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ABSTRACT

An ellipsoidal contact model is proposed to
account for the very large discrepancies observed be-
tween recent experiments with cylinder/flat contacts in

6 vacuum and the corresponding predictions based upon a
line contact model. An approximate ellipsoidal model
is developed and shown to be in excellent agreement
with the complex exact solution requiring numerical
computation of incomplete and complete elliptic inte-
grals by the method of the arithmetic-geometric means.
A parametric study shows that the proposed exact and
approximate ellipsoidal models are in qualitative
agreement with the light load experimental results.

NOMENCLATURE

a,b - Contact Dimensions (m)

A,B - Hertz Geometric Parameters (m )

D - Cylinder Diameter (m)

E - Young's Modulus. (Pa)

E(x) - Elliptic Integral (complete) of the second

kind of modulus x

F(x,¢) - Incomplete Elliptic Integral of the first kind
of modulus x and amplitude ¢

k - Thermal Conductivity (W/mK)

K(x) - Complete Elliptic Integral of the first kind
of modulus ¥

o - Surface Asperity Slope (radianms)
m,n - Hertz Parameters (-)
N - Total Load (N)
N* - Dimensionless load = NA/2wD
Q - Heat Flow Rate (W)
Re ~ Resistance (K/W)
Rg - Dimensionless Resistance = Zkac
T - Temperature (K)
w - Cylinder Half-length (m)
a,B,y - Semi-axes of Ellipsoid Along x,y,z - axes
1-v, l—v22
\ A - Elasticity Parameter = 1/2¢( + )
E
1 2
@®a™h
X - Ellipsoidal Coordinate (Root of xz/(a2+x)

+ y2/ (b2) + z2/A=1)

v - Poisson's Ratio (=)

[} - Radius of Cylinder Due to Crowning (m)
o) ~ Surface Roughness (um)_l

b - Amplitude Angle 3 sin /(17 (1+r7ad))
X - Modulus = v1-(b/a)3

ll-x2 = b/a

]
m

Complementary modulus

Subscript 1 - cylinder surface
2 - flat surface
e - elliptical
8 - harmonic mean

INTRODUCTION-

One of the assumptions used in modelling the
resistance of a cylinder-flat contact is that the
contacting bodies are free of any surface roughness,
waviness, oxide film or any error in form. Provided
these assumptions are valid, the contact formed when
these two bodies are pressed together will be a rect-
angular strip.

Unfortunately, these conditions are not met in
many practical situations. The realities of machining
processes, material handling, and so on will only allow
the experimentalist to approach these ideal conditioms.
In the case of the cylinder/flat contact, the most
troublesome imperfections are from defects.

1f, instead of a right circular cylinder, the

cylindrical body is slightly barrel shaped, Figure 1,
then a small elliptical contact will form instead of
the rectangular strip. This crowned geometry will pro-
vide much greater constriction to heat conduction than
the rectangular geometry at the same applied load.
With increasing load the elliptical contact will grow
until it becomes the expected strip contact. Experi-
mental data fer thermal contact resistance which shows
this crowning effect [1] at light loads 1is seen in
Figure 2. Figure 2 also shows a comparison between
the experimental and predicted dimensionless contact
resistance R%¥ as a function of the dimensionless load
parameter N*.

For a line contact in vacuum [1,2°
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Table 1 contains the specimen thermophysical properties,
dimensions, and the surface characteristics, for which
experimental data were obtained.

It can be seen in Figure 2 that the experimental
and theoretical values are in very good agreement at
the higher loads (N* > 5x10-6). At the lighter loads
the difference between the experimental and theoretical
values is very large. This discrepancy is attributed
to the error in form or crowning of the cylindrical
body.

The purpose of this paper is to investigate a
model which relaxes the 'perfect cylinder' comstraint
imposed in the ideal case and to perform a parametric
study on the ellipsoidal model solution to compare with
the light load experimental contact resistance values.

