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ABSTRACT

A new modification to the Yovanovich-Ogniewicz

model for the thermal conductivity of a packed bed with
uniformly sized spheres is presented. The modification
includes the effect of sphere surface roughness in improving
the model for gap resistance. Despite the simple application
of contacting conforming rough surface theory, the model
visibly improves the accuracy of the prediction of total
resistance when compared with experimental results in
macrosphere basic cells.
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contact radius (m)

area (m?)

sphere diameter (m)
Young’s modulus (N/m?)

the attenuation factor of the modified Ogniewicz
model

function defined by Eq. (14a)
hardness

integral defined by Egs. (11), (15), (16), (18),
and (22)

conductivity (W/mK)
conductivity ratio -:—o—
heat transfer lcngthx(m)

dimensionless diameter D
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load (N)
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mechanical pressure (N/m?)
gas pressure (N/m?)

Prandt] number
heat flow rate (W)

radial distance from axis of symmetry (m)
thermal resistance (K/W)

temperature (K)

dimensionless radial distance f

separation of the mean planes of contacting rough
surfaces (m)

coordinate in the direction of the heat flow (m)

Greek Symbols
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total accomodation coefficient at gas-solid
interface
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ratio of specific heats

gap width (m)

size ratio of spheres; radiative surface emissivity
gas mean free path (m)

Poisson’s ratio

surface roughness (m); Stefan-Boltzmann constant
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Subscripts

a
[ 4

apparent area
contact




effective

8 gap, gas

ht heat transfer

mod Ogniewicz modified model

o gas under continuum conditions; reference
conditions

r radiation; real area

m roughness modified model

s harmonic mean conductivity; solid; subtended
angle

t total

1D unidirectional model

1 sphere 1
sphere 2

Superscripts

* dimensionless with respect to k,

INTRODUCTION

The determination of the effective thermal conductivity
k, of a packed bed consisting of spherical particles has been
extensively studied by various workers. One of the
approaches used for k, is the basic cell method (1-4), in
which a single unit of the packed bed is analyzed, and taken
as representing the entire bed. Yovanovich (2) and
Ogniewicz (3) calculated the effective conductivity of the
basic cell, and included the effect of the thermal resistance
through the contact between the spheres. This resistance,
coupled with the resistance of heat flow through the
interstitial gap, yields the apparent conductivity of the cell.
The model was compared against some experimental data
(2,3) and predicted &, accurately.
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Figure 1
Simple Cubic Packing Basic Cell

The accuracy of the model, however, diminishes at
high gas pressures: it overpredicts the apparent
conductivity (underpredicts the total resistance). According
to the experimental results of @3,5-7,10-12), the
conductivity should approach a constant upper bound
asymptotically. This paper presents a new modification to
the Yovanovich-Ogniewicz (YOQ) model (2,3), which is
different from the modification proposed in (3). The
present modification includes the effect of the surface
roughness of the particles (8,9). The roughness parameter
Y, the separation between mean planes of the surfaces,
alters the form of the integrated heat transfer expression,
and improves the accuracy of the model at high gas
pressures. The results of the modified models will also be
compared with the experimental results of (3) and (10).

REVIEW OF YO MODEL

The simplest basic cell is a single unit of a simple cubic
packed bed of spheres which comprises two smooth spheres
in contact with each other as shown in Figure 1. A
mechanical load N creates material deformation at the point
of contact which results in a finite area contact spot of
radius a. Gas occupies the space or gap between the
spheres. A temperature gradient normal to the contact
plane is imposed across the cell; heat flows through the cell
via conduction in the solid spheres through the contact spot
and via conduction through the gas in the gap, Figure 2.

In terms of the thermal resistance approach to heat
transfer, the total heat flow through the basic cell is

t = R ¥ (1)

14

where AT,,=T,;—T, is the temperaturc difference between
the midplanes of the spheres. The resistance to heat flow in
the gap is R,, and R, is the resistance at the contact; these
are combined in the following relation for R,:

Figure 2
Heat Conduction in the Basic Cell
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The theory of heat transfer through the contact which
connects the spheres is well documented, ¢.g. (15). The
contact is assumed to be isothermal, in which case the
resistance is

1
¢ = 2ka’ ©)

R

where k, is the harmonic mean conductivity of spheres 1
and 2:

_ 2k, k, @)
okt kS

It is assumed that k,=k,=k,. The contact radius a is found
by applying the Hertz elastic contact theory, and depends
on the normal load (see (14)):
3_ 3
4(1+e€)

1-v*

E ’
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where €= E-l- is the size ratio of the spheres, and v and E
2

are material properties of the spheres. For equal sized

particles, e=1, and for sphere-flat contacts, €e=0. The
resistance R, is caused by the constriction or spreading of
the heat flow lines through the contact, as well as the
resistance to heat flow through the material of the spheres
themselves.

