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APPLICATION OF THE METHOD OF OPTIMISED IMAGES TO
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ABSTRACT

The analytical/numerical method of optimised
images is presented in terms of steady three—dimen-
sional heat conduction. This novel technique which
can solve field problems from several engineering
disciplines is particularly useful for difficult
flux tube problems in contact resistance. The
methodology and implications of the optimised image
technique are examined in detail for the concentric
circular flux tube with uniform contact flux. To
find the thermal constriction resistance for this
problem, the temperature fields due to a circular
contact and one to three circular ring source images
on a half-space are superposed in some “optimal”
combination such that the physical boundary condi-
tions for the flux tube are best approximated. In
addition by solving for the constriction resistance
of a circular contact on a square flux tube with two
different contact flux distributions, the potential
power of the method of optimised images in steady
heat conduction is demonstrated.

Since the latter results are useful for ongoing
research in contact resistance, simple but accurate
correlations of the dimensionless constriction re-
sistance parameter are provided for a large range of
relative contact sizes.

NOMENCLATURE

a - circular contact radius

At - cross—sectional area of flux tube

A2n -~ series coefficients

b - radius of circular flux tube, half-width
of square flux tube

02433(-) - Gegenbauer polynomial of order 2n-3

e - residual boundary-flux at test-point

E(*) - complete elliptic integral of second kind
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sum of residual boundary-fluxes squared
Bessel function of order 1

thermal conductivity

complete elliptic integral of first kind
half-length of finite-~line source image
depth at which average temperature in a
flux tube cross—section is calculated
number of optimised images

number of test-points

number of optimised circular ring images

- Legendre polynomial of order 2n-2

flux distribution over contact area
uniform flux over contact area

flux at test-point due to circular
contact

total heat flux over circular contact
line strength of circular ring and
finite-line sources

spherical coordinate

radius of circular ring source image

thermal constriction resistance
material resistance
temperature rise

average temperature rise on contact

average temperature rise on flux tube
plane z=L

Cartesian coordinates

distance between finite—line sources and
axes

Greek symbols

ratio of flux tube length to radius
eigenvalue solutions of Jl(én) =0

dimensionless contact size, a/b
spherical coordinate

modulus of complete elliptic integrals
polar coordinate

parameters used 1in expressions for
temperature rises and fluxes

relative residual-boundary flux




¥ - thermal constriction resistance para-
meter, bkaRc

Subscripts

i - refers to an optimised image
h] - refers to a test-point
INTRODUCTION

In this work the method of optimised images
will be demonstrated by solving steady, three-dimen-
sional, thermal constriction resistance flux tube
problems. A thermal constriction resistance flux
tube consists of a finite contact area located on
the top surface of a semi-infinite rod of constant
cross—sectional shape. Both the sides of the rod
and the top surface excluding the contact area are
adiabatic. Heat is supplied through the finite con—
tact area and flows down the length of the rod to a
sink at infinity.

In most contact resistance problems, both the
contact shape and the flux tube cross—sectional
shape are usually modelled as circles, ellipses,
squares or rectangles. This modelling is made for
two reasons. First the theory describing the mech-~
anical interaction between two rough surfaces is not
sufficient to predict the exact actual shape of any
given contact. And second because of the statisci-
cal nature of the analysis which deals with the vast
numbers of microcontacts, only the ‘“average” or
"typical” unit cell need be considered to give ade-
quate results. For example in the classical theory
of conforming rough surfaces [l], the flux tube geo-
metry is usually a circular contact on a concentric
circular flux tube, or perhaps more correctly, a
circular contact on a concentric square flux tube.
The circular flux tube is illustrated in Fig. 1.
In the study of cylinder-flat comtacts [2], McGee
found elliptical contacts forming on rectangular
flux tubes. And in the proposed work of DeVaal [3],
anisotropic roughness between conforming surfaces
should create non—concentric elliptical contacts on
elliptical flux tubes. Solution to these complex
three-dimensional heat flow problems is extremely
difficult by purely analytical techniques and usual-
ly computationally time—consuming by fully numerical
techniques. In addition for most problems of inter~
est in contact resistance, the contact area is much
smaller than the cross—sectional area of the flux
tube. For this geometry the single-infinite and
double~infinite series summations of the analytical
solutions require many thousands of terms. However
as will be seen in the results which follow, the
method of optimised images has a maximum efficiency
for solution which corresponds to this case of small
contact area. Thus one major motivation for devel-
oping the optimised images technique in heat conduc—
tion is the potential ability to solve more effic-
iently several complex but practical problems in
contact resistance. Another motivation for this
analytical/numerical technique is {its ability to
solve flux tube problems where solution was previ-
ously possible only by fully numerical methods such
as finite difference or finite elements. One excel-
lent example of this from practical contact resis-—
tance problems 1s the constriction resistance of an
elliptical contact area located off-center in an
elliptical or rectangular flux tube [2,3]. Finally,
the method of optimised images can also find appli-
cation in other thermal conduction problems as well
as electrostatic capacitance problems and ideal
fluid flow problems.