As with most other elasto-constriction resistance
models, the analysis is divided into mechanical and
thermal solutions. Hertz' theory is used to predict the
contact shape and dimensions. The thermal resistance of
the contact is then approximated by considering two
isothermal semi-ellipsoids separated by a small iso-
thermal elliptic contact area centred on their half-
plane. The semi-ellipsoids are then chosen to fit in-
side the cylinder/flat geometries as shown in Figures
3 and 4.

For this geometry, Figure 3, the Hertz geometric
parameters become [2]:

2(A+B) = (2/D + 1/0) )
2(B-A) = (2/D - 1/0)

These are related to the contact shape through the
transcendental equation:

- - (/XDECO-R(X)
B/A = 20/D K00 -£C0 (3

where K and E are the complete elliptic integrals of the

Table 1 Specimen Properties and Geometry

Property Keewatin T.S.

k(W/mK) 34.13-1.7993E-3T

E(GPa) 228.8-7.6E-2T

v 0.3

Hardness Rc60

Roughness

Cyl.: o(um) 0.464
m(rad) 0.110

Flat: o(um) 0.111
m(rad) 0.027

Dimensions

D (rmm) 25.4

2w (mm) 25.4

Temperatures (T) in Kelvin
c 1s Rockwell hardness number
Rb is Brinell hardness number

304 S.S. Zircaloy-4
10.67+1.59E-2T 7.51+2.09E-2T-1.45E-5T
207.5-7.6E-2T 117.11-6.7E-2T

0.3 0.333-1.261E-4T

Rb75 Rb94

0.339 0.607
0.070 0.230
0.117 1.372
0.022 0.090
20.0 25.4
40.0 25.4
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or

: 2 1/3
*
\ FE(?D ZwN] .
™ xX'" (1+D/2)
then
b=yx'-a (8)
The thermal resistance of a semi-ellipsoid whose
(et ittt outer surface is isothermal, whose half comtact plane

contains a centred isothermal elliptic contact, and is
adiabatic elsewhere is givem by [2]:

-t
2r k a

where F(x,¢) is the incomplete elliptic integral of the
first kind of modulus x and amplitude ¢. The modulus
is given by

x = -/’

as before, while the amplitude is defined by

R XOO-Fx,9)) (9

¢ = sin-l —i—z (10)
1+\/a
Fig. 3 Form Error Geometry for Elastic Model The outer surface of the semi-ellipsoid is described by
the ellipsoidal coordinate A which is chosen to fit the
pom——em e _— s desired semi-ellipsoid into the cylinder-flat contact,
: ; I Figure 4. One of these semi~ellipsoids can be used to
' represent each of the contacting bodies. Since they
: D/2 are thermally connected in series, therefore. the total
1 thermal constriction resistance of the two contacting
: semi-ellipsoids is [2]:
)
( \\\\\\\\\\\\\\ AVARRRULRUVRRRNANY Re - 23; - (K (X) -F (X, ¢)) [lkI + %2_] (11)
A‘ ]
' X S A
: D/2 where ¢ = sin 5 (12)
. 1+(D/2a)
1]
' ‘ having put z = v = D/2. This particular choice fits
L= == - ————- the semi-ellipsoid so its semi-minor axis y is along
the z axis in the Cartesian coordinate system, and is
2 W —_— of length D/2. Other choices for ) are possible, but
= they are less realistic and yield less accurate results.
Then, using the definition of the nondimensional
Fig. 4 Form Error Geometry for Thermal Model resistance:
R* = 2w ks R (13
first and second kind, respectively. The single, pos-—
itive root of Eq. (3) is called the modulus x and it is the dimensionless resistance of the ellipsoid may be
defined by: expressed as:
x = A-(o/a)? ) R * = 2 (R(0-F(x,0) (14)
The semi-major and semi-minor axes of the elliptical
contact are denoted by a and b respectively. Sample Calculation £ . £
Using the process of the arithmetic-geometric mean As an example of the evaluation of the point con-
tact model described above, the case of D = 2w = 25.4
[3] to evaluate the elliptic integrals, and a Newton- - 8.6 N* = 4 10-7 will b d
Raphson root-finding technique, Eq. (3) may be easily mm., 0 0 M., x 2 v e computed.
We begin the computations by determining the ratio
solved for the modulus x. Blahey [4] has correlated g
the Hertz data of Walowit and Anno [5]: (D/20):
L = [1.0 - (0.9446(D/20)%613%211/2 ) D/20 = (25.4 x 10-2)/(2.0)(8.6)) | -
This expression may be used to compute a first = 1.477 x 10
guess to start the root-finding algorithm. Then, using Eq. (5), we obtain a first guess for
Once the modulus x has been determined, the con- the modulus:
ct dimensions are computed from [2]:
U L= (1.0 - (0.9646(1.477 x 1079 0+613%)%)1/2
1Y 3 E(x) NA (16)
. a = [ 7 (6) = 0.99985
mx'< (2/D+l/p)