The local rate of heat transfer through the gas in the
gap is defined by the Fourier heat equation:

dg, = _kx—a;dA' (6)

where the z coordinate is in the direction of heat flow. The
thermal conductivity of the gas is k,. The gradient —a7/3z
is the temperature slope within the gas. It is assumed linear
and is idealized as A7/3, where 8 is the gap width, and AT
is the temperature drop between the surfaces of the spheres.
The differential area dA is taken in circular polar co-
ordinates where the line joining the centres of the two
spheres is the central axis: dA = 2wrdr. The quantities
k,, AT and 8 are each dependent on the radial location in
the gap, and the total heat flow is an integral quantity:

AT(r)
0, = fng = ka(r) 3(r) dA. )
A A
The gas conductivity within the gap is
k %
e = T aA’ 8
1+ agA ®

1

where k, is the gas conductivity at continuum conditions, a
is the thermal accomodation coefficient between the gas and
the sphere surface, B is a thermophysical parameter of the
gas, and A is the mean free path of the gas. The mean free
path varies with temperature and gas pressure according to

the relation
_ TP
A= A"[T,,][P]’

where the subscript o denotes reference conditions. It is
assumed that within the differential area dA, the opposing
surfaces of the spheres may be considered parallel, and Eq.
(8) is the expression for gas conductivity between parallel
plates (see Kennard (13) and Reference (3)).

The temperature distribution is

2 2 T
AT(r) = (Tl—Tz);tan'l E] -1] - 9

This is the temperature drop between the surfaces of two
large bodies connected by a common contact spot, which is
derived from the temperature distribution on the surface of
a halfspace heated by an isothermal circular spot (see (14)).
Since it is assumed that the contact spot is very small
compared to the size of the spheres, the halfspace solution
may be used. The nondimensional gap width 8(x) is

1 L
s[f] = 8(x) = (L?-1)? - (L*-x?)?

1 1
L L2=e)? - (P-4’ (10)
€
1
!E‘}"l! Vi1 l 2_ 2 _x
+ oL (2—x“)sin . + [x 1] 2
Substituting Eqs. (8) to (10) into (7),

nondimensionalizing with respect to a, integrating from
x=1 to x=L, and simplifying gives

L 1
f 2xtan”!(x®-1)%dx
1

Qx = 2koaAT12

3+ ML (11)

= 2k0aAT121,

where L= 2%, and ranges typically from L=>50 (very heavy

mechanijcal load) to L=1000 (light load). The parameter

M=—2—mDB—A is called the gas parameter, which increases

with temperature, and decreases with increasing gas
pressure. The integral, which is represented by I, is
evaluated by an adaptive numerical quadrature. The gap
resistance is

(12)



Substituting Eqs. (3) and (12) into (2) gives the total
resistance

RPN (13)
Rl‘ ° ko )
The total effective conductivity of the cell may be defined as

follows:
l

RrAht ’

kre =

where ! and A,, are representative heat transfer length and
area. These are taken as D and Dz, respectively, so that

k
k, = T['}? + 1], (14)

k
where K= —ki, the conductivity ratio.
3

Figure 3 displays the variation of dimensionless total
effective conductivity k,: = —k—'i versus the gas parameter M

(-]
for various conductivity ratios K and for L=1000. Figure3
shows that the total conductivity increases with gas
pressure, decreasing M. At low gas pressures, high M, the
gas plays an insignificant role in the conductivit);, and k,,
reaches the vacuum value asymptotically, &, ,,.= —L’—

The variation of k, with pressure is due to /, which
varies with M. As M increases, I approaches 0. However,
at high pressures, the model predicts that the conductivity
should continue to increase almost linearly. Experimental
results of (5-7) show that the conductivity levels off and
approaches a constant value asymptotically.

