact distribution (see
Fig. 2)

z - Cartesian coordinate into depth of a half-
space

Greek Symbols

a - agpect ratio of elliptical contact, azb/a

(7% - homogeneous thermal diffusivity

8 - agpect ratio of nominally rectangular ele-
mental heat flux tube, 83d/c

€ ~ dimensionless relative contact size,
€ = (Ac/Ap)L/2

z(*) - Riemann'’s Zeta function

n -~ local coordinate along semi-minor axis of
elliptical contact

) - polar coordinate; angle between x-axis and

axis joining starting and image sources
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u = flux distribution parameter (u=0 for uni-
form flux, u= -1/2 for equivalent isother-

mal flux)

g = local coordinate along semi-major axis of
elliptical contact

*] - distance from point source of heat

¢ ~ orientation angle of elliptical contact

with respect to principal axis of contact
distribution (see Fig. 2)

X ~ argument of comglete elliptic integral,
x = (1 -a2)l/

1 ~ dimensionless thermal constriction resis-
tance parameter, ¥ = ki

¥s - constriction parameter calculated by

Sadhal (ref. [5})
YNYD - constriction parameter calculated by
approximate expressions derived in this

work

Subscripts and Superscripts

A - refers to area contribution

c - refers to contact

13 - refers to location of image source (i,j)
as shown in Fig. 2

I - refers to secoand moment of area or
"inertia” contribution

rec -~ refers to uniform flux applied to a
rectangle

si - refers to uniform flux applied over a semi-
infinite body

X,y - refers to global Cartesian coordinate
system

1,2 -~ refers to either contact 1 or 2 in Surface

Element Method derivation
- refers to half-space
g,n - refers to local coordinate system of ellip-
tical contact

INTRODUCTION

Over the past twenty-five years a considerable
research effort has uncovered much about the thermal
resistance which occurs at the interface of
contacting rough surfaces. Insight has been gained
through the use of models which describe the surface
topography and predict the contact geometry which
results when two surfaces are forced together under a
normal load. Once this contact geometry in knowm,
thermal models describing how the heat flows through
this geometry can be developed. In the best of these
models to date [1,2], the constriction of heat is
considered by evaluating the thermal resistance of a
fundamental contact cell or elemental heat flux tube
whose dimensions are determined from the average con-
tact spot area and contact spot density over the
interface. This thermal resistance is then used in
generating the total interface resistance for the
contacting surfaces.

When two rough surfaces are brought together
under the assumptions of vacuum and negligible radia-
tion across the gap, conduction of heat across the
interface occurs through discrete regions of contact
as illustrated in Fig. 1. The effects of an
interstitial fluid and radiative heat transfer across
the gap can be dealt with separately if necessary.
Determining the conduction resistance across the
interface obviously requires knowledge about the
geometry of the individual heat flow paths spanning
the contact interface.

For contact between two generally anisotropic
surfaces, predicting the exact shapes, distribution
and sizes of contact regions is a formidable task.
Fortunately, as shown for isotropic surfaces,
specific information about individual contact spots

Fig. 1 Constriction of heat flow between contacting
rough surfaces

is not critical in determining the contact resistance
of the interface, If the contact interface is
repetitive, due to both uniform surface roughness and
global conformity of the surfaces, a certain unifor-
mity will develop in the individual heat flow paths
spanning the interface which allows the total inter-
face behaviour to be characterized by the thermal be-
haviour of the average heat flow path.

Grinding, turning, and milling are all processes
known to produce uniform surface finishes which, in
general, have much higher slopes across the cutting
direction than parallel to it. Another distinctive
feature of these anisotropic surfaces is the exis-
tence of dominant frequency components in the
spectral analysis of profilometer traces taken across
the cutting direction [3]. These dominant frequency

. components generally correspond to the cutting tool

crogsfeed or to either workpiece or tool vibration
during machining. Contact between two such surfaces
at some arbitrary angle produces a rectangular array
of elliptical contact spots as shown in Fig. 2. Once
the contact area has been found by elastic or
plastic deformation analysis, the aspect ratio and
orientation of the contact ellipses can be determined
from the geometric intersection of the individual
surfaces at the contact locations. Contact spot
size, aspect ratio, orientation and spacing over the
contact interface are then all used to determine the
dimensions of the individual elemental heat flux tube
as illustrated in Fig. 3.

When more sophisticated stochastic models are
chogen to describe the surfaces, the determination of
the dimensions for the elemental heat flux tube
becomes much more complicated but the essential
geometry remains unchanged. An example is the two-
dimensional, random, Gaussian surface model developed
by Longuet-Higgins (4] in 1956.

