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ABSTRACT T = temperature
T 1 = initial temperature
j-Sez'fx.es expressions for transient constriction t = tima
resistances are presented for two elemental flux b =
channel geometries: infinite strip contact bounded by : z.r = Z?::ﬁ:oggizagziined in cext
¢ adiabats and a circular spot contact om an insulated a’y' . cﬁeml diffusivit
Y cylinder. Both flux channels are semi-infinite in the s - £ funeti 7 in§ = 0 J.(8) = 0
direction of heat flow and the contact heated b roots of functions sin °r
8 are hea v a £ = constriction ratio, a/b
uniform flux source. The resistances were derived from ’
the temperature distributions which were determined by n - ./):2—4.‘1?
solving the heat equation with Laplace transforms. n m
Results are given in tabular and graphical form, and )‘i = eigenvalues
show that the resistances reach the known steady state g = x (or r), the transverse coordinates; or x/a
values. It is alse shown that the resistances approach at used in Eqs. (28) and (29)
the half space solutions for small constriction ratios. 8§ = = = Fourier modulus
a
NOMENCLATURE ] = dimensionless resistance
A = area; channel cross-~sectional area ___L_iubscri £3
A = contact area 20, 0 = counters
c 2D = flux channel or strip on half space
Am,C,I:Zm = intermediate coefficients c = flux tube or spot on a half space
a = contact half width or radius Superscripts
B(z,t) = expression defined by Eq. (12) - = Laplace transformed variable
b = channel half width or radius ss ’ = gsteady state for flux channel or tube
C(z,t) = expression defined by Eqs. (12),(18) and (30) * = transient solution for half space
£(£,8) = expression defined by Eq. (28)
Jo('),Jl(-) = Bessel functions of the first kind of INTRODUCTION
order 0 and 1, respectively
k = thermal conductivity The idealization of heat flowing in an elemental
m = integers 1, 2, 3., , , flux channel has been shown by Cooper et al. (1), and
P = Laplace variable Yovanovich (2) to be extremely useful in determining
Q = total heat flow the thermal resistance between two rough conforming
q - /;7-; surfaces. Yovanovich (3,4) has derived expressions
q = Q/2a for flux channels for the steady state constriction resistance for two
a 2 elemental flux channel geometries as shown in Figures
= Q/ma” for flux tubes 1l and 2: (a) a semi-infinite circular cylinder (hence-
'qo = Q/2b for flux channels forth referred to as a flux tube) heated by a concen-
= Q/ﬂ'b2 for flux tubes tric circular source, and (b) a semi-infinite region
. R,X,2 = functions of r,x,z used in the separaticn of bounded by insulated parallel planes (flux channel)
’\ variables method heated by an infinite concentric strip. Exact tran-
RC = constriction resistance sient temperature solutions of a surface heated flux
s -p+ a)‘Z tube and a semi-~infinite body have been presented by
m Beck (5-7), but not the transient resistances.




Figure 1 Elementai Flux Channels
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Figure 2 Elemental Flux Channel Geometry

This paper presents expressions for the transient
constriction resistance of both elemental flux channel
geometries described. The constriction resistance has
been defined by Mikic (8) as the difference between the
average contact plane and contact temperatures divided
by the total heat flow. The temperature soluticns are
found by the Laplace transform method, and compared to
Beck's expressions for the flux tube case. The resis-
tances are deduced from these temperature distributions.
Also included are the transient resistances for a cir-
cular spot and an infinite strip on a half space as
derived from temperature equations in Carslaw and
Jaeger (9).

PROBLEM STATEMENT

To derive expressions for resistance, the tempera-
ture distribution must first be found by solving the
heat equation:

2 1 3T
v°T s 3¢
For the flux channel, this is:
2 2
3T 3°T 1
o i St (1a)
Ix 3z at
' for the flux tube:
2 2
3T 13T 37T 13T
77T ar tTI T, ot * (1)
ar 3z

The initial condition is a uniform temperature.
The boundaries of the flux channels are insulated ex~
cept for the contact at which a constant uniform flux
is applied at t = 0, At infinity, the temperature
remains at the initial value:

Initial condition:

T(g,z,t) = Ti t=0: 2)
Boundary conditions:
-g%-o £=0 allz (3a)
3T
3% 0 £E=b all z (3b)
_Q/kAc D0<g<a z=0 (3¢)
aT
3z £(g) =
0 a<é<hb z =0 (3d)

T(,z,t) = T all & z-+ o, (3e)

i

Here, £ 13 the transverse coordinate, x or r.