The usual boundary condition for the top of the

flux tube is an isothermal contact area and an adia-
batic region over the remainder of the top of the
flux tube. Although this creates a mixed boundary
value problem, a solution was recently obtained {4]
for a wide range of contact to flux tube size ratios
for the circular contact on a circular flux tube.
By comparing these results with those of the flux-
specified contacts of Yovanovich [5], the uniform
flux and equivalent isothermal flux provided respec—
tively upper and lower bounds of the true isothermal
constriction resistance over the entire range of
contact to flux tube size ratios. The equivalent
isothermal flux as used here is merely the flux dis-
tribution which results when an isothermal contact
is placed on an adiabatic half-space.

In this work the validity of the optimised
image approach will be confirmed by first consider-
ing in detail the problem of a concentric circular
flux tube with uniform flux as described in [5]. In
addition the potential power of the method will be
demonstrated by solving the more complex problem of
a circular contact on a square flux tube for both
the uniform and equivalent isothermal flux cases.

The analytical method of solving field problems
using images originated more than a century ago.
The image method was particularly well suited for
electrostatic problems where point or line charges
were placed near grounded, insulated or dielectric
surfaces or bodies. For many such problems, a sin-
gle image point or line source could be easily loca—-
ted and the corresponding source strength simply
calculated so that the physical boundary condi-
tion(s) could be met. For some more complex pro-
blems, examination of “rays” emanating from the ori-
ginal point or line charge would lead to an optical
analogy for placing an infinite series of easily
determined sources and/or sinks. The word “image”
probably comes from this optical analogy.

The basic methodology for finding the field in
one region consists of placing discrete images ex-—
terior to the region of interest such that all boun-
dary conditions are satisfied. Then according to
the uniqueness theorem [6,7,8], 1if all boundary
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Fig. 1 Concentric circular flux tube




conditions are satisfied exactly and the images lie
outside a given closed region, then when the solu-
tion so obtained by solving for the images is
superposed with the original potential field without
the images, the exact potential field within the
given closed region results.

Several excellent examples of the analytical
image technique are contained in Smythe [6}. Unfor-
tunately, when the heat sources or boundaries become
disks, spheres, prolates or some arbitrary shapes,
determination of the correct image placements and
strengths becomes an increasingly difficult (and
usually non-linear) problem.

In 1979 Chow and Charalambous [9] published a
paper on the use of "optimised simulated images” in
electrostatic field problems. Their basic methodol-
ogy was similar to the classical, analytical method
of images except that they adopted the engineering
approach that the boundary conditions need only be
satisfied “approximately”. As 1in the analytical
method, the images were discrete sources or sinks,
such as points or finite-lines, with variable size,
strength and location. The boundary condition was
then written such that the total sum of boundary
residuals (usually squared) over a number of test
points must be minimized. A boundary residual rep-
resents the difference between the approximate cal-
culated boundary value and the exact boundary value
desired. Unfortunately the relationship between the
boundary residual sum and the image sizes and loca-
tions 1is non—linear. However, solution can be made
using one of a variety of modern, computer—oriented,
non—-linear optimisation algorithms and Chow has had
good success with the Fletcher algorithm [10]. 1In
addition Chow, et. al. have demonstrated the vali-
dity of this technique in their type of problems by
considering the variational bounds {1l1}.

The problems which Chow has addressed generally
require the images within conducting bodies exposed
to an external field. In these problems the bound-
ary conditions are Dirichlet specified by the isopo-
tential requirements of the conducting bodies. The
external "driving” field is outside the conducting
bodies and thus the images, usually points or fin-
ite-lines, are located within the conducting bodies.

The approach of this work will be somewhat sim—
ilar to that of Chow except for two major differen-
ces. First the formulations will be written in
terms of heat conduction. Second the example
problems have images located on the surface of a
half-space external to the closed body of the flux
tube.

CONSTRICTION RESISTANCE OF CONCENTRIC
CIRCULAR FLUX TUBES BY OPTIMISED IMAGES

To gain experience with and investigate the
potential power of the method of optimised famges, a
simple, well-understood problem with a useful closed
form analytical solution was needed. The obvious
choice from the topic of flux tubes is a concentric
circular flux tube with a Neumann-specified circular
contact. The analytical solution [5] consists of a
single infinite summation of Bessel, rational and
sine functions which converges typically with 500 to
2000 terms depending on the relative contact size.
In particular, a uniform flux over the contact will
be considered.

Formulation of Boundary Condition for Approximate
Flux Tube

In Fig. 2 a circular contact on the surface of
an adiabatic half-space is surrounded by circular
ring source images which are to be chosen such that

CIRCULAR RING
SOURCE IMAGES
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Fig. 2 Arrangement of ring source images around a
circular contact to simulate a circular
flux tube

an approximately adiabatic surface at p=b will re-
sult. Although the thermal constriction resistance
parameter, ¢, is based on a flux tube of semi-
infinite length, it will be seen that only a “"small"
finite 1length of the approximately adiabatic flux
tube need be considered to give accurate results.
By wusing this approach the adiabatic boundary
condition at p=b of an approximate flux tube can be
formulated such that a finite number of optimised
circular ring source images can be chosen by
non-linear optimisation.

For the true semi-infinite circular flux tube
[5], the governing differential equation and bound-
ary conditions are

vir =0 m
2 ] 3 32
where v° = =~ Fye (pa—) + - (2)
p dp P 3z
Also,
3T 0,2) =0 , 0<z <= (3
9p
3-'E(b,z)mo , 0 z<K= (4)
3p
T+ 0 as (p2+zz)l/2 > @ (5)
3T
;— (p,0) = 0 outside contact area (6)
2 e

where b is the radius of the flux tube.

