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Abstract

A method of moments formulation is presented

:for the numerical computation of the steady-state
thermal constriction, or spreading, resistance of

. eontacts over which a contact conductance distri-
bution has been specified. The formulation is
valid for arbitrarly shaped plamar contacts
located on isotropic half-spaces. The procedure
is applied to the circular and square contacts
with uniform contact conductances. The dimension-
less results are presented for a practical range
of Biot number.

Nomenclature

A contact area (A -A.)
c o 1
Ai inner projected area
Ao outaer projected area
a,b contact or element dimensions
CieeeCq correlation coefficients
E complete elliptic integral of the second

kind
G the geometry matrix
g an influence coefficient
H conductance matrix
h contact conductance
K complete elliptic integral of the first
kind
a linear differential or integral opera-
tor
element of the operator matrix
arbitrary field point
total heat flow rate
local heat flux
constriction resistance

<

film or contact resistance

W oW ma O

N T om0

total resistance

radial coordinate on z=0 plane
position vector of a field point
arbitrary source point

position vector of source point
temperature

reference temperature

basis functions

weighting functions

cartesian coordinates
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* non~-dimensional
Subscripts

i,j,m,n element representation
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Greek

§(t) Dirac delta function

Gmn Kronecker delta function

8 (T-T(~)) temperature excess
Ga applied temperature excess

ec contact temperature excess

A thermal conductivity

Introduction

The thermal constriction resistance of a
number of contacts with Dirichlet or Neumamm
boundary conditions have been investigated in the
past‘\*’/. The purpose of this paper is to develop
a method for determining the comnstriccion resis-
tance of arbitrary contacts when the boundary
condition of the third kind (Robin condition) is
specified.

This type of boundary condition arises in
many practical systems; for example when a source
is separated from a half-space by a conducting
film, such as an oxide, the boundary condition of
the third kind describes the situation. The
effective conductance of the film is not necessar-
ily uniform over the entire contact, but may in
fact be a function of the numerous characteristics
and physical parameters which describe the system.
In the development of the method described im this
paper the contact conductance is assumed to be a
function of position. However in the interest of
simplicity when interpreting the results the
contact conductance has been restricted to the
uniform case for the two examples which are
presented.

Problem Statement and Resistance Formulation

Steady heat conduction from a planar countact
to an isotropic half-space is. governed by Laplace’s
equation

v2o = 0 (L)

which is valid within the volume of the conducting
medium. The temperature excess, 8, is defined as

3 =T - T(«)

where T(=) is a convenient reference temperature
associated with points which are located at
distances large relative to some characteristic
dimension of the contact area.

With reference to Fig. 1 the boundary condi-
tions which are applied to the solution of
equation (1) are

i) z=0 within A h(r)(ea(r)-ec(r)) + Xagir) -0




ii) z=0 outside Ac, 36(r)

= =0
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Fig. 1  Boundary Condition of the Third Kind.

The applied temperature excess 6,(r) acts on the
half-space through a resistance characterized by
h(r); both of which are assumed to functions of
position. The remaining two boundary conditions
specify that outside the contact area the surface
of the half-space is impervious to heat transfer,
and secondly that far from the contact the tempera-
ture excess goes O zero.

A solution to equation (1) which also satis-
fies boundary conditions ii and iii is (2)
o, (r) = L gp (oA, (2)

2T Ac S-r
Boundary condition i may be written as

h(r)(ﬂa(r)-ec(r)) = =338 = q(r) (3
3z

Combining equations (2) and (3) and rearranging
yields

o.(n) =a@ + 1 [f q(s)da (4)
. h(r)  2mA A, s-r|

Equation (4) satisfies Laplace's equation and the
boundary conditions specified. The unknown quan-
tity in equation (4) which must be determined is
the flux distribution q(s). The distribution
q(s) of equation (4) is determined by following
the general method of moments described by
Harrington (3) for obtaining solutions of its
type.

Equation (4) is a linear integral equation
which may be written as

L{q(s)) = Ga(r) (3

where the operator L is given by

L=_1_+ 1 [f % (6)

h(r) 27 AC r-sl

The assumption is made that q(s) may be repre-
sented by a finite series of expansion or basis
functions which when summed with appropriare, but
as yet undetermined coefficients will approximate
q(s). Therefore let

N
a(s) = [ aq u (7N
n=1

The magnitude of the coefficients q, are determined
by solving the set of equations which arise when
the projections of both 85(r) and L(Zgnuy) on a set
of weighting functions, wp, are equated.