Taking the Laplace transforms (Chap. 12 of Ref. (9))
of Eqs. (1)
2. 27 . T
TLATL 2g ot (4a)
a a
ax 3z
- d 27 . T
s 1 et 3 _p: N
2 v 2"« "3 (40)

where the tildes () denote the transformed témperatures
and p is the Laplace variable. The initial condition
has become part of the differential equation. If T, is
taken as 0, the solution proceeds easily; the modi-"
fication to the final solution 1s trivial if Ty # 0.

The boundary conditions (3) remain unchanged except that
T becomes T, and (3¢) becomes

L. _ 9 -
3z kAcp for 0<§ <a, 2z 0. (5

Equation (4) may now be solved by the separation of
variables.

Flux Channel Solution

Letting q¢ = p/a, and assuming a solution of the
form T(x,z) = X(x) Z(2), Eq. (4a) becomes

1 a1 (2 2 2
X 2 "z 29 =xA
dx dz

Taking -kz as the separation constant

2

4X 3% -0,
2

dx

(6a)

2
d—% - (@ Hz =0,
dz
The solutionsto Eqs. (6) are easily obtained. Upon
application of boundary conditions (3a), (3b) and (3e),
and superposing all the solutions (Eq. (6a) is an eigen-

value problem), the general transformed solutiom is

(6b)

i(x,z,p) = Z Em cos(A x)exp(-n_z), N
o m m

NS




@

where , 3T pa0,1, 2,3 ... (8a)
n b
2 2 2
”m = Am +q (8b)
and E_ are constant coefficients. To find these co-
effic?ents, apply boundary condition (5) at z = Q:
3T s
3z = f(x) = - § EL "y cos(xmx). 9
! =0

Multiply beth sides by cos(A_x)dx and integrate from
x® 0 to x =b with respect to x. (The heat flux in

(5) 1is
- ._._Q9 b, 3 »
pkAc pk(2a) b pk a’

where q, is the heat flux per unit length of channel).

aq, 4 b
af T a cos(xnx)dx - [ odx

a
a
@ b
’-QZO Em o é cos(xmx)cos(knx)dx.
For m=n= 0 E = ——, (10a)
o kpq
d £ an=1,2.3 E = 332_ sin(mre) (10b)
and for m = n 12,3 . . L E) kpnm p—
Thus the transformed temperature is
Fxiy.p) = 0 em(-qz)
x9Y9p k pq
= 2q : exp(-n_z)
+ Z _ko —————Sit(';:zg) cos(}\mx) —_— = . 11
m=]l P m

It now remains to find T = L-l(T).

Using the transformations in Carslaw and Jaeger
(9), Appendix V, and Laplace transform theory, Eq. (11)
can be transformed to the real time domain. (Details
of this may be found in the Appendix.) The tempera-
ture field is thus:

q -
T(x,z,t) = Eg lB(z,:) + Z a sin(mme)

m=l (nme)2
. cos(kmx) Cm(z,t)}. (12)
mm
)\m - Pl (12a)
B(z,t) = V4at ierfc |—F—|+ (12v)
bat

C (z,t) = e Mm% o - aAmzt
n bat

- e>‘mz erfc[ (12¢)

+ JjaA 2: .
/*m
bat
Flux Tube Solution
The flux tube solution proceeds in the same manner
as the flux channel solution. It is assumed that
T(r,z) = R(r) Z(z). Equation (6b) remains unchanged,
and Eq. (6a) becomes Bessel's equatiom