Note that both the circular contact om a
half-space and the circular ring sources on a
half-space have temperature fields which satisfy all
of the above except Eq. (4). In addition for the
circular contact we have the last necessary
condition for the flux tube that

-kg—T(o,0)=q°,ogpga )
z




where q, is some specified uniform flux over the
contact area and a is the radius of the circular
contact.

Thus by superposing solutions the temperature
rise at any point in the half-space is

r

g (Pa2) (8)

M
T(p,z) = TS(p,z) + | T
i=1

where Tc(p,z) is the temperature field due to a cir-

cular contact on a half-space, T (p,z) is the temp-

erature field due to the iﬂ'l circular ring image
and M is the number of ring images.

The radial flux at p=b can be written as

c M att

& 2L (b,2) = [k ¥ (b,2)] + ] [k —L (b,2)] (9)

3p 3p i=] ap

The first term on the right—hand side of Eq.
(9) is a function of a,b,z and g, and can be trea-
ted as a “"known” quantity given by Eq. (A-9) at
p=b. This term is written as

c
q¢ = <« L. (b,2) (10)
ap

The second term on the right-hand side of Eq.
(9) is a function of b,z and the “unknown"” quanti-
ties Q; and Ry. Thus Eq. (9) is written as

3T c ¢
ko (bs2) =+ 121 Q 8(R,) an

where g(Ry) 1is a non-linear relationship connect-—
ing Ry to the radial flux at some point P(b,z).

The exact boundary condition that Egq. (11)
should mimic is Eq. (4). However if some residual
boundary-flux e; 1is accepted at a “test-point”

z4 then the approximate boundary condition is

M
[
ey = qy+ 121 Q g5 (R) (12)

where it 1is assumed that ey will be made “small”
in some sense.

The important remaining point is the required
length of the flux tube which must be set approxi-
mately adiabatic. Some insight to this length can
be made by comparing the works of [16} and [5].
From this a finite flux tube behaves like a semi~-
infinite flux tube in terms of its constriction par-
ameter ¢ when tanh(§ja)*l, where §;, 1is the

first root of Jy(6,) = 0 (§; ~ 3.83) and a is
the ratio of the length of the finite flux tube to
its flux tube radius b. For example if a=l, then
tanh(§ja) ~ ,9991, o = 1.5, tanh(§ja) =~ .99998,
and a = 2, tanh(§ja) =~ .9999996. Thus fitting a
perfectly adiabatic boundary to a length of b should
result in a maximum error of less than .1%Z in the
constriction parameter. In every case for the re-
sults that follow a length of b was used with great
success. Lengths of 1.5b and 2b were also tried for
cases where some error in ¥ was present but no im-
provement was ever seen for a given number of annu-
lar ring images.

Thus 1if N test-points are considered over the
finite domain 0 < z < b, then the sum of residual
boundary-fluxes squared is

M
e, =) {aS+ T q &) (13
togm 3 gy P TI

For a uniform flux over the circular contact

¢
area qj is given by Eq. (A-11) at p=b or

c b a 2n+l
f=q > ] A, (—2—)
j o %y 2n
a 451 (b2eg 21112
3
_ 3/2
{(2n 1)92n_2(1j) + rjczn_3(rj)} (14)
where 1j5 zj/(bzi—zjz)ll2 (15)
ag72 AZn is given by Eq. (A-8) and Pzn_z(') and
Czn_3(°) are Legendre and Gegenbauer polynomials

[14}.
In addition from Eq. (A-26)

2Ri b+Ri di.-b(2b+2R1)
AR,) = —= {—— x(» A 4
gy R = <= | 377 FOyy) 32
%1j 13
2
‘E‘Mj)/“‘*ij)“‘“u)” (16)
where oy = zjz + (b+Ri)2 (17)
- 1/2
Ay s Z(bRi/oij) (18)

and K(*) and E(+) are complete elliptic integrals of
the first and second kinds.

Finally, the z; are chosen by 11 equally
spaced test-points between zo-O and zll’b'
Other numbers of test-points such as 16 and 21 for
the test domain 0 € z; < b were also tried but no
noticeable change in ¢ was observed.

Thus the proper selection of Q4 and Ry and
ultimately the solution of the problem is found by
minimizing E,.. For the results contained in this
report, the non-linear FORTRAN-60 routine GAUSHAUS
[15] was used.

Presentation and Discussion of Results

The solution to the optimization problem posed
by minimizing E, in Eq. (13) 1s a "best” selection
of sizes and source strengths of circular ring ima-
ges. After determining these sizes and strengths,
the quantity of interest is the dimensionless ther-
mal constriction resistance parameter defined as

¥ = 4ka R, (19)

where R, 1s the thermal constriction resistance
given by

Ec - T(z=L)
R == "}/ (20)

Q

where T _is the average temperature rise on the
contact, T(z=L) is the average temperature rise at
any depth L, Qc is the total heat flux on the con
tact, and R, is the "material” resistance from 2z=0
to z=L given by

Rm - L/kAc 21)

where A, 1is the rtotal cross—sectional area of the
flux tube, 7b%. Thus




b= K2 T - T - 22 (22)
QC c b
where Q¢ = nazqo (23)

The average contact temperature can be calcula-
ted easily using a Gaussian quadrature scheme to in-
tegrate numerically the temperature rise due to
the circular ring images. The contribution to Te
from the circular contact is (8/3m)(qga/k) for the
uniform flux.