The projection of one function on another is
determined by taking the inner product of the two.
The inner product of two functions { and g is given
by

“f,8> = [ £(0)g(x)dx (8)
After performing the required operations and using

the fact that the operator is linear, equation (5)
may ‘be written as

N
Z q < vy, Llu) > = e, @ (2)> (9

using the notation introduced in equation (8). In
matrix notation equation (9) may be written as

[Qmm] {qn} = {“am} S0))

With

S = Y Llw)> (1D

and

Bam = <, Ua(r)> (12)

The contact is divided into N surface
elements with the assumption being made that the
actual distribution q(s) can be adequately repre-
sented by an approximate distribution which has a
uniform value on each element. Therefore the
basis functions have the form

l] on A n
u = { ¢ c(13)
n

0 on all other A
cn

The weighting functions, wp, are chosen to be
Dirac delta functions so that

w = 6(r—rm) (14)




where rp is the location of the ceatroid of the mth
element. The effect of choosing these weighting
functions is that the solution procedure becomes a
collocation technique satisfying equatiom (5)
exactly at oanly the points Tp. With the expansion
and weighting funcrions specified equacions (11)
and (12) may now be evaluated to determine the
elements of their corresponding matrices.

Expanding equation (12) gives

<wm, Ga(r)> = ££ d(r-—rm) Ba(r) dAc

(15)

which when integrated results in

8 = Sa(rm)

am (16)

Similarly expanding equation (1l1) yields

g = y s(ror) | Yo+ 1 f;f L4 T an
c h(r) 27A "¢ |r-s ¢
or equivalently i
If u If /] w da
L = 6(r~r ) a_ dA_+ 1 §(r-r ) dA
c TR ¢ Zm o Aoy e (18)

The integrands containing u, are equal to zero
except when the integration is being carried out
over Acp in which case u, is equal to one, from
equation (13). By using this fact along with the
property of the Dirac delta function the first
integral of equation (18) may be evaluated giving

[ gezery
Vo) Yo aa (19)

c h(r

where dyn 1s the Kronecker delta function.
sider the second term of equation (18)

f u dA
1 AI d(r-rm) £f n_c| dA
2nh ¢ c |r-s

Con~
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Since uy 1s equal to ome on A, only and zero
elsewhere, expression (20) may be written as

I[f [[ aa
1 A G(r-rm) A cn_ dA @

Zmh cn ]r—s] ¢

27A

Completing the outer integration equation (21)
reduces to

1 fj dAcn (22)

27A Acn rmfs‘

. The expression for determining the elements of the
L matrix is therefore

b= 8 1+ 1 y e (23)
m h(r_) 21A " |r_-sj
o m
1£
g =1 [[ %a (24)

2w rm—s]

and the 8mn are elements of the G martrix, and the
terms

are elements of the diagonal conductance macrix,
H, then equation (9) may be written as

L 6] + @ {q} = {Sa} (25)
A

The elements of the G matrix are determined
from the contact geometry and the discretization
scheme used for the contact. The elements of the
H and 8 matrices are obtained from the h(r) and
82(r) distributions specified for the problem.
Therafore it is now possible to solve for the q
matrix, which when combined with equations (7)
and (13) will yield the approximate flux distri-
bution over the comtacr.

The elements of the G matrix, the Sm» When
multiplied by the quotient of the flux divided
by the thermal conductivity, represent the temp-
erature rise at the centroid of element m due to
a2 unit flux applied over element n. The major
difficulty in analysing complex geometries is the
evaluation of the gy, or influence coefficients.
The evaluation of gp, depends on the shape of the
surface element and the location of the point
with respect to the element. Expressions are
available for a large number of geometries(a). As
an example the influence coefficient of a rectangu-
lar surface element and a point oun the same plane
internal or external to the element, with reference
to Fig. 2 and equation (24), is given by

dxdy
g=1 [x2+a/2 yo+b/2 (26)
2r xp=a/2  yp=b/2 ¥(x=x1) H(y-y1)2
When integrated equation (26) becomes (27)

r - - -
ST X247, 2

271g = X, 2n X, + ¥ + Y, In XpTHp® + Xy
T IT X2y 2

X, fn IRy, T + Y| 7. in [xz +Yq ¢+ xz‘

Ky o+Y - + YU VX12+Y12 + X

with X1=XE‘X1‘(3/2) Y1=y2-y1-(b/2)

Kp=xo-x,+(a/2) ¥o=yy~y1+(b/2)
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Fig. 2 Square Element Geometry and Coordinates.

The influence coefficients for circular elements
and points on the same plane were required to
determine the resistance of the circular contacts.
With reference to Fig. 3a and b the influence
coefficient for a circular element and a point
internal or external are respectively 3

g = (Z/ﬂ)aE(rz/a) (28)

and

= - (1~ 2
g %rz[E(a/rz) (1-(a/r,)*) K(a/r,)]  (29)

b a
N

Fig. 3 Circular Element Geometry and Coordin-

ates.

Expressions 28 and 29 may be coumbined to give the
influence coefficient for am annular element.