1 drR 2
*in P AR=0. an

. =9 . pl_ -0, 1 8 bl (16)
3z kwazp b2 TTb2 kp aZ kp a2

The general transformed solution is

(z,2,p) = 1Zo EgJ (0 Dexp(-n,2), as)

where the eigenvalues A
2
i
both sides by rJo(kjr)dr and integrating from r = 0 to

4 are gbtained from Jl(kib) =0

and n12 ="+ qz. Taking 3T/3z at z = 0, multiplying

¢ = b with respect to r:

oyl
kp a2

Q\‘u

» b

t3, (0 )dr = - 1ZoEi ng é 23, (003, (O y)dr.
qO

For { = j =0 EO,IP—(:’ (16a)

and for i = j =1, 2, 3, ..
Zqo Jl(kibe).

E, = .
i 2 A, be
kpniJo(Xib) i

(16b)

The transformed temperature is

- q .
T(r,z,p) = ;g & - z)

ZqOJl(Aibs)Jo(Xir) exp(-niz)

. an
= 2 PR
i=1 ke(kib)Jo (Aib) i

In finding the inverse Laplace transform of (17), the
flux channel results are useful. The first term of
(17) 1is identical to that in (11), and the exponential
part of the second term may be transformed as in (AS).
Hence

qO
T(r,z,t) - i— B(Z,C)
® Jl(Aibe)Jo(Xir)Ci(z,t)]

+l€’. 53 J, (18)
i=1 (lib) Jo (kib)

Aib are roots of Jl(Aib) =0, i=1,2,3.., (18a)

B(z,t) = V4at ierfc |—Z|, . (18b)
[£%:34

Ci(z,t) = e-liz erfc |2 - ukizt

Y4at

(18¢)

- exiz erfc |[—— + /ax.zt .
vYéat *
Beck (5) obtained the same result as in Eq. (18) by
integrating the Green's function solution for an instan-
taneous point source in an infinite insulated cylinder
in Carslaw and Jaeger (9) $14.13 (7). It should be
pointed out here that Beck's heat flux q = Q/ma? (call
this q, sg as not to confuse it with q2 = p/a), and so

95 = 4, %7 . Otherwise Beck's solution and Eq. (18)




are identical. It is interesting that both (12) and
(18) share common terms viz, B(z,t) and Ci(z,t), where
in Cy(z,t), the A,'s are the eigenfunctions. For both
eometries, if the constriction parameter is set ¢ = 1,
‘he explicit sums in (12) and (18) drop out leaving

q
T = Eg v4at ierfe 1
vY4at

which is the solution to the problem of uniform heating
over the end of the elemental flux channel, or a semi-
infinite body (see Ref, [€)) §2.9).

AVERAGE TEMPERATURES AND RESISTANCE

The constriction resistance arises due to the fact
that the contact width is smaller than the width of the
channel. The heat flow lines must spread out into the
channel rather than take the easier, straight path
(hence the alternative term spreading resistance). The
constriction may be visualized as shown in Figure 3.
Re(t) 1is the spreading or constriction resistance and
Ryp(t) 1s the resistance to heat flow due to the mater-
ial. The constriction resistance is defined by

R, = T () - T(z=0,t), 19
where the over bars denote average temperatures. The
average plane temperature {s

- 1 A
T(z,e) = ¢ [ T(5,2,t)da,
0

(20a)
and the average contact temperature is
= 1 Ac
T () = 5= [ T(,0,0)aa. (200)
c 0

For the flux channel, the contact Plane temperature is
q (a- b

‘II’ - 280, 8)

0,6) = 255 of dx

® C_(0,t) b
a sin(mre) m'? mrx
¥ mzl (mme) 2 5 f s [TJ d:J.

The integral within the summation is zero, This leaves
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Figure 3 Resistance Circuit in an Elemental Flux
Channel

- q 2 Jat
=0 a o Jat
T(O,t) T B(O,t) = /o

which 13 the surface temperature of a semi~infinite

body heated by a uniform flux (cf. (9) $2.9. Recall

that q4 = Q/2b which, in effect, smears the heat flow

across the entire channel. To include the effect of
2q_¢€ T

the constriction T(0,t) = —EE— / %— , where a, is Q/2a.)