The average temperature rise at some flux tube
plane z=L can also be calculated easily using a
Gaussian quadrature scheme to integrate numerically
the temperature rises due to both the circular con-
tact and the circular ring images. Although any
value of L < b can be used, a value of .8b was used
in the results that follow because the nearly uni-
form temperature at this flux tube plane allows easy
integration by Gauss quadrature.

The results for the constriction parameter over
the range .0l < e < 9, where ¢ 1s the dimensionless
contact size, € T a/b, are contained in Table 1 for
one, two or three optimised circular ring images.
The analytical solution reported in Table 1 comes
from {5].

The procedure to obtain a given ¢ in Table 1
consisted first of rumning the non-linear optimisa-
tion routine GAUSHAUS [15] on the University of
Waterloo IBM 4341 mainframe system 1in compiled
FORTRAN-66 to minimize the sum of boundary—flux
residuals, Et' From this program the correspond-
ing circular ring image source strengths and radii
were then recorded and inputted to a compiled Micro-
soft BASIC routine on an IBM-PC. This program cal-
culates the constriction parameter ¥, the residual
boundary~fluxes, and summarizes each run.

Overall the method of optimised images worked
very well for this problem. With only one circular
ring image, an engineering accuracy of 1%Z or less
was obtained up to € = .6. Even at a large contact
size of ¢ = .8 the error in ¢ was only 7%. When a
second optimised image is added even better accuracy
in ¢y for large € can be obtained. And when a third
optimised image is included, complete four decimal
place agreement in ¥ is seen for all & < .9.

The mainframe execution time for one optimised
circular ring was typically .3 - .5 seconds. With
two images the typical time was 1.2 - 1.8 seconds
and with three images 5 - 7 seconds. Obviously
since only one image was needed for small relative
contact sizes (£<.5), the method of optimised images
is most economical in this range. This makes sense
because the field for a small contact in a flux tube
is essentially a minor perturbation of the

half-space solution. At large relative contact
sizes the temperature field is substantially
different from that of a contact on a half-space and
consequently more optimised images are needed.

In order to compare the accuracy of the results
of the circular contact on a circular flux tube to
other flux tube problems where analytical solutions
are impractical or unavailable, an attempt will be
made to relate accuracy in ¢ to the residual
boundary~flux, e;. From Eq. (12) the residual
boundary~-fluxes @ can be calculated after the
optimisation process 1is completed. However e; is
dimensional and has a decreasing effect on 3 at
increasing depths. Thus a relative residual
boundary-flux, 4. 1is defined as the ratio of
residual boundary=flux to the flux which would be
present from a contact on a half space alone, or

.= (e,/q5) x 100%
b5 2 leyly

For a dimensionless contact size, € = a/b, of
<2, .5 and .8, the relative residual boundary-fluxes
have been tabulated in Table 2 for the case of one
and two optimised circular ring images.

€ =2 € =.5 € =,8

i NR=1 NR=2 NR=1 NR=2 NR=1 =2

0.0 2.50 .00l 4.21 .102 11.14 0.33

.l 2,08 .000 3.32 .032 6.85 -0.17
.2 0.90 -.001 0.96 -.115 =2.50 -0.43
«3 1 -0.77 .000 | -2.17 -.224 | -11.56 -0.38
4 | =2.55 .002 | -5.16 -.246 | -17.22 -0.94
S5 =3.83 .027 | -5.94 .849 -8.11 6.47
6 | ~4,44 -,002 | -7.13 -.195 | -13.55 -3.35
7 | =3.49 ~-.013 | -4.72 ~-,212 -3.87 -3.86

.8 | -0.61 -.023 0.62 -.224 10.57 -2.96
.9 4.62 -.016 9.13 -.119 29.22 -0.06
1.0 | 12.53 .042 | 20.95 .279 51.48 5.31

Table 2. Relative residual boundary-fluxes ¢; in
% for a concentric circular flux tube
with uniform flux

At a small contact size such as €=.2, relative
residual boundary-fluxes have very little effect on
the accuracy of ¢. For example, adding a second
optimised circular ring image dropped the relative
residual boundary-fluxes at least 2 orders of magni-
tude but ¥ only changed from .8011 to .8009.

At an intermediate contact size such as €=.5
the relative residual boundary-fluxes begin to have

Number of Constriction Parameter, ¢ = AkaRc (e = a/b)

Optimised

Ring € =0l € =05 € =1 € =22 € =3 € =4 ¢=5 ¢ =.6 ¢ =,7 € =8 € =,9

Images .

1 1.0667 1.0104 .9402 .8011 .5342  ,4101 ,2952 .,1928 .1074 .0526

2 - - .9401 ,8009 .5338 .4094 ,2940 .1904 .1025 .0379

3 - - - - 5337 L4092 .,2936 .1895 .1008 .0331
Analytical

Solution 1.0667 1.0104 ,9401 .8009 25337 L4092 .2936 .1895 .1008 ,0331

Table 1. Constriction parameter ¢ of a concentric

circular flux tube with uniform flux




an effect. However even though the average relative
residual boundary flux is about 6% with one image,
the error in ¢ is about .2X. Adding the second op-
timised annular ring image brings the relative re-
sidual boundary-fluxes down to less than .3% and
virtually eliminates all error in y.