For the anisotropic contact model as showm in
Fig. 3, the adiabatic surface of the elemental flux
tube 13 rectangular far into the depth. Near the
contact surface though, a slight deviation occurs be-
cause the contacts residing immediately next to the
contact of interest are not completely symmetric
about rectangular sides. If the principal axes of
the ellipse and rectangle coincide, then an analytic
solution exists in the form of a slowly convergent
double-infinite Pourier series [5]. The general
problem might be solvable by a numerical technique
such as finite elements or finite volumes. However
the heat flow is fully three-dimensional and thus a
numerical solution would require a major commitment
of time, effort and computational resources.
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Fig. 2 Arrangement of starting and image sources

An approximate solution valid over a range en-
compassing most contact resistance problems can be
developed by actually treating the more complex prob-
lem of the elliptical contact on the slightly non-
rectangular flux tube. The basis of this approximate
solution comes from the concept- of superposing the
temperature rise due to a single elliptical contact
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on a half-space with the temperature rises due to am
“{nfinite” number of similar elliptical "images”.
This method has been utilized previously [6] for the
simpler problem of circular contacts on square flux
tubes.,

Ideally the boundary condition over the contact
of Fig. 3 would be that of an isotherm. However this
creates a mixed boundary value problem which is dif-
ficult to treat analytically. Fortunately excellent
results can be obtained for the thermal coustriction
resistance by assuming a specified flux over the con-—
tact of the form

a=q - (B (P w

The cases of immediate interest are u=0, the
uniform flux, and u=—1/2, the equivalent isothermal
flux. Previous experience shows that these two cases
provide upper and lower bounds respectively to the
expected resistance., The equivalent isothermal flux
is in fact the contact flux which results from an
isothermal elliptical contact on an adiabatic half-
space. A method to combine the results from flux
specified contacts to approximate the true mixed
boundary value problem is described in [7] but will
not bYe used in this work.

DERIVATION OF CONSTRICTION RESISTANCE
BY METHOD OF INFINITE IMAGES

To derive the constriction resistance for the
unit cell or elemental heat flux tube of Fig. 3, the
temperature fields due to an infinite number of
elliptical thermal comtacts on an adiabatic half-
space will be linearly superposed. As shown in Fig.
2 one of the contacts will be labeled as the "start-
ing source” while all others are then the "image
sources”. This solution technique will be called the
Method of Infinite Images since the number of image
sources will be arbitrarily large.

By linear superposition the average temperature

- \j
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" fig. 3 Nominally rectangular elemental heat flux tube rise on the starting contact, T,, can be written as
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tarting source alone on an adiabatic half-space and

.v:hete T, is the average temperature rise due to the

Tiy is the average induced temperature rise on the
starting source due to the image source (i,3).

The average induced temperature rise Ty4 can
be estimated by the Surface Element Method [gl for
steady-state conditions. From the derivation in
Appendix I of this work, an approximate expression
for Tyy is

A
1j'§%k{nc 3
13 Rij
where q 1s the uniform heat flux over the image
source, k the homogeneous thermal conductivity, A.
the contact area of both the starting and image
sources, I, the polar second moment of area about

21o -
T +

1]
3
R } (3

the centroid of the contact, Ii% the radial second

moment of area about the axis joining the starting
and image sources, and Ryy the distance between the
centroids of the starting and image sources, or

Ry = 2t + G2 )
Note that Eq.(3) assumes that a uniform heat flux is
applied to all contacts. Thus the following deriva-
tion is made for the uniform flux case specifically.
However it will be shown later that the resultant
expression for the comstriction resistance can be
easily extended to the other contact flux case of
interest.

The approximatas expression for Ti contains an
"area” term and an "inertia” term (or "second moment
of area” term). Thus T, can also be written as

-T¢+T"A‘+TI (5)

!

[o4

where TA and TI represent the "area” and
"inertia” contributions to T, due to all the image
sources.