Similarly, the average contact temperature is

T (t) = 32 3¢0,0) fadx
c k a o

a_sin(mme) Cm(O,:) fa cos[m1dx],
0

+ 1
m=1 (m-n't:)2 a b J

q b 2
T (r) = =2{800,0) + J bosin (mre) cm(o,:)].

o=l ez (mr)3

(22)

\

b

ting 8 = E% s and uging erfe(x) = 1 - erf(x) and
a -
erf(~x) = - erf(x):

Now, Cm(O,t) = arfc [- 318 /;E)—erfc[%l /;E). Substitu~

C(0,t) = 2erf(mmrerd). (23)

The resistance is
2q_b

E sinz(mﬂs)

o
kw3sz m=l m3
sinz(mﬂe)

l o
w352 m=]l m3

QR = 2q BR_ = erf (mrev/8),

¥yp(8) = R k= erf (amevd).

(24)

For the flux tube

- - qb = J (A be)C,(0,t)
T () - Teo,0) = 2= L 12 21
im] (lib) Jo (lib)
1 A2
=3 f Zero(Air)dr.
ra”- 0

Again C (0,c) = Zerf(libe/e—), and the integral is

2a J,(A,a), from which
Ai 11

aqob

kag

2 le(kiba)erf(kibefs)
QR = mq bR =
e o ¢

A

3.2
B WO R AT

2
16 I (Aibe)erf(kibs/e)
wc(e) -4 e ™ e Z 3.2 *
im] (Aib) J° (Aib)

(25)

Equations (24) and (25) give the constriction
resistance as a function of time after a uniform flux
is applied to the end of a semi-infinite elemental flux
channel. As mentioned above, R, is the resistance of
the heat flow paths to spread out into the channel.
When the contact width equals the channmel width (e = 1),
there is no spreading, and from (24) and (25) w(8) = 0.

It is interesting to compare these results with
the steady state results of Yovanovich (3,4):

S48 ity
Flux channel:

e ) (26a)




Flux tube:

2
ss T 15 1 409 ss
= 3, 2 B i (26b)
i=1 (Aib) I (lib) i=1
It is easy to see that in general
bo) = v3% exf (s 78)), (27
n=1

where Sn, n=1,2,3. . are the roots of either

sin 5n = 0 or Jl(én) = 0 (ar or an respectively).

The modifier erf(dne/g)ﬁl for Gns/E > 3.8 approx-
imately. 1If the first term in the summation has
8 e/E % 3.8, then all the terms in the summation will
have erf(&nefg) = 1 because S, increases with n. The
resistance is thus said to have reached the steady
state, From this, the time at which steady state is
reached, 654, may be approximated: for the flux

=3.8,o0r8 = (3.8/(we))2,
§, ® 3.8and 8__ = l/sz. For
1 ss

example, if ¢ = 0.1 in the flux channel, the steady
state is reached at around 68 = 150. As ¢ becomes
larger, the steady state is achieved at earlier 8s.
This will be shown in the section on numerical results.

It should also be pointed out that although the
temperature levels at the contact plame do not reach a
steady state, the constriction resistance does reach
the steady state asymptotically. This indicates that
the resistance at large times does not depend on the
temperature level, but on the temperature distributiom,
and further implies that heat flow paths have settled
into time invariant positionms.

channel, 61
for the flux tube,

=T, rev8
ss

'ACT ON A HALF-SPACE

Elemental flux channel analysis is useful when
dealing with heat transfer between contacting rough
surfaces. In most applications, the ratio of contact
spot to flux channel width is very small, usually
¢ << 0.1. In such cases, one surmises that the con~-
striction resistance approaches that of a contact on a
half space. Hence it is also instructive to investi-
gate the transient behaviour of a contact strip and
spot on a half space. Here, results from Carlaw and
Jaeger (9) §10 5 are used for strip and spot contacts
with a uniform flux applied to the contact surfaces.