When the contact size becomes quite large, such
as €=.8, the constriction parameter Y becomes very
sensitive to the relative residual boundary-fluxes.
For example at €=.8 with a uniform contact flux an
average relative residual boundary-flux of 14X for
one image gave /% error in ¢ and 2.2% for two images
gave 1.7% error in ¢. When a third optimised image
was included, the average residual boundary-flux was
about .08% and all error in ¥ was eliminated. Thus
at large contact sizes not only are more optimised
images required to produce a certain level of rela-
tive residual boundary-flux, but in addition a given
level of relative residual boundary—-flux causes
greatest error in ¥ at these large contact sizes.
However even for such large contact sizes, good en~
gineering accuracy of 2% error or less in § should
be obtained by using enough optimised images to re-
duce the average residual boundary-flux to 2-4% or
less.

In general for small and intermediate contact
sizes (€£.6), accurate results for the constriction
parameter y can be obtained even with typical rela-
tive residual boundary-fluxes of 5-10%Z. This fact
is important to ensure reliable results when solving
problems where it is dimpractical or impossible to
continue adding optimised images until a “conver-—
gence” in ¢ is reached.

In Table 3 the actual optimised circular ring
source images are tabulated for several optimisation
cases. Note that the dimensional results for Q
and Ry in Table 3 are based on a uniform contact
flux of g, = 1, a thermal conductivity k=1 and a
flux tube radius b=l.

Optimisation Ring Source Ring

Case Image Strength Radius
No.

o. 1 Qi Ri
€ =,2, 1 image 1 .1826 2.3915
€ =.5, 1 image 1 1.0540 2.2505
€ =.8, 1 image 1 2.3148 1.9864
1 3676 5.0408
€ =.2, 2 images 2 .0629 1.8886
e =5 24 1 1.7341 3.8906
+2» 4 images 2 .2682 1.6829
1 3.1615 2.7476
€ =.8, 2 images 2 .2933 1.3271
1 2.2594 4,8835
€ =,5, 3 images 2 .2812 1.8875
3 .0857 1.5531
1 4.7034 3.9975
€ =.8, 3 images 2 .5384 1.6408
3 1425 1.2646

Table 3. Optimised circular ring source images for
a concentric circular flux tube with uni-
form flux

CONSTRICTION RESISTANCE OF CIRCULAR
CONTACTS ON SQUARE FLUX TUBES BY OPTIMISED IMAGES

Formulation of Boundary Condition for Approximate
Flux Tube

For the semi-infinite flux tube of square
cross—section with a concentric circular contact,
the governing differential equation and boundary
conditions are

2
VT=0 (24)
2 2 2
where VZ 23—2—+a—2.+a_2_ (25)
3x 3y 3z
3
i (0,y,z) =0 for =-o (y<(w
ax
0<z <= (26)
aT
— (x,0,2z) = 0 for -® < x<K=
3y
%I (+b,y,2) =0 for -b<y<b
x
0<z <= (27)
T (x,#b,2) =0 for -b<x<b
iy - -
T(x,y,z) + 0 as (1:2'0'}'2+22)1/2 + ® (28)
3T
;—(x,y,O) = 0 outside contact area 29)
z

Note that the circular contact on a half-space
and collection of four finite-lines as shown in
Fig. 3 each satisfy all these conditions except Eq.
(27). In addition for the circular contact on a
half-space we have the last necessary condition for
the flux tube that

-« %3 (x,5,0) = £(p) for 0<p <a (30)
z

where p = (x2+y2)1/2 and f(p) 1s some specified flux
distribution on the contact such as uniform or
equivalent isothermal.

Because of the symmetry of the problem only one
finite~line source per flux tube side need be
considered. In addition test-points for the
symmetric boundary conditions given by Eq. (27) can
be chosen from only one half of one side of the flux
tube. As shown in Fig. 4 the domain 0 < x { b, y=b
has been chosen and the ideal boundary condition to
be satisfied is

3
'ka—T(x,b,z)=0 0<x<b, 0<z<Km= (31)
v L

By using the methods of the previous section,
this exact boundary condition can be rewritten in

terms of an approximate one for which a residual
boundary-flux at the Jgpn test-point is

M
c
ey =g+ 121 Q 8y(rgss £) (32)

where qc is the flux normal to y=b at the test-point

P(x;,b,z;) due to the circular contact and is
given by Eqs. (A-4) or (A-11) depending on the flux
case, M is the number of optimised finite-line
images on one side of the flux tube, or alterna-
tively, the number of sets of four symmetric
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Fig. 3 Arrangement of finite-line source images
around a circular contact to simulate a
square flux tube

TEST
1.25b OMaAl
&%
5
\\\\\jy//

Fig. &4 Required test domain for a square flux tube

TEST POINT
P(xi ,t:o.zj )

\

figite—line images, Qi is the line strength of the

optimised finite-line image, and g,.(y .,% ) is a
nonlinear relationship formed from Eqs. (A-17) and
(A-22) to describe the flux at the test-point
P(x;,b,z;) from a finite-line set with a half-
length of 24 and a distance of Yo1 from the
origin. As discussed in the previous section, the
flux tube length need not extend to infinity to give
accurate results in terms of the thermal constric—
tion resistance. After some experimentation it was
found that no improvements in the accuracy of the
constriction resistance occurred by considering

approximate flux tube lengths greater than 1.25b.
This length was used for all square flux tube
results which follow. Note that for a square flux
tube of half-width b, a circular flux tube of equal
cross~sectional area would have a radius of l.13b.
Since in the previous section a flux tube length of
b was considered for a circular flux tube of radius
b, a flux tube length of 1.25b in this case also
seems reasonable based on the previous experience.