Then, the complementary modulus is

«' = /1 - (0.99985)°

= 17.323 x 1073

an

and

2, -x, x4 (20/D)

1

DEN(x,) = E(x,) 1

3

4

X j

. 2
K(xj) xj/(xj ) (24)

The method of the arithmetic-geometric means in-
volves repeatedly taking the arithmetic and geometric
means of a pair of numbers, until the numbers compare
to within a tolerance, i.e.:

i-l)

B, = YA, "B, 1) (18)

c, = 1/2(a,_;

ag = 1/2(a;_; + B

- B,y

Starting values are A, = 1, By, = x', C; = x-.
Iteration is continued until C; is less than the re-—
quired tolerance. Then

Equation (22) is repeatedly evaluated, using up-
dated values of K;, E. determined using the arithmetic-
geometric mean procedure. Typical results are shown
in Table 3.

These results (i = 4) are then used to determine

the contact dimensions, amplitude angle, and resistance,

From Eq. (7), the semi-major axis of the ellipti-
cal contact is

o = 3(1.00082)(25.4x10-3)2(25.4x10"3) (4x10~7)
(18.343x1073) 2

y2(1+1.477x1077)

(25)
= 2,649 mm.

From Eq. (8), the semi-minor axis of the ellipti-

KGO = 7T
n i 2 19
E(x) = KGO (L - 1/2 | 2°¢,9)
where n is the number of the last iteration. Typical
results are given in Table 2.
For the example under consideration we have
/2
R(x) 538862 * 5.4424 (20)
and
E(x) = 5.4424 (1-1/2(1.6247)) = 1.00074 (21)

Differentiation of Eq. (3), and some manipulation
allows use of the Newton-Raphson technique to improve

e estimate of x:

cal contact is

b o= (18.344x10°) (2.649%10™°) = 48.59 um.

From Eq. (10), the amplitude is

¢ = sin”

17 1

L1+ (12.7/2.649)%.

~1/2
= 0.2056 (27)

All that remains to determine the constriction
resistance is to evaluate the incomplete elliptic

integral F(x,¢).
metic-geometric means is

meters:

used.

Once again, the method of the arith-
In this case, A, B, C
are defined as in Eq. (18), with the additiomal para-