Strip Contact
The surface temperature for an infinite strip

contact of half width a is (strip rums parallel to the
y axis)

q_a
T(x,t) -—:—/% £(5,0), (28a)
f(e,8) = erf e + erf =g
/48 V48,
2
e o (@) 1 o (@9
+ E E . 28b)
/mll“e)ml[‘*ej ‘

where £ = x/a, q = Q/2a, and E; is the exponential

integral
® -t

. (x) = f —_— dt.
- he resistance of a contactjon a half space is
QRe = T (£) - Ta,

where T, is the temperature far from the strip and is
agsumed to be zero as before, The average contact
temperature is

[I £(8, c)ds

Tc(t) =2k v

and ¥% (8) =R k=3 f f £(E,£)dE. 29)

Circular Contact Spot
The temperature in a half space due to a uniform
flux applied at t = 0 to a contact spot of radius a is

q -2
T(r,z,t) = —— [ 3, ()3, (Aa)C(z, c) (30a)
C(z,t) = e 2 erfc ~ Mat|
4at
- elz erfc —=— + Mat|. (30b)
4at

The average contact temperature is

2

a
Tc(t) -t [ 2nr T(x,0,t)dr
Ta 0

an @ Jl(ka)C(O,:) a

- e rJ (Ar)drda,
ka 0 A 0 o
1.2
(Aa)erf(rar8)d()a)
T (o) =& f ! .
wa 2
(Aa)

Recalling that R = ‘fc/Q

g le(xa)erf(xa/é')d(xa)
vA(8) = 4kaR = = 3 . (31)
0 (Aa)

Note that, again, the time is brought in by the modifier

34

erf(Aav8). The steady state results in Ref. (9), ¢8.2
(135)
" (Aa)d(la)
(skar )%% = £ ! .
o} (Aa)

As pointed out by Beck (7), the integral in (31) is
difficult analytically and is not suitable to numerical
integration due to the infinite domain and the sinusoi-
dal character of the integrand. However, Jaeger (10)
gives the approximation (see also Beck (7))

8 {4
br(8) = = [-3-;

(-1)™(2m+2) !
(m+2) ! [ (m+l) ] (ani-l)/we

which, for small & (6<1), &

2
8( /8 8,8
() ’?[/';"F*EF .. J (32b)

Beck (6) also gives expressions for the average tempera-
ture of a circular region directly below the source,

His expressions may be simplified to obtain the average
contact temperature from which the resistance is

y*(8) = %[/Teff-l_ (1-a71/48y 4 L erfc(—];—i
™

(32a)
m=0 2m+2

Vig  YJ4e

| g

L




+ -1+ (1 -+ .« ), 8 >0.86
3 486778 g4l
(33a)
and for short times
82 83 1s¢®

w8t 327 T 5127 - (33b)

Equation (33b) is the same as (32b) with a few
extra terms in the series. Equation (33a) is analyti-
cal, and thus has a distinct computational advantage
over the series solution (32a). It will be shown that
these expressions yield identical results.

[ P
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COMPUTED RESULTS

The steady state solutions (26a) and (26b) were
computed for various ¢'s by Yovanovich (3,4) and are
displayed in Table 1. The transient solutioms (24) and
(25) were computed here for a range of time and con-
striction ratio. The results are listed in tabular
form in Tables 2 and 3 and plotted in Figures 4 and 5
for the flux channel and flux tube, respectively.

The transient solution reaches the steady state
quickly, 8 < 102 for comstriction ratios ¢ >0.1. Also,
as ¢ increases, the time to steady state decreases as
described above.

Table 1 Steady State Constriction Resistance

STRIP COMTACT ON
MALF-SPACE

RESISTANCE R®:kR, {per unit length of strip)

1 1 1 1 1 H 1
02 o0 08 o ©0F o 10 o 0¢
at : ;
i
TIME D-E!- { Dimensioniess )