The elements of the H matrix multiplied by
the flux of a corresponding surface element give
the difference between the applied temperature
excess and the temperature excess at the centroid
of the element. This difference is due to the
contact resistance, or equivalently due to a film

- Tesistance.

Therefore the approximate distribution is
obtained by matching the applied temperature
excess of each element at its centroid, to the
temperature drop through the local contact resist-
ance plus the temperature rise at its centroid due
to the flux distribution of the entire contact.

Once the flux distribution has been determined
the temperature excess anywhere on the contact
surface (or anywhere within the half-space) may be

calculated by use of equation (2). The average
contact temperature excess may therefore be .calcu-
lated and used to determine the constriction
resistance.

The resistance of a medium to hear flow is
defined as the average temperature drop across the
medium divided by the total heat flow through it.
When the boundary condition of the third kind is
imposed on a contact the total resistance of the
system has two components: the contact resistance
and the constriction resistance.

An area average is used to determine the
average contact temperature. The total heat flow
rate is determined from the relationship

Q= ££ q(s) da (30)
or
Q = 1 h(s) (8_(s) - 8 (s)) da (31
A a c [

[

The total resistance is therefore

. (@/a) a8 (s)da_ (32

Rt = RC + Rf j[
Ac q(s)dAC

and the contact resistance is given by

R = (1/Ac) A, (63(8)—6c(5))dAc

££ h(S)(Sa(S)-SC(S))dAC

and the constriction resistamnce is given by

R = /A A0 (s)da,

. (36)

JJ
Ac q(s)dAc

The discretized equivalents for the average
temperature and total heat flow rates are

N
Loe Ay (3%
i=1

Bl

[

where €cj is the value of 8, at the centroid of the
ith element; and

N
Q= } q. A (36)

i

Expressions (35) and (36) can be used in
equations (30) through (34) to determine the re—
sistance of the system. In order to use equarions
(30) through (34) to determine the contact and
constriction resistance it is necessary to know
the surface temperature of the elements at their
centroids. The surface temperature at the cen-
troid of the elements can be determined from the

relationship
(G} jqf = [s (37)
{4




Numerical Results and Correlations The constriction resiscance values obtained
for both contact geometries ar various 3Biot

The numerical procedure described above is numbers ranging from 0.00l to 100,000 are listed
applied to two contact geometries: the circle and in Table 2. These results are also displayed
the square. For both geometries the contact con- graphically in Fig. 4.

were chosen to illustrate the method because
solutions for both contacts at the limits of the
boundary condition are kmown. When the case of

. ductance is assumed to be uniform. These examples

uniform contact conductance is considered, the Table 2 Resistance vs. Biot
procedure simplifies very little except that all
elemegts in the H matrix have the same value and ) Biot Circle Saquare
equation (33) reduces to
0.001 0.4790 0.4738
Re = _1_ (38) 0.0025 0.4790 0.4737
hA 0.005 0.4790 0.4737
0.0075 0.4790 0.4737
The relative magnitude of the contact con- 0.01 0.4790 0.4737
ductance is characterized by a Biot number 0.025 0.4789 0.4737
defined as 0.05 0.4788 0.4736
— 0.075 0.4788 0.4735
Bi = DYA, (39) 0.1 0.4787 0.4734
— 0.25 0.4782 0.4729
0.5 0.4775 0.4722
where the characteristic dimension is chosen to 0.75 0.4768 0.4715
be the square root of the contact area. As the 1.0 0'?262 0-f708
Biot number becomes small (<0.1) the contact é'g 8.2353 8'72;;
boundary condition approaches the uniform Neumann 7'5 0.4662 0'2603
condition. Conversely as the Biot number becomes . ) .
- 1 0.4640 0.4581
large (>1000) the contact boundary condition 25 0.4572 0.4514
approaches the uniform Dirichlet condition. 50 0.4529 0.4474
The computed values of the constriction re— Zgo g'zzgg 8'2222
resistance obtained have been nondimensionalized ) °
. - 250 0.4468 0.4425
by means of the thermal conductivity of the half- 500 0.4456 0.4417
space and the square root of the contact area 750 0.4451 0.4415
- 1000 0.4449 0.4413
R = AR A (40) 2500 0.4444 0.4411
‘ 5000 0.4443 0.4410
The constriction resistance for three limit- 7500 0.4442 0.4409
ing combinations of the geometries and boundary 10,000 0.4442 0.4409
conditions considered can be obtained analytical- 25,000 0.444]1 0.4409
ly. Analytic solutioms are available for both 50,000 0.4441 0.3409
the circular and the square contacts with the 75,000 0.4441 0.4409
Neumann boundary condition. An analytic solution 100,000 0.4441 0.4409
is also available for the circular contact with ’
the Dirichlet condition. Upper and lower bounds
have been established for the comstriction re-
sistance of the isothermal square contacr. As
well as these limits numerical solutions are
available for this contact. The values of the
constriction resistance for these four limiting
cases are given in Table 1. 4asr GEOMETRY
DN 9 CIRCULAR
. . 4751 AN“\ @ SQUARE
Table 1 Resistance Limits _ PO~ —~G-a0 g
(=] g
Geomecry Boundary Condition R*SXR/K: ;; 4.65 X%
Circular Neumann 0.4789 LZ 4.55 |- E%gié
Dirichlec 0.4431 = : ! ‘al
Square Neumann 0.4732 \Hi\\k0@L~}‘
Dirichlet 4451 e
Investigator C P Ee-cm—o-o
Schneider 0.438 4.351 . L 1 - . . ;
Stepleman 0.4339 103 10-2 107 100 10! 102 103 104 105
P6lya and Szegd
Upper Limit  0.4434 hVAg/ A
Lower Limit 0.4238
. Present Work 0.434 X
Fig. 4 Resistance vs. Biot Number, Circular and