The reason that the Ogniewicz model overpredicts / at
high pressures is the assumption of perfectly smooth spheres
in the derivation of 8(x), the gap width. In Eq. (11), the
assumption of smooth spheres allows 8(x) to be equal to
zero at the edge of the contact. Hence, there is a radial

distance x=£— at which 8(x)=ML. If M is small (high

pressures), the denominator of the integrand is also small.
As M becomes smaller (higher pressures), the denominator
becomes equally small because 8(x) may be zero. The
result is that the integrand becomes very large locaily where
8(x)=ML. In turn, the integral / grows as M decreases,
causing k,, to increase proportionally according to Eq. (14).

The next two sections deal with two modifications to
the original YO gap resistance model, which attempt to
attempt to reduce the linear increase in 1 at high gas
pressure. The first uses the concept of upper and lower
bounds, and the combination of these bounds in some
manner to obtain a more exact model. The second applies
knowledge about the surfaces of the spheres to obtain a
model based on further physical reasoning without resorting
to model blending.
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Figure 3
Total Effective Conductivity of the YO Model for L=1000

MODIFICATION DUE TO OGNIEWICZ

A simplification made by YO was the assumption that
the vacuum temperaturc distribution within the gap was
valid in the case of a pressurized environment. It was
reasoned that the presence of the interstitial gas would not
alter the temperature field in the spheres because of the low
gas conductivity. Initially, this assumption may scem to be
an oversimplification, but a more physically realistic view
may be less practical: consider Figure 2. The more
realistic view is one in which the heat flow that eventually
passes from the solid to the gas may be thought of as
flowing through a thin region near the surface of the
sphere. The dashed lines delineate this region from the
region in which heat flows through the solid only, and are
assumed to be adiabats. The depth of this skin layer is not
known and would be difficult to determine. The size varics
with such factors as the type of gas, the gas pressure, and
the contact size;: a higher gas pressurc would tend to
increase the layer depth because heat flow through the gas
is made less resistive; a smaller contact zone would
decrease the amount of heat flow through that path and
increase the layer depth. The skin layer size has a direct
effect on the temperature distribution since the vacuum
temperature field would only be valid along the adiabats
(same condition). However, it is not an oversimplification
to assume that whatever the gas conditions, the depth of
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Figure 4
One Dimensional Heat Flow Model

this layer would be small. This is especially true very near
the contact.

Ogniewicz attempted to modify the model for R, by
assuming that the true temperature distribution lies between
the temperature distributions of the original YO model and
the unidirectional flow model. The unidirectional heat flow
model assumes that the heat flow within the basic cell is
linear, Figure 4, and the gap resistance is

(15a)

xdx
(=)

= 2k,al
P) 044 1D

L
1

— = 2k, am
k|

where

1
2(x) = (1-K)3(x) + K(2(L*-1)? ——2—) + ML. (15b)

He reasoned that the two temperatures distributions were
upper and lower bounds on the actual situation, and took
the arithmetic mean temperature of the bounds to represent
the true distribution. This leads to

I1+1
Imod = 2 1D (16)
The total effective conductivity becomes
. 1k  I+lp
kle - L [ ko + 2 (17)

Essentially, the modification attempts to include the
effect of the skin layer depth which was described above.
The temperature distribution will lie somewhere between
the two bounds, but there is no justification from a physical

standpoint to choose the arithmetic mean. This fixes the
depth of the skin layer for all gas conditions. As explained
above, the layer depth will change with varying conditions.
If this approach is to be used, a better approximation is to
attenuate each / by a factor f:

Ly = 1+ (1-Plyp (18)
The attenuation factor f will be a function of the gas
conditions, the load, and the conductivity ratio:

f=f(L.M,K). (19)

Exactly how f varies with L, M, and X is not known nor
investigated here. With the factor f, the total effective
conductivity becomes

. 1 k,
ke = I[ﬂ + (1-Nlyp + Z] (20)

where Ogniewicz used f= % Comparison of Ogniewicz’s

modification with the experimental data will be shown
below.