Figure 4 Dimensionless Resistance in the Flux Channel

Table 2 Transient Resistance in the Flux Channel

Constriction Constriction Resistance Time Constriction Resistance (Eq. (24))
Ra:io wss 8 wZD(e)
Flux Channel Flux Tube e=0.01 0.1 0.2 0.3 0.4 0.5
.alf Space - 1.0808 10:2 0.0002 | 0.0002 | 0.0001 { 0.0001 | 0.0001 | 0.0001
0.01 1.3583 1.0661 lO_5 0.0006 | 0.0005 | 0.0005 | 0.0004 | 0.0003 | 0.0003
0.1 ) 0.6263 0.9401 10_4 0.0018 | 0.0016 { 0.0014 }{0.0012 | 0.0011 | 0.0009
0.2 0.4083 0.8010 10_3 0.0056 | 0.0051 [ 0.0045 | 0.0039 | 0.0034 | 0.0028
0.3 0.2836 0.6649 10_2 0.0175 | 0.0159 | 0.0141 |0.0123 | 0.0105 | 0.0088
0.4 0.1984 0.5337 10_l 0.0542 | 0.0492 | 0.0435 | 0.0379 { 0.0323 | 0.0266
0.5 0.1357 0.4092 lO0 0.1607 | 0.1447 {0.1268 |0.1090 | 0.0911 | 0.0733
0.6 0.0882 0.2936 10l 0.4041 | 0.3533 | 0.2969 |0.2405 | 0.1846 | 0.1323
0.7 0.0521 0.1895 102 0.7368 | 0.5763 | 0.4069 [0.2836 [ 0.1984 | 0.1357
0.8 0.0255 0.1008 103 1.0624 | 0.6263 [ 0.4083 {0.2836 | 0.1984 | 0.1357
104 1.3066 | 0.6263 | 0.4083 [ 0.2836 | 0.1984 [ 0.1357
10 1.3583 ] 0.6263 [ 0.4083 |0.2836 | 0.1984 | 0.1357
Table 3 Transient Resigtance in the Flux Tube
[ime Constriction Resistance (Eq. (25))
8 ¥ (8)
g=0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Lo:; 0.0004 0.0004 0.0004 0.0004 0.0064 0.0003 0.0003 0.0002 0.0002
LO_5 0.0014 0.0014 0.0014 0.0013 0.0012 0.0011 0.0009 0.0007 0.0005
10_4 0.0044 0.0045 0.0044 0.0041 0.0038 0.0034 0.0029 0.0023 0.0016
10_3 0.0140 0.0141 0.0137 0.0130 0.0120 0.0107 0.0091 0.0072 0.0051
10_2 0.0441 0.0442 0.0428 0.0405 0.0374 0.0333 0.0283 0.0224 0.0155
10_1 0.1349 0.1341 0.1298 0.1226 0.1126 0.0997 0.0839 0.0652 0.0436
100 0.3737 0.3698 0.3561 0.3334 0.3016 0.2607 0.2108 0.1522 0.0888
lOl 0.7474 0.7338 0.6907 0.6189 0.5204 0.4067 0.2933 0.1895 0.1008
1O 0.9670 0.9227 0.8007 0.6649 0.5337 0.4092 0.2936 0.1895 0.1008
1.0428 0.9401 0.8010 0.6649 0.5337 0.4092 0.2936 0.1895 0.1008
1.0642 0.9401 0.8010 0.6449 0.5337 0.4092 0.2936 0.1895 0.1008
FO 1.0661 0.9401 0.8010 0.6649 0.5337 0.4092 0.2936 0.1895 0.1008




!.
§

[N

*

CIRCULAR $POT ON
A MALF-SPACE

RESISTANCE R** 4kaR, ( Dimensionless )
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Figure 5 Dimensionless Resistance in the Flux Tube

The half space solutioms Egs. (29) and (32) or (33)
are also plotted in Figures 4 and 5, and numerical
values are listed in Table 4 and 5. The transient
resistance of a strip on a half space does not reach
steady state, but increases linearly with log(®) for
8 > 1. This corresponds with the fact that there is no
known steady state solution. However, for small
€(e £ 0.01) and @ < 102, there is less than 5.5% differ-
ence between Eg. (29), the half space solution and Eq.
(24), the flux channel solution.