The fact that a true steady-state condition does
not exist for a truly infinite number of. contacts ,
must be acknowledged to evaluate TA, That is, for
any length of time thre will always be some image
contacts so far from the starting source that their
induced temperature rises are not yet steady. Thus
only N rows or columms of images will be treated as
discrete sources. As shown in Fig. 4, outside the
rectangular region where the image sources are
discrete, the induced—effect temperature rise
contribution to Tc will be given approximately by a
uniform effective flux qe over the remainder of the
surface of the half-space., The area term can be
written as

- =A
™ T:x""f;y*'ﬁy*rsi*?‘ (6)

rec

The terms Tix’ T?y and T:y represent the contri-

butions to TA due to the discrete sources and are
given by

qA N

- c 1

T = — ] = ¢))
XX 2rke 1=1 i

T e e g L (8)
vy 2wkd j=1 hi

SURFACE OF A SEMI-INFINITE BOOY HEATED BY A
UNIFORM FLUX +q, EXCEPT FOR A FINITE
RECTANGULAR REGION.
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Fig. 4 Uniform effective flux heating of surface
outside region of discrete sources

qA N N -
T o= 1) (12 + g232)~1/2 (9

i=] j=1

where 8 = d/c is the aspect ratio of the nominally
rectangular heat flux tube.

For the contribution to TA from sources out-
side the finite rectangular region of Fig. 4, con-—
sider first the temperature rise on the surface of a
semi-infinite body with uniform flux qe[9}:

29, 3t 1/2
T~ (5

where a, is the homogeneous thermal diffusivity, t
the elapsed time that the flux has been applied, and
qe 13 the effective uniform flux given by

= q Aclhcd

(10)

a, (1D

However for the finite rectangular regiom of
discrete sources this uniform flux has not been
applied. Thus the temperature rise due to a flux
-qq Over a rectangular region must be superposed
to give the correct temperature contribution from the
finite number of image sources treated as a uniform
effective flux. From [10] this temperature rise is

2 % r_ 1 -1
cec ™~ ;T{(2N+1)c g tan(z + 5 tan 6]

+ (28+1)d 2n :an[—z- + -12- tan-l é 1} (12)

Note that this is really the temperature rise at
the centroid of the sfarting source due to a rectan-
gular contact region (2M+1)d x (2M+l)c with uniform
flux -qq. In this work the average temperature
rise over the starting contact is required. Fortun=-
ately the average temperature rise contribution is
nearly the same as this value and in the limit as N
becomes arbitrarily large they will be identical.

To summarize then, an approximate expression for
the induced average temperature rise on the starting
source due to "area” terms in Tij is given by

qA N N N ‘
Pogm{+) I frz I 1 ahslyh™?
2nke Bl o 1 121 j=1

1/2 _ (2¥+1) 1

+é— (ra t] [2n tan({- + -i- tan” " B8)

+8 fn can(% +L tant % 1) (13)
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The "inertia” term contribution to the average
temperature rise on the starting source can be
', written as

2 =I =L =1 =L =I
\. T 'r}cx + 'ryy + Txy13 + Txy24 (14)
The first term represents the coantribution from
the discrete sources on the x-axis or
io
N 21 - 31
=I _ q o RR
T .= =% 121 3 } (15)
{o
where for all cases
I =I_+1 . (16)
-] < vy
i

and for the x-axis Lo = Ixx' I and I__ are the
second moments of area of the contact about the prin=—
cipal axes x and y of the contact distribution as
shown in Fig. 5. Thus

-'fI 1 (2 ) g 1
- I -1 — (7
= gk Y = gap 43
and similarly
=1 1 ¥,
T = 21 -1 =
v D (r  -1.) jzl ;3 (18)

The contributions to TL due to the discrete
image sources not located on the x~y axes are identi-
cal for quadrants I and III and for quadrants II and
1V. Thus

- 3]
N N 21 - 3L

- — q
Tz s L1 }
{:iI' vz T fEwe (L L Ri;

q N X -
-—s 1 1 akih 3221 ~3td)y (9
grke” 1=l 3=l
where for quadrants I and III [11]
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‘» > Fig. 5 Second moments of area for image and starting
sources
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and as shown in Fig. 5

I

e tan~! (8 1
eij tan - (8 T ) (21)
Similarly for quadrants (I and 1V
=L a ¥ N 5 22-32 1
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where
i _ 2 2 -
IRR Ixx cos eij + Iyysin eij
ZIxy’i“°13°°“°13 @n

Thie the average temperature cise conZribh:tion
due to the inertia terms can be written as
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An approximate expression for the average tem-
erature rise for the starting contact on an elemental
heat flux tube of semi-infinite length is then given
by combining Eqs. (5), (13) and (24). From Eq. (13)
it is obvious that for a contact area supplying a
heat flux to a semi-infinite flux tube, a steady-
steady contact temperature will never be reached.
However in reality a quasi-steady value of the
constriction resistance is obtained in only several
milliseconds for most surfaces [12]. In fact elemen-—
tal heat flux tubes of only finite length can define
the constriction resistance which is the parameter of
interest in this work. As shown in [13] all con-
striction resistance for a circular contact on a
circular flux tube was accounted for with a flux tube
length equal to the flux tube radius and in this case
a steady-state contact temperature would exist.
However, by allowing the number of image contacts to
become arbitrarily large, relatively simple expres—
sions can be developed for all ranges of the para-
meters involved.