INCORPORATION OF SPHERE SURFACE

ROUGHNESS

A different modification to the model for k;, assumes
that the skin layer depth is small compared to the diameter
of the particles. The vacuum temperature distribution is
thus not altered significantly due to the presence of the gas.
The modification involves adding another physical
parameter to the analysis of particle geometry: the surface
roughness.  Yovanovich, DeVaal and Hegazy )
summarize the surface. geometry aspects of two rough
conforming surfaces in contact. From their analysis, two
parameters arc important here: Y, the separation of the
mean planes of the two contacting surfaces; and o, the root
mean squan;d‘ effective roughness of the surfaces

(o=(o?+ c%)f, where o, and o, are the roughnesses of the
individual surfaces). These are shown in Figure 5.
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Figure 5
Profile View of Two Conforming Rough Surfaces in Contact
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In the context of the work in (9), conforming means
two flat surfaces in contact. Clearly, two spheres in contact
are not conforming, however, the concepts of (9) may still
be used, as illustrated in Figure 6. It is assumed that each
surface has a roughness o, and o0;. When the two spheres
touch, it is further assumed that the region within the
contact is flat, i.e. the contact region is modelled as two
rough conforming surfaces. The mean planes of the spheres
(within the contact) are separated by a distance Y. Hence,
at the edge of the contact, the gap width is ¥, not zero as in
the case of smooth spheres. The assumption of Hertzian
contact is still maintained, except that it is applied to the
mean planes of the spheres: the contact radius is a at the
mean plane. Outside of the contact, the spheres are
assumed smooth, and the expression for the gap width
remains the same except for the addition of the distance Y.
Thus, the total gap width at any radial distance r is

gap width = &8(r) + ¥ 21)

It should be cautioned that the assumption of flatness
within the contact region is a simplification. Burde and
Yovanovich (8) investigated the contact between a smooth
sphere and a rough flat surface. The separation between
the mean planes is not a constant as it appears here, but a
function of the radial distance within the contact.
However, it is assumed that ¥(r) at the edge of the contact
as found by Burde and Yovanovich will not differ from ¥
used here by very much. Actually, the edge of the contact
is a hazy zone for two rough spheres in contact; and despite
the fact that the assumption of constant Y is not exact, it
serves the purpose of reducing the near singularity in 7
around x=1.

The work of Yovanovich, DeVaal and Hegazy (9) dealt
primarily with the heat transfer within the gap between the
contacting surfaces. The work of Burde and Yovanovich

@

Figure 6
The Use of Conforming Surface Concepts

(8) showed that resistance of the conmtact spot for the
sphere-rough flat cell is the same as for the sphere-smooth
flat contact. This is extended to the rough sphere-sphere
cell, in which R, is given by Eq. (3).

Returning to the gap resistance, substitution of Eq.
(21) into (7) yields
L 1

~leeiog 2
12 2koaf—m£—l— = 2k,alg - (22)

8 18(;)+§-+ML

The parameter Y is a dimensional quantity, and is often
difficult to determine. In conforming rough surface theory,
Y is usually obtained from the expression

4

= = Ar =—1—erfc Y ]
H Aa 2 '\/id

where p/H is the ratio of the contact pressure to the
material surface hardness, A, is the total contact area of the
deformed asperities, and A, is the apparent contact arca.

The quantity {— is thus dependent on the mechanical load

(23)

and is in the range 2 < {- =< 4 for nominal loads where the

lower limit corresponds to very heavy loads. The quantity
Y in Eq. (22) can be taken as a combination of other
a

geometric parameters:

Y Y o
— = ——2L. (24)
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for Two Contacting Spheres Effective Gap Conductivity for the Roughness Modified Model
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Values of 1 for smooth spheres may be calculated

using Eq. (24) Typically, for smooth spheres,
o=0.3pm=10pin. Light mechanical loads give L=1000

and 1=4; and for heavy loads L=50 and {—=2. Rougher
[

. .. Y L.
surfaces tend to increase the limits on e The variation of

-}i with the load L is difficult to determine from Eq. (23),
plus (23) includes another parameter: H, the hardness. It

is difficult to determine the parametric range of —, but,

0.001 = % = 0.1 will be used to show the behaviour of k;,
with the present modification.