Square Contacts; Uniform Conductance.




In order to establish the accuracy of the
procedure the resistance values obtained at very
high and very low Biot numbers are compared to
the numerical values listed in Table 1 for the
isothermal and uniform flux cases. It can be
seen from Fig. 4 and Table 2 that using a range
of Biot numbers from 0.001 to 100,000 to span
the difference berween the uniform flux and iso-
thermal contact is sufficient. Since extending
the range past these extremes will not cause the
numerical solution to approach any closer to its
limiting values.

The numerical values of the comstriction
resistance obtained for both geometries at a
Biot number of 0.001 compare well with the cor-
responding analytic solutions. The difference
between the analytic and numerical solutiom is
larger for the square contact and is about
0.15%. The resistance value predicted for a
Biot of 100,000 for the circular geometry also com—
pares well with the analytic solution for the iso-
thermal case with the difference being approxi-
mately 0.2%. Examination of the values listed for
the isothermal square contact in Table 1 shows
that the numerical value obtained is well within
the limits established by Pélya and Sezgs(6). The
value obtained by this method also agrees well
with the values obtained by Stepleman(7) and
Schneider(8).

The convergence of the solurion for the high
Biot number square contact is showm in Fig. 5,
where the dimensionless resistance versus the
number of elements used is plotted. The solution
converges monotonically from above. The solution
has these two characteristics for both geometries
at any Biot number. Extrapolation of the numeri-
cal data used to plot Fig. 5 gives an asymptotic
value of 0.434 for the resistance of the isother-
mal square contact.

The dimensionless constriction resistance as
a function of Biot number may be correlated for
each geometry using

R.* = cj-cytanh (c3ln(Bi)-cy)) (41)

The form correlation equation was determined by
inspection of Fig. 4. The constants c; through
¢, used in Equation (41) were determined using a
least squares analysis and are listed in Table 3.
By using the exponential definitiom of the hyper-
bolic tangent function Equation (41) may be
written as

.Cs_
Rc* = ¢1-C»h Bi <6 (42)
BicS-CG
with
cg = 2cy3 (43)
and
cg = 2% (44)

The correlation equation is very accurate with a
maximum difference between its prediction and
the numerical data of 0.1%.

450 \
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A Rg VA x 103
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Q0 100 200 300 400 500 .600 700 800 S00
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Fig. 5 Convergence of the Solution for a Square
Contact with a Biot Number of 100,000.
Table 3 Correlation Coefficients
Circle Square
cy 0.46159 0.45733
cy 0.017499 0.016463
cs 0.43900 0.47035
cy 1.1624 1.1311
csg 0.87800 0.94070
cg 10.225 9.6042

Conclusions and Discussion

The moment method has been introduced to the
solution of thermal constriction resistance pro-
blems with the boundary condition of the third
kind imposed. The method has been demonstrated
for planar contacts located on a half-space. The
solution technique is not limited to contacts of
regular geometries. The applied temperature
excess and conductance distributions are assumed
to be functions of position.

The method was applied to square and circu-
lar contacts with uniform conductance and applied
temperature excess distributions. The constric-
tion resistance of these two contact geometries
was determined for a practical range of the Biot
number.

The overall accuracy and the convergence of
the solutionwere established by comparison of the
resistance values obtained at the extremes of the
boundary condition to the results available for
the isothermal and uniform flux contacts. The
method proved to be extremely accurate agreeing
closely with these results. ’

The resistance values obtained were nondi-
mentionalized using the square root of the con-
tact area as the characteristic dimension. The
nondimensional resistance was correlated as a
function of the Biot number. The correlation
funcrion chosen was very accurate differing from
the numerical data by a maximum of 0.1%.
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