A common definition of the comstriction resis-
tance, R., is

T - T (z=L)
c L
- - —— 25
Rc Q kAt (25)

where Tc is the average contact temperature rise,
¥F(z=L) the average temperature rise in some plane z=L
of the elemental flux tube, O the total heat flux in
the tube and A, the nominal cross-sectional area of
the flux tube. Conceptually the comstriction
resistance is the total resistance between two planes
of the flux tube minus the resistance due solely to
one—-dimensional heat conduction.

After a sufficiently long time t and for a large
length L, one can approximate T(z=L) as being due to
a uniform effective flux qe applied over the
surface of a semi-infinite body, or from [6]



qA qA L
¢ 1/2 _ e
T(z=L) = Srked [wuot] TRed (26)
Since O = qA, and Ap = 4cd then
T [1nx.°t:]]'/2
Rc = ch = Zmked (27

A dimensionless thermal constriction resistance
parameter will now be defined as

¥ = k/K: R, (28)

where /K: has been chosen to non-~dimensionalize

R. because both previous experience [14] and analy-
tical considerations [15] have shown this quantity to
be the characteristic dimension of length for con—
striction problems.

To complete the derivation the number of images
treated as discrete sources will be allowed to become
arbitrarily large and a dimensionless relative
contact size will be defined as

1/2

€= (A /A) (29)
The constriction parameter then becomes
5383/2
= ¢+ + = {21 -1
b=y + eg(B) o2 {1« vy xx)
[+
1
+ 33 (ZIxx - Iyy)]fo + 2[21yy - Ixx]fl(s)
“8l1, - I 1@} (30)

where v, is the dimensionless constriction resistance

‘ of the starting source on an adiabatic half-space and

iy N N N -
s® =R umta+d ] Lea [T aletyH?
Nows i=1 * i=1 j=1
_ (2N+1) 7 Ll -l
-——E———[ln tan(a + 3 tan 8)
+ Bn tan(% + % tan-l %.‘-)]} (31)
£ 2 [ =@~ 12021 (32)
i=1 i
g8 =2 [ (124g%5% 7372 (33)
1=1 j=l
g8 = [ 1 (12+62j2)'3/251nzei. (34)
i=1 j=1 J

where z(+) is Riemann's Zeta Function {16].

Although elliptical contacts have appeared in
all illustrations, the preceding approximate
expression for the constriction parameter is valid
for any arbitrary contact area with uaniform flux on a
nominally rectangular flux tube. To use Eq.(30)
effectively for the problem of interest, an ellip-
tical contact resulting from anisotropic roughness,
the following tasks must be performed:

1) Development of useful approximate expressions

for g(B), £1(B) and £9(8).
11) Extension of Eq.(30) for the equivalent iso-

. thermal flux distribution.
111) Development of expressions for the half-space

resistance for both flux cases.
1v) Development of expressions for Iyy and

Iso for the case of an elliptical comtact
ozzentated at an angle ¢ with respect to the
principal axes of the contact distribution as
shown in Fig. 2.

Approximate Expressions for g(8), £1(8) and f7(8)

To develop approximate expressions for g(8),
£1(8) and £7(8), accurate values of these func-
tions were generated over a wide range of 8. Most of
the test values were from the range 0.1< 8 < 1 which
should encompass most practical probleﬁ? from aniso-
tropic roughness, However to be thorough some values
of B as low as .00l were also calculated. In (6] a
simple method for extrapolating a converged result
from finite summatiorns was given and this method was
used for the results to follow. In Pigs. 6 and 7 the
most accurate values for g(8), £1(8) and £9(8)
are shown graphically. The computations were
performed in double precision BASIC on an IBM-PC.

To avoid lengthy summations, simple correlations
have been made using a non-linear, least squares
algorithm [17] written in BASIC for the IBM-PC.

These correlations give

g(8)=.691 87-640.1,313+.430208 -.0683(2n 8)%  (35)
1.65  _ .00360

fl(B)- g ~ ¢ 8 [.646 - .0518] (36)
.560 2
fz(B)' g ~ 095 + .,222 8 - ,160 8 (37)

These correlations are all valid over the range
001 <8 <1 and all have maximum relative errors of
less than 12 .with respect to their input data.