Figure 7 displays k‘,= L for the Ognicwicz model and

the roughness modified model for —=0.1, 0.01, and

0.001, and L=50 and 1000. Table 1 111ustratcs the data of
Figure 7. Also included in the figure are the predictions of
the original YO model. Notice that the modified model
tends to decrease the effective gap conductivity at high
pressures, small M. The degree to which k ', is lowered

depends on {—: as roughness increases, larger 1 the

effective conductivity decreases for a given pressure. Also,
kg‘ here is not dependent on the conductivity ratic X, and
thus the model cannot be directly compared with the
blended model discussed in the previous section. The
present modification has the desired effect of levelling k at
hxgh pressures in agreement with the experimental rcsults

An in depth analysis which investigates all the effects of the
parameters is not presented here, but the results show that
further attention is warranted.

COMPARISON WITH EXPERIMENTAL DATA

The models for resistance of a basic cell were compared
with the experimental results of Kitscha (10) and Ogniewicz
(3), who describe measurements of the total resistance of a
specific basic cell. A complete description of the
experimental apparati, as well as the material properties,
may be found in the references. This section describes
theoretical calculations of total resistance for the systems of
(3) and (10) and compares them to the experimental
measurements. The models used for comparisons were the
original YO, Ogniewicz modified, and roughness modified
models. The results were plotted for constant L against the
gas parameter M. The experiments were performed on
large diameter sphere cells, with sizes varying from 25.4

mm (1 inch) to 28.575 mm (1.125 inches). These are
termed macrosphere cells.
The total resistance is
1 1 1 1
—— = ——— e e
R, R. R, R, (25)

where R, is the radiation resistance. For the purposes of
this study, the resistances were nondimensionalized as
follows:

R" = k,DR. (26)

Using this definition
(27a)

and

L (27v)
[ 4 K1’

Table 1
Effective Gap Conductivity for the Roughness Modified Model

Table 1a
L=50
k,,
M Y
;=o 0.001 0.01 0.1

107% | 15.3326 | 12.8483 | 10.8043 | 8.3288
1075 | 13.4706 | 12.5426 | 10.7614 | 8.3235
107% | 11.4678 | 11.2978 | 10.4070 | 8.2715
1073 | 9.1277 | 9.1049 | 8.9222 | 7.8417
1072 | 6.3174 | 6.3148 | 6.2916 | 6.0789
107! | 3.3060 | 3.3057 | 3.3035 | 3.2813
10° 0.9880 | 0.9880 | 0.9878 | 0.9866
10! 0.1437 | 0.1437 | 0.1437 | 0.1437
10° 0.0152 | 0.0152 | 0.0152 | 0.0152
103 0.0015 | 0.0015 | 0.0015 | 0.0015

15

Table 1b
L=1000
k,.
M Y
;=o 0.001 0.01 0.1

107°% | 19.4782 | 18.7372 | 16.7114 | 13.6880
1075 | 16.8323 | 16.7114 | 15.9343 | 13.5650
107% | 13.7024 | 13.6880 | 13.5650 | 12.6930
1073 | 10.2816 | 10.2801 | '10.2665 | 10.1369
1072 | 6.7721 | 6.7719 | 6.7706 16.7576
1071 | 3.4392 | 3.4392 | 3.4391 | '3.4379
10° 1.0162 | 1.0162 | 1.0162 | 1.0161
10! 0.1474 | 0.1474 | 0.1474 | 0.1473
10° 0.0156 | 0.0156 | 0.0156 | 0.0156
10° 0.0016 | 0.0016 | 0.0016 | 0.0016




where I is given by Egs. (11), (16) and (22). The
expressions for radiation resistance R, are given below.

Kitscha Macrosphere Test Resuits

Kitscha (10) performed experiments on the heat flow
through 25.4 mm (1 inch) sphere-flat contacts in an air
environment at various pressures, and different mechanical
loads. For air, the gas parameter varies as follows:

1.3725x10°* T
D P

M= (28)

g

where D is in cm, T, in K, and P, in mm Hg. The
numerical portion of Eq. (28) is based on properties at
T,=288 and P, =760 mm Hg. The values of T, and P,

may b;_ fox;nd in the Appendices of (10). The temperature
+
1

4

2 is the extrapolated contact temperature. For
the roughness modified model, the values of o and {- were

o = 0.3um (107 inches), (29a)

= 4, (29b)

Y
[+ 3
and were held constant for all the calculations. The value
of 4 for é— is slightly high for the loads used in the tests.