In the case of the circular spot om a half space,
the solution approaches the steady state values 32/3m2
at a time 9 > 107. As anticipated, there is very little
difference, < 1.4%, between the flux tube (e=0.01) and
the half space solutiomns for all time. The maximum
error occurs at steady state where wcss(s=0.01)-l.0661.
In addition, for times 8 < 10~1, there is only a 5%
difference between resistances of the half space and a
flux tube with a relatively large constriction ratio of
¢=0.2. And, as shown in Figure 5, all the curves come
together at extremely short times, 8 < 1073.

The values listed in Table 5 for ¢ > 1 were
identically produced by both Egs. (32a) and (33a).
Equation (32a) was more costly due to the summation.
However, both these equatioms require much less com=-
puting time (of the order 40 times less) than Eq. (25)
for ¢=0.01, and yet they yield the same result to

within 1.4%. Thus, for small constriction ratios
(e<0.01l), which are usually the case in conforming,
ro;gh surface contact analysis, it 1s recommended that
Eq. (33a) be used to calculate the constriction resist-
ance. Also Eq. (33a) may be used for short times and
moderately large constriction ratios: 8<0.1 and €<0.2.
It is also of interest to determine the actual
time in which the steady state is reached. For example,
two flat, rough surfaces in contact characteristically
form contact spots with a radius of about 1 micron
(10"6 m), with a constriction ratio of e£w=0, (1 (nominal
loads). Ef the two surfaces are stainless steel

(c=10'5 m*/s), using the analysis shown above:
8 - atss - -l—
ss 2 2
a €
a2 a8 2 -3
t a - —2—- 3 = m. = 10 “s.
8 .2, (0.01)°(077)_u?

s

Hence, the real time span in Figure 5 is of the order 1
millisecond (t,, decreases for larger €)., In a prac-
tical sense, this means that even though experimental
results show that the temperature takes a long time to
reach equilibrium values, the maximum contact resist-
ance is reached almost instantaneously.

CONCLUSION

Series expressions have been presented for both
transient temperature distributions and constriction
resistances for two elemental flux channels heated by
uniform sources. It was shown that the expressions
for resistance are related to the steady state solu-
tions-~the terms in the series modified by an error
function multiplier. The registances for the flux tube
can be approximated by the resistance of a spot on a
half space for sufficiently small constriction ratios,
or very short times. The temperature distributions for
the cylindrical geometries (tube and half space) are
the same as those reported by Beck.

APPENDIX--THE INVERSE LAPLACE TRANSFORM OF EQ. (l1)

From Carslaw and Jaeger (9), Appendix V, ()]

L_l[epq )- Y4at ierfe [ Z (al)

)- B(z,t).
4at

Table 5 Transient Resistance for a Circular Spot on
a Half Space

Table 4 Transient Resistance for an Infinite Strip om
a Half Space Time Constriction Resistance
8 P*(8)
c

Time Constriction Resistance 10:2 0.0014a Eq. (33b)

9 ¢5D(e) 10-& 0.0045

10_3 0.0143

_7 10_2 0.0446
10_6 0.0002 10_l 0.1356
10_5 0.0006 10o 0.37436
lO_A 0.0018 101 0:7480 Eq. (32a) or
lO_3 0.0056 102 0.9681 (33a)
10_2 0.0177 103 1.0449
10__l 0.0548 104 1.0694
lO0 0.1625 105 1.0772
lOl 0.4096 106 1.0796
102 0.7547 107 Fue 1.0804
10 1.1188 10 1.0806




Q..

From the second term of (11)

exP(—an) exp(—z/&2+uki)

Pn
" pv’qzﬂf1

2
/pHai
exp(-z =)

= = (a2)
2 2
A A
2 /f m 2 /f m
(p+uAm ) a aAm a
2
- 0(p+ukm ).
2 e-zfs/a
Let 8 = ptad “: F(s) = . (A3)
o Vs/a(s-akmz)
From Laplace transform theory (a 1is some constant)

L o (pra)) = 7 Lo (p)). )
Using this (a = akmz) and Carslaw and Jaeger (9),
Appendix V, (30)
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2 algt
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2 aA 2
m
-z/al 2/a z 2
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arm 7 [T2
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= 57; ¢, (z,0), (ASa)
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