The behaviour of the function g(8) has an impor-
tant physical interpretation. The ratio of real
contact area to total surface area is typically much
less than 1% or €=/A_/Ap <.l for most practical
problems where contact resistance is significant. In
this case a good approximation to the dimensionless
constriction parameter is

b =y, + g(Be (38)
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As shown graphically in Fig. 6, g(8) has a value
of -.621 at 8=1, It then becomes less negative with
decreasing 8, reaches a value of zero around B = .14,
and then becomes positive and approximately propor-
tional to 8'3/4. Thugs 1if the contact aspect ratio
is fixed (Y = constant) and the relative contact
size £ is constant, then decreasing 8 will cause an
increase in the contact resistance. Furthermore, for
8<.14 the constriction parameter for the elemental
flux tube is actually higher than that of a contact
on a half-space which was previously considered an
upper bound. A simple physical justification for
these results would be that at very small values of 8
the constant areas located parallel to the y—axis of
Fig. 2 begin to behave collectively as strip contacts
which are generally more resistive per unit area than
discrete contacts.

Extension to Case of Equivalent Isothermal Flux

As mentioned previously the exact boundary con-
dition for each elliptical comntact is close to that
of an isotherm. However this creates a mixed
boundary value problem which i3 exceedingly difficult
to handle analytically. Fortunately the problem can
be avoided by prescribing flux distributions over the
contact and determining a resistance based on the
average contact temperature. Previous experience has
also shown that the uniform flux and equivalent iso-
thermal flux distributions provide upper and lower
bounds on the expected resistance of the physical
system, The equivalent isothermal flux distribution
is defined as the contact flux which results from an
isothermal contact on an adiabatic half-space, or for
an ellipse

2 2

3 n ~1/2

q=all-( 1 (39)
where £-n is a local coordinate system along the

major and minor axes of the ellipse as shown in Fig.
3. Note that the resistance calculated from this

prescribed flux is nearly identical to that obtained
from an isothermal contact when the elliptical _
contact area is much smaller than the cross-sectional
area of the elemental flux tube (e<.3).
The aexpressions developed in this work to —
approximate the constriction resistance have so far
assumed a uniform flux distribution over an ellipti-
cal contact. The approximate constriction parameter
expression can be written conceptually as

vy, ey, + 3 WI ’ (40)

To use this expression for the equivalent iso-
thermal flux case, each term in this expression must
be examined separately. —
The first term, Y, is the dimensionless
resistance of the contact on an adiabatic
half-space. With the equivalent isothermal flux this
parameter is slightly different than for the uniform
flux but nonetheless readily available. Since Yo
is also dependent on the ellipse aspect ratio then in
functional form

b, = ¥, (a,u) (41)

where a=b/a is the aspect ratio of the ellipse and u —

is the flux distribution parameter from Eq. (1) (u=0

for the uniform flux and p=—1/2 for the equivalent

isothermal flux). ' o
To understand the effect of flux distribution on

the second term ¥, the origin of this term from

its integral form in Appendix I must be considered.

For a non-uniform flux distribution this term is pro-

portional to —

v, = [ [, ad]/o (42)

where Q is the total heat flux over the contact.
Obviously since Q is given by

o-qudA (43)

then the term Y5 will be the same for any flux
distribution over the contact. In functional form
then _

vy = 9,08 (44)

where 8=d/c is the aspect ratio of the nominally rec—
tangular elemental heat flux tube.
It is of paramount importance to note the
existence of a second integral which vanishes for a
uniform flux distribution. From Appendix I this -
integral is

I=[,ar cosédA (45) _

where r-8 is a local coordinate system about the
centroid of the contact. If q is either constant or —
symmetric about both the centroid and any axis
through the centroid, then I vanishes by the defini-
tion of centroidal location. Fortunately the equiva-
lent isothermal flux on an elliptical contact meets
the second criterion and as with the uniform flux
this term is identically zero (ie. no &< - term).
One can also show that all the ez, eA, €9, se0=
terms vanish as well for such symmetric flux distri- —
butions. :

The final term in the approximate expression,
Y1, is given by the third integral term in Appendix
I which gives rise to the polar and radial second
moments of area (or "moments of inertia”) I, and _
Igr- If a non-uniform flux is applied over the
contact then some change will result to this term.