Even though the values of o and {- chosen may not be

entirely accurate, they scrve to illustrate the behaviour of
the roughness modified model. The radiation resistance

was calculated according to
1-€ 1-¢
k, [ L 27 Cophere | ety g, 1036]
R‘ — 2 €cphere €flar (30)
" ‘n'oDﬂ,,,T,3
Table 2

Gap Resistance for the Kitscha Experiments

where ¢ is the emissivity and o is the Stefan-Boltzmann
constant in this context. The subscripts flat and sphere
refer to the flat and sphere respectively.

Figure 8 plots the total dimensionless resistance versus
M for each of the loads tested in air using the YO model
and including the experimental results. Note that the total
resistance is underpredicted at high pressurc (low M). This
is due to the underprediction of R, by the YO model.
Table 2 shows R; for the three models. Figure 9 and Table
3 display R, for L=115.1 calculated by the YO and
modified models. They show clearly that the modified
models decrease the discrepancy between the experimental
data and the theory at high pressures. The Ogniewicz
modified model slightly overpredicts the resistance, and the
roughness model gives better agreement with the data.
This is due to the roughness parameters chosen, which are
not necessarily correct. Although the roughness model is
somewhat unsophisticated, it may be improved by
incorporating the work of Burde and Yovanovich (8).

Ogniewicz Macrosphere Test Resuits

Ogniewicz (3) conducted experiments to determine the
resistance of a basic cell of a face centred cubic (FCC)
packed bed in air for a range of loads. The FCC cell
consists of one sphere resting in the space formed by three
adjacent spheres. Ogniewicz assumed that Eq. (11) may be
altered for a non-simple cubic cell by changing the upper
limit of integration of /. For the FCC bed, the upper limit

is 1/5_5—1. = 0.7454L.

For air, the gas parameter is

_ 1.3567x107¢ Te
M= D 7, (31)
In Reference (3), D=1.125 inches = 2.8565 cm. The
aumerical value in Eq. (31) is slightly different from that in
Eq. (28) because of differences in the values of a, and a;.
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. ® 70+
L=115.1 25.4 mm Sphere-Flat Air w EXPERIMENTAL
=z DATA
's sor ry %I;I
T, P, M R, R, R, 2 b o
[ .0
(X) | (mm Hg) (YO) | (YOM) | (RM) o o %0
3 <or 2o
o o [} a 37
300.2 | 740.0 | 2.26x107% | 73.3 86.2 | 83.4 gl 2 -~ —— THEORY
309.0 | 400.0 | 4.17x107% | 76.9 88.8 84.8 2 2
310.0 | 100.0 | 1.68x107*| 87.4 | 96.2 | 91.3 S 20f
311.0 40.0 4.20x10°% | 97.1 | 103.2 99.3
314.0 10.0 | 1.70X 10‘1; 118.3 | 120.8 | 119.2 o}
316.0 4.4 | 3.88x107% | 137.2 | 138.1 | 137.7
318.0 1.8 | 9.55x1073 | 167.2 | 166.9 | 167.6 e per e e .(',T""foﬂ'
321.0 0.6 | 2.89x107% | 227.9 | 226.7 | 228.1 CAS PARAMETER M
322.0 0.5 3.66x10°2 | 246.6 | 245.1 | 246.8
325.0 02 | 8.78x1072 | 345.4 | 343.3 | 345.5 Figure 8 B
Total Resistance for Kitscha Air One Inch Tests (YO Model)




Table 3
Comparison of Models with Kitscha Experimental Resuits

| y R R R R R

(YO) | (YOM) | (RM) | (Expt.)
2.26x107° | 1290.4 | 43.3 47.5 46.6 47.6
4.17x107° | 1292.9 | 44.5 48.3 47.1 46.8
1.68x10°*% | 1280.4 | 47.8 50.3 49.0 49.6
4.20X107% | 1268.1 | 50.6 52.2 51.2 52.3
1.70x1073 | 1232.1 | 55.7 56.2 55.9 52.3
3.88%107% | 1208.8 | 59.5 59.7 59.6 59.0
6.55%x1073 | 1186.2 | 64.5 64.4 64.5 65.7
2.89x107% | 1153.2 | 71.7 71.6 7.7 73.1
3.66X107% | 1142.5 | 73.4 73.3 73.4 74.3
8.78x107% | 1111.2 | 80.1 80.0 80.1 80.3

The values of P, are found in [3], but the temperatures T,
are not explicitly listed. However, the radiation resistance
is given as

_ 5.75x10%

R
T?

r

, (32)

which is the resistance for the entire cell. The radiation
resistance is listed in (3), hence T, may be obtained from
that.