As in the concentric circular flux tube
problem, the correct images are determined by
minimizing the total sum of residual boundary-fluxes
squared given by

g {af ? 12
E = + Q 8, (v 40 &) (33)
£ 4 YA o1’ *y

Agai the non-linear  FORTRAN-60 routine
GAUSHAUS [15] will be used to minimize E.. Note
that each set of four symmetric optimised
finite~line images has 3 unknown parameters as
opposed to only 2 unknown parameters for each
optimised circular ring 1image of the previous
problem.

Within the test domain of Fig. 4 the
test-points are chosen by 5 equally spaced points
between O Xy £ b and 6 equally spaced points
between 0 < z < 1.25b. Thus 30 test-points are
used to cover the test~domain. shown in Fig. 4.
Other larger numbers of test-points were tried,
especially for the dimensionless contact size
€Za/b=.5, but no noticeable change 1in the
congtriction parameter ¥ was observed.

Presentation of Results

As in the previous problem the Iintegrated
parameter of interest after minimizing E, is the
dimensionless thermal constriction resistance
parameter. Again this is defined as

b = dkaR (34)

or after defining R, as in Eq. (19) and noting
that the cross-sectional area of the square flux
tube is 4b? then
v 282G - T - 2

Q° b

where ic is the average contact temperature rise,
T(z=L) is the average temperature rise in some flux
tube cross-sectional plane 2z=L, Q% 4s the total
flux over the contact area (chakT a for the
equivalent isothermal flux or QC=ma“q, for the
uniform flux), and L for the results which follow
has been set at L=b. _ _

The quantities T, and T(z=L) are again calcula-
ted by Gaussian quadrature using the temperature
rises expressions for circular contacts and finite-
line sources on a half-space, as givem in the
Appendix. .

The computation procedure for both the
equivalent isothermal and uniform flux cases on the
circular contact on a square flux tube is identical
to the previous concentric ecircular flux tube
procedure. e

For the equivalent 1isothermal flux case, qj of
Eq. (33) is given by

(35)

4kT a
q; —) {p— —E} .
v 9 9
[(a,%0,) (0,40, ~4a 231231 (36)




where p = (xj2+ bz)l/2 (37)
o, = (o)’ zjzlllz (38)
o, = l(o+a)” + zjzl‘/z (39)

In Table 4 the resultant values of ¢ for the
equivalent isothermal flux case are tabulated for
one, two or three sets of four symmetric finite-line
images over the range of the dimensionless contact
size €za/b, .01 { ¢ £ .9. Note that no analytical
solution is presently available for the constriction
resistance of a circular contact on a square flux
tube with an equivalent isothermal flux distribu-
tion. However all the results in Table 4 do seem to
be converging to the accuracy shown.

For the uniform flux case, qc of Eq. (33) is
given by i

¢ Qob = a 2n+l
4G L e ([pz+z 211/2)
3
_ 3/2
{¢2n-1) Pon-2(Ty) * rjczn_3(1j)} (40)
where T = zj/(92+zj2)1/2 (41)
o= [b2+zj2]1/2 (42)
with A, as in Eq. (A-8) and P (+) and C3/2 ()
2n 2n-2 2n-3

are Legendre and Gegenbauer polynomials [14].
The results for the constriction parameter ¢

for the uniform flux case are contained in Table 5
for one, two or three sets of four symmetric
finite-line images. The reference answer reported
in Table 5 {s the “corrected Beck expression”
[17,18]

3

Y~ 1.0808 - 1.2415% + .1797¢ (43)

where € is the dimensionless contact size, € = a/b.
Because Eq. (43) is not valid to the accuracy
reported in Table 5 for € > .5, the reference answer
numbers 1in brackets are only estimates. Again
excellent convergence in ¢ for the accuracy shown is
observed.

Discussion and Correlation of Results

Once again the method of optimised images has
worked well overall. Good convergence of the re-
sults for the accuracy shown was observed using up
to three optimised sets of four symmetric finite-
line images.

As anticipated, accurate results were most eas-—
ily obtained for small contact sizes. In fact using
only one set of optimised images on the uniform flux
case, .l%Z error in ¥y was observed at €=,2, .8% error
at €=.5 and 6.8% error at e=.8.

When a second set of four symmetric finite-line
images was added, all error in ¥ was eliminated for
the accuracy shown in the range .01 < e < .9. The
addition of a third set of finite-lines merely con-
firmed that converged results had been obtained.