-1
94 =8y FTan (G ) + I

NUM(x.) i+
Xs =y, - S 18 (22)
J+1 j ~ DEN(x,) I = INT(1/228,/7 + 1)) (28)
3 i+l i
with fi = (Bi/Ai)tan(ei)
NUM(Xj) = E(xj)’(l/X52 + 20/D) - K(x.)*(1+20/D) (23) where ‘INT(x)' means the integer part of x. Then,
3 when Ci is less than the required tolerance,
Table 2 Application of arithmetic-geometric means
i
i Ai Bi Ci 2 Ci
0 1 17.323E-3 0,99985 0.99970
1 0.50866 0.13162 0.49134 0.48283
2 0.32014 0.25874 0.18852 0.14216
3 0.28944 0.28781 3.0698E~2 7.5389E-3
4 0.28862 0.28862 8.1625E-4 1.0660E-5
5 0.28862 0.28862 5.7715E-7 1.0659E-11
6 0.28862 0.28862 <10~10 < 10-18
Table 3 Results of Newton-Raphson root-finding method
j . ! K(x,) E(x.) NUM DEN
] X:1 X] X] XJ
. 1 0.99985 17.323E-3 5.4424 1.00074 321.79 19.948E6
2 0.99983 18.230E-3 5.3913 1.00081 32.947 16.065E6
3 0.99983 18.342E-3 5.3852 1.00082 0.4266 15.651E6
4 0.99983 18.344E~3 5.3851 1.00082 ——— ——

(26)

\NJ




n
" = -A
r Fi,0) = §,.,/(2 -4, (29)
“@Bicre n is che number of iterations.
are as before, while 89 = 9.
shown in Table 4.

Then, by means of Eq. (29):

To start, A, B,

3.866

F(0.99985,0.2056) = T8%)+ (0. 2917)

very small (< 0.02), the complete and incomplete ellip-
tic integrals appearing in the ellipsoidal model can
be approximated by the following expressions:

Typical results are K(x) = n(s/x") (32)
B(x) = 1+(1/2) (2a(4/x") - 1/2) (x"? (33)
F(x,4) = 2n tan [%4- %] (34)

(30) For the case considered above, Eq. (5) gives
- 0.2071 x' = 0,0173 and x = 0.99983. By means of Eq. (7) we
: obtain
Finally, from Eq. (14), the dimensionless con- a 1/3
striction resistance is Eri 14,718 (N*) (35)
-3 With D = 2w and Eq. (36) we can express the amplitude
Rr = 24210 ) (5 385 - 0.2071) as
7(2.649 x 10 7) 1/2
(31) -1 1
= 15.804 o = sin™ [ TEL (36)
1 + 0.001154/ (N*)

For the case of D = 2w = 25,4 mm,, 0 = 8.6 m., and
N* = 4 x 107, the point contact model gives a value of
15.804 for the dimensionless contact resistance. The
line contact model predicts a value of 3.6 and the
experimental values are approximately 6.

Approximate Analytic Method
The method described above is complex, requiring
the use of micro-computers or main-frame computers. It
is desirable to have a simple, approximate method of
computing the various parameters and the ellipsoidal
constriction resistance. The method to be considered
here is restricted to the elliptical contact formed by
~3 crowned cylinder for values of the parameter x close
o unity and values of the complementary parameter x'

Finally, the dimensionless constriction resistance,
Eq. (14), can be approximated by

= z—w ' - I 2
R: Py [e¢n(a/X") n tan(4 + 2)] an

The results of the exact and approximate ellip-
soidal models are compared in Table 5 for an interest-
ing load range.

An examination of Table 5 shows that the simple,
approximate ellipsoidal results are in good agreement
for the amplitude ¢ and the incomplete elliptic in-
tegral F(x,9). The approximate and exact values of
the dimensionless ellipsoidal resistance are also in