Figure 10 illustrates the theoretical resistances versus
pressure for all three loads tested using the YO model. The
experimental results are also plotted. Again, the
agreement between the experimental results and the theory
is good, except at high pressures. Figure 11 and Table 5
display R, for L=200, for which all three models for R,
were used (Table 4 lists R; ). These show that the modified

models improve the agreement between theory and
Table 4
Gap Resistance for the Ogniewicz Experiments
L=200 FCC Basic Cell Air
T, P, M R, R, R,
(X) | (mm Hg) (YO) (YOM) (RM)
365.5 0.0 1.74x10° | 299674.9 | 298397.8 | 299675.0
362.5 0.009 | 1.91x10° 3833.4 3817.2 3833.5
354.1 0.028 | 6.01x107! 1545.6 1539.0 1545.8
343.1 0.10 1.63%x10°! 711.1 708.2 711.2
333.0 0.29 5.45x107? 450.4 448.9 450.6
321.4 1.0 1.53x1072 310.0 310.1 310.4
315.8 3.0 5.00x1073 242.1 244.3 242.8
312.5 12.0 1.24x1073 190.4 197.4 192.0
310.3 32.0 4.60x10°* 166.7 178.5 169.9
309.7 | 100.0 1.47x10°* 146.6 163.7 152.9
308.7 | 300.0 4.89%10™° 132.6 153.9 144.0
307.8 | 740.0 1.98x107° 123.9 147.7 140.5
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Total Resistance for Kitscha Tests (All Models) for L=1#5.1

" experiment at high pressures. There is better agreement

between the Ogniewicz modified and the data, but it is also
evident that the roughness modified model corrects the
prediction in the proper direction. At heavier loads, the
agreement of the YO theory with the data is better, and the
modified models improve the prediction most at L=200.

CONCLUSIONS

It was shown that the YO model for the total resistance
of basic cells in packed beds agrees with the experimental
data of (3) and (10). However, the model underpredicts
the resistance at high gas pressure due to the modelling of
the gap resistance. Modifications to the R, model improve
the accuracy without affecting the pressure regimes in which
the YO model is already accurate. The Ogniewicz modified
model improves the accuracy to a greater extent than the
roughness model. The Ogniewicz modified model blends
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Table 5

Comparison of Models with Ogniewicz Experimental Results

M R: Rr‘ Rr. Rt. Rr.
(YO) | (YOM) | (RM) | (Expt.)

1.74x10% | 501.8 | 58.8 58.8 58.8 59.6
1.91x10° | 514.3 | 56.4 56.4 56.4 56.4
6.01x107" | 551.5 | 53.3 53.3 53.3 54.7
1.63%x107! | 606.2 | 47.9 47.9 47.9 50.2
5.45%x107% | 663.3 | 43.2 43.1 43.2 43.2
1.53x10°% | 737.9 | 38.4 38.4 38.4 40.0
5.00x10°3 | 777.6 | 34.9 35.0 34.9 37.0
1.24x1073 | 802.5 | 31.2 31.8 31.4 32.0
4.60x10°% | 819.8 | 29.2 30.3 29.5 31.8
1.47%10°% | 824.8 | 27.3 28.9 27.9 30.1
4.89%x1075 | 832.3 | 25.8 28.0 27.0 28.6
1.98%107° | 839.7 | 24.7 27.4 26.6 27.1

the YO model with the classic unidirectional heat flow
model and is thus not based on physical interpretations of
the system. The roughness modified model does take the
physics into account—the surface roughness of the
spheres—and is thus considered to be a better approach to
improving R,.

The roughness modification presented here is a
primitive model, and yet has a visible effect in improving
the accuracy. In addition, this modification is only a
possible explanation for the discrepancy between the YO
model and the experimental observations. Other effects,
such as two dimensional heat flow within the gas gap, may
also be important, and these should be investigated.

It is recommended that further work on the roughness
modified model should be undertaken, and should include
the work of Burde and Yovanovich (8) to upgrade the
model. In particular, the definition of the edge of the
contact spot should be clarified in order to better assess the
lower limit of integration of the gap resistance. This aiso
includes the determination of Y at the edge of the contact.
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