Since this term will also be a function of the aspect
ratios of both the ellipse and nominally rectangular

flux tube and the orientation angle of the elliptical
contact ¢ as shown in Fig. 2, then in functional form

bp = by (o, B, 8, W) (46)

In this work the dependence on y will be ignored
for two reasons, First a rough calculation for the
limiting case of a circular contact shows that the
difference in yy for pu=0 and u==1/2 1is about 15%Z.
Since the WIE3 term seldom contributes more than
5% (and often less than 1%) to the final result for
the practical applications envisioned, neglecting u
in 1 should not cause significant error. The
second reason is that in the case of large € where
the term wIe3 contributes significantly to the
final result, the absence of the eS-term will
probably cause much greater error than neglecting the
u—dependence in yg.

Thus in summary the constriction parameter for
the elemental heat flux tube is a function of five
parameters and is given by the approximation

¥ = e, By 5 by W)
-y, W)+ e v, (B) + e o (e, 8 9 (4T)

Half-Space Constriction Parameters

For an elliptical contact on an adiabatic
half-gpace with an equivalent isothermal flux, the
constriction resistance is given by [18] as

K(
Re = szi (48)

where x= fl-az. R(*) is the complete elliptic inte-
gral of the first kind and a > b or a { 1. Thus for
the pw—1/2 flux distribution the half-space constric-
tion parameter is

| o 172
Vo (@, u==1/2) =3 ()  K(x) (49)

Although a rigorous proof will not be presented
in this work, it can be shown [19] that the comstric-
tion parameter for the uniform flux case differs from
that of the equivalent isothermal flux by only a
constant factor of 8/3n2 = 1,0808. Thus the con=-
striction parameter for the uniform flux case 1is

8
Yoo (@, u=0) = "5 Va (a, u=-1/2) (50)

The complete elliptic integral R(x) can also be
approximated by simple expressions in terms of a with
acceptable accuracy. With two approximations for two
different ranges of a

¥ (a,n) = Fw) ——-/"—“—2 2<acxl (51)
(1+72)
1,a,1/2 4
b (@,u) = FG) 5 (20 (3)
+ 2 e -2 < .2 (52)
T .0 E ] a <.
where
8
-y > u=20
3w2
F(u) = (53)
1 R u=-1/2

These approximations can be derived from Theta
functions for .2 { a < 1 [20,21] and from a power
series for a < .2 [20]. The maximum error encounter-—
ed in vela, u) using the above approximations is
about .57 at a=,2,

Second Moments of Area for an Elliptical Contact

The orientation of an elliptical contact with
respect to the principal axes of the contact distri-
bution i{s shown in Fig. 8. The approximate
expression derived for the constriction parameter of
the elemental heat flux tube requires the second
moments of area Iy, and Iyy. From [11] it can be
shown

-

Tex™ Teg 3

where second moments of area, Igg, I, and
Ign are with respect to the local coordinate system
£-n, These quantities are [22]

cos ¢2+ Innsiu2¢ -2I ncos¢ sing (54)

L 3
IEE =3 ab (55)
w
Iﬂ'ﬂ *3 3315 (56)
IEn =0 (57

Thus the second moments of area required in Eq.
(30) for the approximate constriction parameter are

given by

Ixx - 1;2 (bzcosz¢ + azsin2¢) (58)
Iyy - 1;2 (b231n2¢ + azcoaz¢) (59)

APPROXIMATE EXPRESSION FOR CONSTRICTION PARAMETER

In the preceding sections approximate or exact
expressions have been developed for yw(a, u), g(8),
£,(8), £,(8), I.__ and I__. By combining these

1
expressiong, the approxxxa:e dimensionless coustric~
tion parameter for an elliptical contact on the
elemental heat flux tube for amisotropic rough

surfaces is

y
(@ KA)I"

i

T
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{_/ > X
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Fig. 8 Second moments of area for elliptical contact
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2 2 1
+Sstn% -a-3) fz(B)} (60)
where ¢ % kfAg Re, u 18 the flux distribution
parameter (u=0 for uniform flux, u=-1/2 for equiva-
lent isothermal flux), a = b/a is the aspect ratio of
the ellipse, € = /Ac7At is the dimensionless
relative contact size (square root of the area
ratio), 8 = d/c is the aspect ratio of the nominally
rectangular elemental heat flux tube, and ¢ is the
contact orientation angle with respect to the
principal axes of the contact distribution as shown
in Fig. 2.