An examination of the relative residual boun-
dary-fluxes for each ¢ in Tables 4 and 5 showed sim-
ilar trends in accuracy of y relative to boundary
residuals as seen for the circular flux tubes.

The results of this work for the constriction

Number of Constriction Parameter, ¢ = 4kaR (e = a/b)
Optimised <
F;:i;:;féﬁe € =0l €=.05 € =1 € =.2 € =3 € =.b € =5 € =6 € =7 €=.8 € =9
1 .988 .938 .876 .755 636 521 412 311 221 .148 .106
2 - - .876 754 .633 517 407 .303 .210 .129 .067
3 - - - - - - .303 210 .129 .065

Table 4., Constriction parameter § for a circular contact with equivalent isothermal flux on

a square flux tube

Note (a): Refers to the number of sets of four symmetric finite-line source images as shown in

Fig. 2.
Number of Constriction Parameter, ¢ = 4kaR (e = a/b)
Optimised =
Finite'%%Se e =01 € =05 € =.1 € =,2 € =3 € =4 € =5 € =6 ¢ =7 € =8 ¢ =.9
Images
1 1.068 1.019 .957 .835 715 .599 .488 .383 .288 .205 .144
2 - - 957 .834 .713 .596 484 .377 .279 .192 .120
3 - - - - - - .377 .279 .192 .120
Reference
Answer 1.068 1.019 .957 .834 .713 .596  (.484) (.377) (.28) (.19) (.1)

Table 5. Comstriction parameter ¢ for a circular contact with uniform flux on a square flux

tube

Note (a): Refers to the number of sets of four symmetric finite-line source images as shown in

Fig. 2.




parameter also represent useful data for research in
contact resistance. Thus for convenient engineering
purposes, a correlation of the results for both con-
tact conditions on the square flux tube and those
for uniform flux on a concentric circular flux tube
will be made. A correlation of the results from the
equivalent isothermal flux case on the circular flux
tube is unnecessary because the true isothermal con-
striction parameter was correlated in [4]. The form
of the correlation in [4] will be used again to give
¥ as a function of €. This correlation is

V= o+ Cle + c353 + CSES + c7e7 (44)
where £2Za/b, a is the contact radius, b is the flux
tube radius for the concentric circular flux tube or
the half-width of the square flux tube, and y, is
the constriction parameter for a circular contact on
a half-space (e=0).

The coefficients of Eq. (44) are given in Table
6. The resultant correlations all have no error
with respect to their input data when rounded~off
appropriately.

CONCLUSIONS

For most practical flux tube problems in
contact resistance where both the contact and flux
tube cross—section are modelled as circular, square,
elliptical, rectangular, etc., the method of
optimised images can be used to determine the con-
striction resistance parameter accurately with a
relatively small computational effort.

Since resistance is defined by average tempera-
tures and total heat flux, that is, integrated quan-
tities, then the effect of deviations from the exact
adiabatic boundary condition at the flux tube sides
tends to cancel out in terms of the integrated re-
sults. Thus the thermal constriction resistance
parameter approaches its exact value while the
imposed adiabatic boundary condition 1s still only
approximately satisfied. Furthermore the tempera-
tures calculated from the optimised images are most
accurate near the contact where thermal gradients
are highest and the temperature field is most com~
plex. Such high gradient accuracy is important both
for component design where thermal stresses are of
major concern and for analogous electrical problems
where high voltage gradients can cause degradation
of material properties.

Even though the constriction resistance para-
meter used for contact resistance is bagsed on a flux
tube of semi-infinite length, for calculation pur-
poses using the method of optimised images, only a

relatively small finite length flux tube need be
considered for accurate results. From the experi-
ence gained in producing the numerical results which
appear in this work, a finite length approximately
equal to the largest “radius” in the flux tube
cross—section seems to suffice.

Firally two flux tube problems in contact
resistance which may now be solved by the optimised
images technique are the elliptical contact on a
rectangular flux tube and the elliptical contact on
an elliptical flux tube. Solution should be pos-
sible for both by superposing an isothermal ellipti-
cal contact and several finite-line source images on
a half-space according to an optimised images cri-
terion.
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APPENDIX - TEMPERATURE RISE AND FLUX OF
CONTACTS AND IMAGES ON AN ADIABATIC HALF-SPACE

Circular Contact—~Equivalent Isothermal Flux

For the circular contact area on an adiabatic
half-space as shown in Fig. 5, the expressions for
temperature rise and flux at some point P(p,z) are
functions solely of the contact boundary condi-
tions. In this case the contact condition is set
isothermal which creates a mixed boundary value
problem in the polar cylindrical coordinate system
of Fig. 5. However, the problem is one~dimensional
in an oblate spheroidal coordinate system and the
solution is given simply by [6,12] as

3 S
(p,2z) = —> sin
"

1) (a-1)

2a
[(o-2)2+22 11 24 ((p+a) ez

and as shown in Fig. 5, T, is the specified iso-
thermal contact temperature and a the radius of the
circular contact.

From Eq. (A-1) the equivalent isothermal flux
can be easily found by differentiation with respect
to z along z=0, 0 {p < a and is

-1/2

where B = (A-2)

2]1/2 2]1/2

q = 2kaT (1-(o/2)") (a-3)
where k is the homogeneous thermal conductivity of
the semi-infinite solid of Fig. 5.