Table 4 Application of arithmetic-geometric means

i Ai Bi Ci € Ei 61
0 1 18.344E-3 0.99983 — — 0.2056
1 0.5092 0.1354 0.4908 3.827g-3 0 0.2095
2 0.3223 0.2626 0.1869 56.55 E-3 0 0.2660
3 0.2925 0.2909 2.985E-2 2.220E-1 0 0.4844
4 0.2917 0.2917 7.636E-4 5.234E-1 0 0.9666
5 0.2917 0.2917 5.00 E-7 1.499E 0O 0 1.933
6 0.2917 0.2917 <10-10 -2.638E 0 1 3.866
Table 5 Comparison of Approximate and Exact Ellipsoidal Models
Load a b ¢ ) F(X,$) F(X,$) Re *
N* (mm) (um) (Exact) (Approx.) (Exact) (Approx.) (Exact) (Approx.)
4,0E-7 2.65 48.6 0.206 0.214 0.207 0.215 15.8 15.3
7.0E-7 3.19 58.6 0.246 0.256 0.249 0.258 13.0 12.6
1.2E-6 3.82 70.1 0.292 0.303 0.296 0.308 10.8 10.5
2.1E-6 4.60 84.5 0.348 0.360 0.355 0.369 8.83 8.57
3.7E-6 5.66 102 0.413 0.6427 0.425 0.441 7.21 6.99
6.4E-6 6.68 122 0.484 0.500 0.504 0.522 5.91 5.73
1.1E-5 8.00 147 0.562 0.580 0.59% 0.615 4.84 4.69
.QE-5 9.76 179 0.655 0.674 0.708 0.732 3.87 3.75
5E-S 11.8 216 0.749 0.767 0.828 0.855 3.13 3.03
‘For o =8.6m, x = 0.99983, K(x) = 5.383, E(x) = 1.0008




very good agreement over the entire range of the ellipsoidal model is also presented. It is in very
dimensionless load N*. good agreement with the complex exact solution which
requires the numerical computation of incomplete and
g Discussion of Ellipsoidal Results and Comparison with complete elliptic integrals.
. Experiment
The amount of crowning or radius of curvature Acknowledgments
of the cylinders is unknown and it cannot be determined Dr. M.M. Yovanovich acknowledges the support of
by metrology. A parameter study was therefore.under- Atomic Energy of Canada Limited under grant A7662.
taken to examine the effect of curvature upon the
ellipsoidal constriction resistance. The dimensionless REFERENCES
resistance R* was computed by means of the exact method
for selected®values of ranging from 5 to 100 meters {1] G.R. McGee, M.H. Schankula, and M.M. Yovanovich,
for various values of the dimensionless load N*. These "Line Contact Models for the Thermal Resistance of
results are presented in Figure S. Cylinder-Flat Contacts," manuscript to be submitted.
The intersections of the ellipsoidal results and
the line contact results occur when the semi-axis a is [2] G.R. McGee, "An Analytical and Experimental Study
approximately equal to the half-length of the flat. of the Heat Transfer Characteristics of Cylinder-~
The ellipsoidal model should not be used beyond this Flac Contacts,” MASc Thesis, University of
point. One also observes that the point of inter- Waterloo, 1982.
section moves towards decreasing values of N* as g
increases. Obviously, when p is infinitely large, the [3] Abramowitz, M. and Stegun, I., Handbook of Math-
crowning effect disappears and the line contact model ematical Functions, Dover, 1965.
is valid for all values of N*.
A precise comparison of the theoretical and [4] Blahey, A. Personal Communication, University of
experimental results cannot be made because the actual Waterloo, Waterloo, Ontario, 1981.
radius of curvature for each test cylinder is unknown.
One can, however, compare the experimental results {5] Walowit, J.A., and Anno, J.N., Modern Developments
shown in Figure 2 with the theoretical values given in in Lubrication Mechanics, Applied Science
Figure 4. It appears that the radius of curvature due Publishers, 1975.

to crowning is of the order of 100 meters. The experi-
mental values are in very good agreement with the line
contact model when N* > 5%10~6 and the ellipsoidal
model intersects the line contact model at approxi-
mately 4x10-9,

Additional controlled experimental results for
well-defined crowned c¢ylinders are required to verify

‘the theoretical ellipsoidal model developed here.

Summary
A thermo-mechanical ellipsoidal model has been

presented which attempts to predict the resistance of

a joint consisting of a crowned cylinder in mechanical
contact with a rectangular flat. The motivation for
this analysis lies in the difficulty of manufacturing

a perfect right circular cylinder. The model developed
in this paper demonstrates clearly that form defects
can significantly increase the contact resistance of a
joint at light contact loads. The predicted values are
in qualitative agreement with some experimental results
corresponding to crowned cylinders. An approximate
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