At first glance Eq. (60) combined with Eqs.
(35), (36), (37), (51), (52),, and (53) appears
extremely lengthy for an “"analytical expression”.
However once having accepted that Eq. (60) is
inconvenient for hand calculation, these expressions
can be easily programmed and rapidly executed on even
the smallest of microcomputers and many programmable
calculators. Furthermore since the alternmative to
the Method of Infinite Images is most likely three-
dimensional numerical analysis, the length of these
approximate analytical expressions is quite
acceptable, ’

@ COMPARISONS WITH PREVIOUS DATA

Ideally when an approximate expression for the
solution to some problem is derived, it is desirable
to compare the new expression with previous data for
all anticipated values of the independent parameters.
For the expression developed in this work there are
five independent parameters which would make a thor-
ough study exhaustive. However no such study will be
undertaken because there is simply little previous
data to compare with.

For the limiting case of a circular contact on a
square flux tube (a=8=1), accurate data can be found
{5,13]. From this data it is determined that Eq.
(60) predicts values of the constriction parameter
which are about -.5% in error for the uniform flux
case and -1.2% in error for the equivalent isothermal
flux case at e=,5. For values of €<.3 this error
diminishes to virtually zero.

Some limited data for a < 1, B8 < 1 and ¢ = 0 i3 -
available from Sadhal [5] in the form of a double—in-
finite Fourier series. The most “"severe” case
reported 1is a=.25 and B=.5. Fig. 9 shows graphic-
ally the relative dimensions of this problem for
1 e < .5. In Table ! the constriction para-
meter calculated by Eq. (60) of this work, ¥yyp, 1is
compared with that of Sadhal, yg, for both flux
cases at a=,25 and B=,5. From these results at ¢=.5
the approximate expression for the constriction para-
meter given by Eq. (60) is -10% in error for the uni-
form flux and -14% in error for the equivalent iso-
thermal flux. This is remarkable since an underlying
assumption in the approximate analysis was that the
elliptical contact is much smaller than the rectangu-
lar tube or that the constriction parameter for such
a situation is only a small perturbation of the

Fig. 9 Relative size of elliptical contact on rectan-
gular flux tube for a=.25 and B=.5

a=.25 g=.5 $=0

.5 .148 .134 .119 .102
b .201 .195 .169 .163
.3 .256 .254 .224 .222
.2 2313 | .312 .281 .280
.1 .370 .369 .338 .337

Table 1 Comparison of approximate constriction para-
meter given by Eq. (60) with exact data of
Sadhal, ws

half-space result. However as shown in Fig. 9, at
€=,5 the elliptical contact has dimensions nearly
comparable to that of the rectangular flux tube,

As seen in Table 1, for e<.3 ¢g and yYyyp are
nearly identical. In addition for all other cases of
a <1 and 8 < 1 reported by Sadhal, errors less than
those of Table 1 were found for corresponding values
of e,

Since practical problems with anisotropic
roughness can have much smaller values of 8, compari-
son with data for 8 < .l would be advantageous.
However the actual criterion for the accuracy of Eq.
(60) can really be determined by considering the
accuracy of the Surface Element Method in predicting
Ty4 for the first row of image sources. With this
consideration Eq. (60) can be expected to give ade-
quate predictions of the constriction parameter of
the elemental heat flux tube for anisotropic rough-
ness because in most practical contact resistance
problems € will be less than .l.

CONCLUSIONS

From the expressions developed in this work, the
constriction parameter for the elemental heat flux
tube encountered with anisotropic roughness can be
approximated accurately for small contact sizes as a
perturbation of the half-space value. Useful approx-
imate expressions for the two low-order perturbatiouns
have been generated by combining the techniques of
the Surface Element Method and the Method of Infinite
Images.

The first—order perturbation is given by the
product of the relative contact size and a functiom




of the rectangular flux tube aspect ratio but is re-
markably independent of the coatact shape, orienta-
tion and boundary condition. Thus this term repre-
sents physically only an acknowledgement of the

resence of four adiabatic walls instead of a half~-
Qace. An examination of this term shows that for a

ixed small relative contact size, the constriction
parameter increases as the elemental heat flux tube
becomes more elongated. For a rectangle aspect ratio
of B < .14 the constriction parameter of the elemen-
tal heat flux tube can actually be larger than that
of a contact on a half-space. Both of these pheno-
mena are logical since the net effect of continually
decreasing the rectangle aspect ratio 8 1is to
approach the case of the strip contact source which
has a larger resistance than that of the discrete
elliptical contact.

However in practise anisotropic roughness will
produce not only rectangular flux tube aspect ratios
less than unity but also elliptical contact aspect
ratios which are less than unity. Since the half-
space resistance of an elliptical contact is lower
than that of a circle, the leading term of the
approximate expression for the constriction parameter
is lower for the case of anisotropic roughness.
Therefore depending on the exact geometry of the
elemental heat flux tube, the contact resistance be-
tween anisotropic rough surfaces could be theoreti-
cally either higher or lower than that of the iso-
tropic case for some given fraction of area in
contact.