For work in “creating” flux tubes by optimised
images, the radial flux of this temperature field is
required for any location. This flux can be found
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Fig. 5 Circular contact on an adiabatic half-space

by simple differentiation of Eq. (A-1) with respect
to o and is given by

Ay - B 02

i

o w ul ]
{(o,%9,) (0 40 ,0% - 4a’1V/F 7 (a-4)
where 9, = [(p-a)2 + 22]1/2 (A-5)
0, = [(p+a)2 + 22]1/2 (A-6)

Circular Contact-Uniform Flux

If the circular contact of Fig. 5 is subjected
to a uniform prescribed flux, g,, then the temper-—
ature rise in an r-8 spherical coordinate system is
{13] for r > a

9,2 = a 2n-1
T(r,8) = —— nzl A @ P, _p(cos0) (A=)

where Py, () is a Legendre polynomial of order
2n-2 and Aj, is given by

ntl 103¢5¢ L.ieieeocsese(2n=3)
204%6% siceeaeceseaes (2n)

Ay = (-1) (A-8)

But in the polar cylindrical coordinate system
of Fig. 5,

2,2.1/2

r = [p"+z"] , 2

1/2
1

And thus the temperature rise for a circular
contact on an adiabatic half-space subjected to
uniform flux is for r > a

cos8 = z/[pz+z

o2 E a 2n-1
T(p,z) = — A, [—————] P, (1) (49
n=1 2n (p2+22)1/2 2n-2
where T = z/(°2+22)l/2 (A~10)

Again the radial flux for this field can be
determined by differentiation with respect to p to
give

g



L

aT p. = a 2n+}
k—~p,2) =q_ (D] A, [——
3p % 2 n£1 2n [(Dz 2.1/2

+z7)
3/2
7oy}
3/2
where C2£-3(.) is a Gegenbauer or Ultraspherical

polynomial as described in [l4].
Note that when n=1,

dP
P(x) =1, or —2(x) = 0
° dx

{@o-1) Py (1) +x ¢ (a-11)

32 dpy (=)
and thus for our purposes C_1 (x) (= =2 ) will be
set to zero. dx
If r < a then from [13}
qoa 2 ® . 2n
T(p,z) = o {1- ; +nZIA2n(:) Pzn(T )} (a-12)

However this expression was not needed in this
work.

Finite~Line Image Source

For a finite-line image source of line strength
Q and half-length £ which is aligned parallel to the
x—~axis, bisected by the y-axis and located on the
surface of an adiabatic half-space shown in Fig. 6,
the temperature rise can be easily shown to be [8]

4 +x + 4

-, s

T(x,y,z) Py IH{W (A-13)
where S [(x+1)2 + (y"yo)2 + 22]1/2 (a-14)
% = (x-2)? + (y-yo)z + 22]1/2 (A~15)

and y 1is the distance between the 1line source and
the x=axis as shown in Fig. 6.

The fluxes in the x and y directions are
obtained by differentiation of Eq. (A-13) to give

-k ar (x,y,z) = a {—l— -1 (A~16)

9x 2r o c

x2 x1

9T Q 1
kg vea) = on ) (e ™

y x2 2 X

1
- -————————————————% (A-17)
oxl(cxl txtL)

If a similar line source is placed parallel to

A L P(x,y,2)

Fig. 6 Finite-line source on an adiabatic half-~

space

1

the y-axis and bisected by the x—axis, then the
temperature rise is

g +y +2
T(x,y,2) = % 2n {2} (A-18)
2rk [¢] +y -2
y2
where o . = {(x~x )2 + (y*"l)2 + 2211/2 (A-19)
yl [
2 2 2,1/2
0,0 = laxx )%+ -0 4 )Y (A-20)

and x, is the distance between the line source and
the y-axis.
The fluxes in the x and y directions are

aT Q_ 1
-k — (x,y,z) = (x-xo) f——m—
Ix 2 ayz(ay2 +y-2)
—1 4 (a-21)
Uyl(ayl +y+2L)
-k 3T (x,7,2) = Q {_1_ - _l_} (A=22)
ay 2n o g
y2 Tyl

Circular Ring Source Image

The potential due to a circular ring source of
line strength Q and radius R on an adiabatic half-
space 1is a classic problem of mathematical physics.
The solution can be easily found in many references
[6,7,8,13) and when expressed as a temperature rise
the solution is

T(p,z) = —R& o) (A-23)
1/2
Tko
where o = z2 + (9+R)2 (A-24)
A = 2(pR/0)l/? (a-25)

and K(+) 1is the complete elliptic integral of the
first kind. The polar coordinate system p-z has an
origin at the centroid of the circular ring.

The radial flux can be obtained by differen~
tiating Eq. (A-23) with respect to p to give

2 ) = IR (B ) 4 22 B0R)
p n 63/2 203/ p

(E(V)/(1-22) - k)] (A-26)

where E(*) is the complete elliptic integral of the
second kind.

The expression for the temperature rise due to
a circular ring source can also be expressed as a
series of Legendre polynomials similar to Eq. (A-7)
for the circular contact with uniform flux [8].
However, the elliptic integral representation is
more convenient because both complete elliptic inte-
grals E(+) and K(¢) can be calculated accurately,
efficiently and simultanecusly by the Gauss arith-
metic-geometric mean process [14].