Although derived for a small relative contact
size and/or a small perturbation of the half-space
resistance, the approximate constriction parameter
for the elemental heat flux tube has proven to be
quite accurate even when the coatact dimensions
approach that of the flux tube and even when the flux

ysube constriction parameter is up to 70Z lower than
‘-ne half-space result. Thus because the relative

contact sizes are usually very small for most prac—
tical problems involving anisotropic roughness, the
approximate expressions developed in this work should
be more than adequate. Furthermore since these
simple expressions can be programmed into any small
microcomputer, this approximation of the dimension-
less thermal constriction resistance parameter repre-
sents a valuable tool for the ongoing theoretical and
experimental investigation of the complex three-
dimensional heat flow paths between real contacting
surfaces,
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APPENDIX I

lanar Contacts with Uniform Flux
Consider two arbitrarily shaped planar contacts
on the surface of an adiabatic half-space of thermal
conductivity k as shown in Fig. 10. The average
temperature rise over comtact 1, T, , can be written
by linear superposition of solutiofis to Laplace's
equation as

‘:'verage Induced Temperature Rise of

Tl = Tll +_T12
where T represents the average temperature rise on
contact 1 due to its own flux distribution acting
alone on an adiabatic half-space and T,, 1s the average
temperature rise induced on contact 1 due to the
uniform flux q, prescribed over contact 2.

In this “Appendix an approximate expression will
be derived for le. The derivation is an abbreviated
version of that given in [8] which was originally
motivated by work in Newtonian potential theory [23].

By linear superpostion of point sources, the
temperature rise at some location P on contact 1 due
to contact 2 is

(I-1)

S O e S T e (1-2)
P A 2nkp 2wk A ]
2 2
By applying the Cosine Law then
2 2 2
pT = o +r - 2rp°cose (1-3)
T, = 23— ( 2 + rz - 2r cose)-llsz (I-4)
C. P 27k Pa s 2
A
2
) Since in general r < p_ the integral can be
expanded by the Binomial Theorem to give
q 2 2 2
T o2 [l_r__+rcose+3rcose+“-]dA
P 2mkp o 2 2
¢] A2 Zpo [} 200
(1-5)
or if higher order terms are neglected
q
2
T, *® { J dA, + [ rcoséda,
P Zwkpo A 2 AZ
2 .2 2
+ J 2r —3r23in 8) dAz } (1-6)
A2 Zpo
CONTACT 2
WITH UNIFORM
CONTACT | FLUX q,

CENTROIDS

‘th' Fig. L0 Two arbitrary planar contact areas for deriv-
ation of the Surface Element Method

The first integral is simply the area A,. The
second integral vanishes identically by the définition
of centroidal location. For the third integral recall
that

o J erA
A

I rzsinzedA
A

—
th

(I-7)

Trr

w

(I-8)

where I is the polar second moment of area about the
centroid (or "polar moment of inertia") and I is the
radial second moment of area about the axis p_. Thus
the temperature rise at some location P on contact 1
is approximately

q A 21(®) - 31(®
T, el {242 TR, (1-9)
P 21k  p 3 -
o 20 i

[+]

The average induced temperature rise on contact 1
is given by

- 1 )
T2 =% J Tp 44

1 A

a, A, ¢ da, 21P31® o s

2 2 1 o RR 1

wmR ), et T w3 o
Al o 1 Al Py
(2)

Note that an assumption has been made that I
is constant which is not strictly true for shapes
that are nofzgoubly-symmetric. However by using a
value for IRR taken about the axis joining the cen-
troids of the two contacts, the approximation is
fairly accurate and improves as the contacts are
located further apart.

The first integral can be treated as before by
making the transformation

pz = Rz + (r‘)2 - 2Rr'cos@’ (I-11)

Then after ignoring higher-order terms as before

the integral becomes

9} 69
21 - BIRR

> Tt (1-12)

Al o 2R

where R is the distance between the two centroids as
shown in Fig. 10.
The second integral is simply
A
J e B
A

3 R3

(I-13)
1 P

if higher order terms are neglected.

Thus an approximate expression for the average
induced temperature rise on contact 1 due to an uniform
flux q, on contact 2 is

o, a A a®Par® @ ®
Toso2 {2 (BB O }
12 ¥ 77k VL -

(I-14)
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